Large deviations for intersection measures of some
Markov processes

Takahiro Mori*

The aim of this talk is to analyze the intersection measures in a general setting.

Let p be an integer with p > 2, E be a locally compact, separable metric space and m be
a Radon measure on E with supp[m] = E. Let XM ... X® be p independent irreducible
Hunt processes on FE, with life time ¢, .- (® and start zy, - - - , T, € I, respectively. For
simplicity, we also assume that X ...  X®) have the same law. For each t > 0, under the
condition that all life times ("), - - - | ((P) are grater than ¢, the intersection measre (% is formally
witten as

p
(S(A) = /A/[Ot] Héx(X(i)(si))dsl ---dsym(dx) for A C E Borel.
P =1

Intersection measure is firstly introduced in [[GY92], and until now, only for the cases of

Brownian motion and stable processes, its deep natures have been obtained. ([CRO3], [KMT3])

To deal with the intersection measure in a general setting, we now make five assumptions
on X@. Here R, is the 1-order resolvent, and {T;} is the linear operator determined by the
transition probability p, of X@:

(A1) (Tightness) Ve > 0,3K: compact, such that sup,cp Rilge(z) <e.

(A2) (Transition density) V& > 0 and Vz € E, the transition probability p;(x, dy) is absolutely
continuous with respect to m, and its density p;(-, -) is continuous and bounded on E x E.

(A3) (Trace estimate) There exist p > 0, top > 0 and C' > 0 such that
Clr2 < /pt(x,x)m(dx) < Ct P2, forall t € (0,t].
E

(A4) (Ultra-contractivity) There exist p € (2, %), C' > 0 and t; > 0 such that

T3l 100 < CE#2 forall t € (0,1].

(A5) (Green function estimate)

sup/ Ry(x,y)Pm(dy) < oo, limsup/ Ry 5(z,y)Pm(dy) = 0,
E E

z€E 010 zcE
where

0o 1)
Ry(z,y) =/ e 'p(x,y)dt, Rm(x,y)z/ e 'py(x,y)dt  for z,y € E.
0 0

We can check these assumptions easily, if X® enjoys (sub-)Gaussian or jump-type heat
kernel estimates.
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The occupation measure é,gi) and for each £ > 0 the approximated occupation measure ES%

of X@ until time ¢ > 0 are defined by
. t . . . .
= [ Lo dw- | [ | o), x)ds} m(dz)
0 A LJ[0,4]

for A C E, on the event {t < (¥},
For each € > 0, the approximated (mutual) intersection measure &Ift of XM ... X® until
time ¢t > 0 is defined by

p
fft(A) = /A [/[0 ] Hpg)(X(i)(si),x)dsl .. -dSp] m(dzx)
P =1

for A C E, on the event {t < (W A--- AP}
We define the function J : M¢(E) x (M;(E))? — [0, 00| by

)

u d; Pdp dp
E iy Wi) — A 3 if i = . e F d : = -,
J(s - 1) = ;{ Wown) =} it dm =7 dm  dm

i=1
o0 ; otherwise

for (p6; pea, -+, ptp) € My(E) x (M;(E))P, where (£, F) is the associated regular Dirichlet form
of X and A\, :=inf {E(v,¥);¥ € F, ||¢||» = 1} is the bottom of spectrum.
The first result enables us to deal with £° in our setting:

Proposition 0.1. Suppose (A5) and let t > 0. Then, there exists the random measure (5 €
M (E) such that, in the vague topology of M (E),

6{‘2 — (1 in distribution, as e — 0,
with respect to the probability measure P, :==P(- | {t < (W A--- AP},
U

The following is one of our main results. This extends [KMT3], in which the large deviation
principle is established for the case of d-dimensional Brownian motions before exiting some
bounded open set B C R%:

Theorem 0.2 (Large deviation principle). Suppose (A1) - (A5). Then the tuple

1 1 1
(t—pggs; ge,ﬁ”, - ;ggM) € M(E) x (My(E))

satisfises the large deviation principle as t — oo, with probability f”t, scale t and the good rate
function J.

O
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Behavior of fundamental solutions

for critical Schrodinger operators
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/ Gz, y)u(dy)pu(dr) < oo

R4 x R4

ZorE, valbTFa v H—HBRE EF(u,u) = E(u,u) —/ u?(z)p(dr) TED., MIGTBEMEE L4 L
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[Jim (log t)p" (¢, z, y) = Ka,oh(z)h(y) (d/a=2)
lim p#(t,z,y) = Kaah(x)h(y) (d/a>2)
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IRREDUCIBLE DECOMPOSITION FOR MARKOV PROCESSES

Kazuhiro Kuwae

(Fukuoka University)

1. MAIN THEOREM

Let E be a separable metric space and m a o-finite Borel measure on E. We consider
a quasi-regular semi-Dirichlet form (£, F) with a lower bound —v on L*(E;m) (y > 0).
Under the quasi-regularity of (£, F), we may (and do) assume that F is a Lusin topological
space, i.e., F is homeomorphic to a Borel subset of a compact metric space. An m-
measurable subset B of E is said to be weakly (1})i>0-invariant if 1g<Ti1pu = 0 for any
t > 0and u € L?(E;m), equivalently B° is weakly (T});>o-invariant. An m-measurable
subset B of E is said to be (strongly) (T})i>o-invariant if Ty1pu = 1pTiu for any ¢t > 0
and u € L?(E;m). Clearly, the strong (T;)¢>o-invariance implies the weak one. Any semi-
Dirichlet form (€, F) with a lower bound —v on L?(E;m) is said to be strictly irreducible
(resp. irreducible) if for any weakly (resp. strongly) (7;)s>o-invariant set B relative to the
Co-semigroup (13)s>0 of (resp. irreducible) (€,F), m(B) = 0 or m(B¢) = 0. The process
X is called m-irreducible if the corresponding semi-Dirichlet form (£, F) on L?(E;m) is
irreducible (see [4]). A set B(C Ejp) is called nearly Borel if there exist Borel subsets
By, By of Ep such that By C B C By and P,(X; € By \ By,3t € [0,00[) = 0 for all
i € P(Ey). Denote by B"(Ey) (resp. B"(E)) the family of nearly Borel subsets of Ej
(resp. E). A set A is called finely open if for each x € A, there exists a B € B"(E) such
that £\ A C B and P,(op > 0) = 1. The family of finely open sets defines a topology
on F which is called the fine topology of X. X is said to be finely irreducible if for any
finely open nearly Borel set D with D # (), P,(ocp < 00) > 0 for all z € F (see [4]). A set
B C E is said to be X-invariant if B € B"(E) and

P,(X; e Bforallte[0,([, X;— € Bforallt€]0,{[)=1, x¢€B.

A set N C FE is called properly exceptional if N is a nearly Borel m-negligible set and
E\ N is X-invariant. If X has a decomposition E = B; + By + N such that each B;
(i = 1,2) is X-invariant and N is properly exceptional, then each B; (i = 1,2) is strongly

(T3)¢>o0-invariant.

We consider the following conditions:

(A) X is a diffusion process or m-symmetric.
(AC) P,(z,dy) < m(dy) for each x € E and t > 0.
(AC)" For some fixed a > 0, R, (z,dy) < m(dy) for each z € E.
(RSF) R (By(E)) C Cp(E) for each o > 0.
1



Remark 1.1. (1) In fact, (AC) is equivalent to (AC)’. This is proved in [2, Theo-
rem 4.2.2] under the m-symmetry of X, whose proof remains valid provided X is
properly associated with (&, F).

(2) (AC)" is equivalent to Meyer’s hypothesis (L) (see [1, pp. 112]).

(3) In view of resolvent equation, (AC) is equivalent to that R, (x,dy) < m(dy) for
each x € F and any a > 0.

(4) Tt is known that (AC)’ holds if and only if every exceptional is polar (see [2,
Theorem 4.2.4]).

(5) Clearly, (RSF) implies (AC)'.

Our main theorems are the following:

Theorem 1.1. Assume (A). For each x € E, there ezists an E-quasi-open and E-quasi
-closed nearly Borel set E, satisfying the following:
(1) z € E,.
(2) There exists a properly exceptional set N such that E, \ N and E$\ N are X-
moariant.
(3) The part process X, is m-irreducible, i.e., the part space (Eg,, Fg,) on L*(Ey;m)
1s irreducible.
For each x € E, E, satisfying (1)—(3) is unique in the sense that if E, satisfies conditions
(1)=(3) by replacing E, with Ex, then E, = E, g.e. provided E, N E, is not m-polar.
Moreover, for each x,y € E, if E, N E, is not m-polar, then E, = E, q.e.

Theorem 1.2. Assume (A) and (AC). For each x € E, there exists a finely open and
finely closed Borel set E, satisfying the following:

(1) z € E,.

(2) E, and ES are X-invariant.

(3)
If (A) and (RSF) are satisfied, then E, can be taken to be open and closed. For each
z € E, B, satisfying (1)~(3) is unique in the sense that if E, satisfies all conditions (1)-
(3) by replacing E, with E,, then E, = E,. Moreover, for z,y € E, if Ey N E, # 0, then
E, = E,. More strongly, there exists a countable sets {x;} such that E = |J;=, Eg, is a

The part process X, is finely irreducible.

disjoint union.

REFERENCES

[1] K. L. Chung and J. B. Walsh, Markov processes, Brownian motion, and time symmetry, Second
edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], 249. Springer, New York, 2005.

[2] M. Fukushima, Y. Oshima and M. Takeda: Dirichlet Forms and Symmetric Markov Processes, de
Gruyter, Berlin, 1994.

[3] K. Kuwae, Irreducible decomposition for Markov processes, preprint, 2017.

[4] J. Ying and M. Zhao, The uniqueness of symmetrizing measure of Markov processes, Proc. Amer.
Math. Soc. 138 (2010), no. 6, 2181-2185.

[5] K. Yosida, Functional Analysis, Sixth Edition. Springer-Verlag. Berlin Heidelberg New York 1980.



LP-INDEPENDENCE OF SPECTRAL RADIUS FOR GENERALIZED
FEYNMAN-KAC SEMIGROUPS

Zhen-Qing Chen, Daehong Kim and Kazuhiro Kuwae

(University of Washington, Kumamoto University and Fukuoka University)

1. PRELIMINARY

Let E be a Lusin metric space and m a o-finite Borel measure on F with full topological
support. We add 0 ¢ E as an isolated point to E. Let X = (Q, Foo, Ft, X4, Py, z € Ey) be
an m-symmetric special standard process on E with lifetime ¢ := inf{t > 0| X; = 0}. Let
(€, F) be the Dirichlet form on L?(FE;m) associated with X. Then (&, F) is automatically
quasi-regular. We further assume that X satisfies (AC). Suppose p is a signed smooth
measure. Let ™ and p~ denote the positive and negative variation measure of p in its
the Jordan decomposition, which are smooth measures. We define A* := AR — AR Let
Fioc be the family of all functions locally in F in the broad sense, i.e., u € F. if and
only if there exist an increasing sequence {O,,} of finely open nearly Borel sets satisfying
U.2, On = E and {u,} C F such that u = u,, m-a.e. on O,,. Since (€, F) is quasi-regular,
every u € Fioe admits an E-quasi-continuous m-version @, and we omit tilde from @, i.e.,
we always assume u € Fio is represented by its £-quasi-continuous version.
Let N* be the continuous additive functional of zero quadratic variation appeared in
a Fukushima decomposition of u(X;) — u(Xp) up to the lifetime. Note that N" is not
necessarily of bounded variation in general. Let F' be a bounded symmetric function on
E x E which is extended to a function defined on Ey x Ey so that F(z,0) = F(0,z) =
F(z,x) for x € Ey (actually there is no need to define the value F(0,y) for y € E). Then
=30 s<t F(Xs—, X) (whenever it is summable) is an additive functional of X. It
is natural to consider the following generalized non-local Feynman-Kac transforms by the
additive functionals A := N* + A" 4+ A of the form

(1) ea(t) :=exp(Ay), t€][0,(].

We define Q:f(z) := Ezlea(t)f(X:)] for any Borel function f. Let Q be the quadratic
form defined by

(2) Qf,9) = E(f,9) +E(u, fg) — H([,9),

where
E(u, fg): /fdu u,g) /gdu<uf>

) i= /E f(@)g(x)u(dz) + / / fa (@) — 1)N (2, dy)pp (dz).



Here (N, H) be a Lévy system of X. Then (Q,F) is lower bounded on L?(E;m) and
associated to (Q¢)s>o under the condition (A):

(A) u + N~ Dy € Shc(X), gy € S(X) and =+ N(F )y € Sh(X).

One can define the LP-spectral radius A\, (X, u, u, F') € [—00, +00] by

.1 o1
(3) Ap (X, p, F) = — | tllglo ;log 1Q¢llpp = _%Egglog Q¢ p.p-

Using the symmetry of {Q;t > 0} and interpolation, it is easy to deduce (cf. [1, (4.2)])
that

1Qtll2.2 < [|Qtllpp < [|Qtllcc,c0  for all p € [1, +00]

and therefore
(4) >‘2(X7U7M7F) Z )‘p(X7uuu7F) Z )‘OO(X7U>MaF) for aupe [L—{—OO]

Thus to establish the LP-independence of spectral radius, it suffices to show Ao (X, u, u, F') <
Moo (X, u, 1, F). For a > 0, denote by X(®) the a-subprocess of X. Let Sk (X) (resp. Sk (X),
St (X)) denote the class of smooth measures in the strict sense of extended Kato class
(resp. Kato class, local Kato class) with respect to X. Let Sy (X) (resp. S}VKl (X)) be
the family of natural Green-tight measures of Kato class (resp. natural semi-Green-tight
measures of extended Kato class) with respect to X and SbO(X) the family of Green-

bounded smooth measures with respect to X.

2. MAIN THEOREMS

Our main results are the following:

Theorem 2.1. Suppose that m(E) < oo and
(5)  thereis a ty > 0 so that Py, is a bounded operator from L*(E;m) to L>(E;m).
If ut + N(2F" — g e Sk (X), then \p(X, u, u, F) is independent of p € [1,00].

Theorem 2.2. Suppose that it +N(eF —1)up € Na>0S Nk, (X)) and Iy € Sk, (XM,
Then the following holds.
(1) Mo(X, u, pt, F') > min{Ao(X, u, p, F),0}. Consequently, A\p(X,u, p, F) is indepen-
dent of p € [1,00] provided Ao(X, u, u, F) <0.
(2) Assume that X is conservative. Suppose one of the following holds:
(i) X is transient and p~ + N(F~ )umg € SbO(X). Assume one of the following:
(a) v~ = max{—wu,0} € LP(E;m) for some p € [1,+00].
(b) gy € Sp,(X) and m(E) < co.
(©) 11wy (F) < oo,
(ii) u € Fioe is a bounded function and p~ + N(F ™)y € Sy W(X(l)).
Then Moo (X, u, 1, F') = 0 if Xo(X, w, i1, F') > 0. Hence \y(X, u, 1, F') is independent
of p € [1,00] if and only if Xo(X,u, u, F') <0.

Theorem 2.3. Assume m € S}VKOO(X(I)). Then A\p(X,u, 1, F') is independent of p €
[1,00].



These three theorems extend the previous known results by the first author [1, 2|, the
second and third authors [4, 5], Takeda [7, 8, 9, 10], and Tawara [11].

One of the significant progress is to remove the irreducibility condition for (£, F). The
irreducibility condition of the given Dirichlet form (&, F) has been assumed to apply the
Donsker-Varadhan type large deviation principle, or to apply the analytic characterization
for the gaugeability of (generalized) Feynman-Kac functionals for the LP-independence of
the spectral radius of (generalized) Feynman-Kac semigroup. Based on the irreducible
decomposition for Markov processes (in the previous talk), we can remove the irreducibility
condition by utilizing the Terkelsen’s Minimax Principle (see [12]).

Secondly, we remove the boundedness condition for the function u appeared in the
generalized Feynman-Kac semigroup (Q)¢>o. The boundedness of u has been needed to
apply the Chen-Zhang type Girsanov transform in order to reduce the case for u = 0.
Applying Terkelsen’s Minimax Principle again, we can prove Theorems 2.1 and 2.2 by
making an exhaustion of increasing finely open nearly Borel sets on which the function «

can be regarded to be bounded.
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