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Consider a dynamical system f: X — X of a compact space X. The theory of large deviations

deals with the behavior of the empirical mean
1
5;:g(ém—i—éf(@—i—---—i—éfnq(@) as n — +00,

where 0, denotes the Dirac measure at . We put a Lebesgue measure | - | on X as a reference
measure, and ask the asymptotic behavior of the empirical mean for Lebesgue almost every
initial condition.

Let M denote the space of Borel probability measures on X endowed with the topology of
weak convergence. We say the Large Deviation Principle (the LDP) holds if there exists a lower
semi-continuous function .# = .Z(f; -): M — [0, 4o00] which satisfies the following:

- (lower bound) for every open subset G of M,

ool n .
— : > — ;
lém}rnf - log [{z € X: 0 € G}| ;reléf(uL

- (upper bound) for every closed subset K of M,

limsupllog|{x € X:0 € K} < —inf A (u),
n—+oo N HEK
where log0 = —oo, inf ) = co and sup ) = —oco. The function .# is called a rate function.

For a transitive uniformly hyperbolic system with Holder continuous derivative, the LDP was
established by Takahashi [6], Orey and Pelikan [5], Kifer [4], and Young [8]. For non-hyperbolic
systems, few results on the LDP were available until recently. A substantial progress has been
made in [1] in which the LDP was established for every multimodal map with non-flat critical
point and Holder continuous derivatives that is topologically exact. Our aim here is to establish
the LDP for unimodal maps with non-recurrent flat critical point. We also study the structure
of the set of zeros of the rate function for a concrete unimodal map.

In what follows, let X = [0,1] and f: X — X be a unimodal map, i.e., a C' map whose
critical set {x € X: Df(z) = 0} consists of a single point ¢ € (0,1) that is an extremum.
We say f is topologically exact if for any open subset U of X there exists an integer n > 1
such that f*(U) = X An S-unimodal map is a unimodal map of class C® on X \ {c} with
negative Schwarzian derivative. Let w(c) denote the omega-limit set of ¢. The critical point c is
non-recurrent if ¢ ¢ w(c), and is flat if there exists a C* function £ on X \ {c} such that:

(i) £(x) = 400 and |Dl(x)| — +o00. Here, x — ¢ indicates both as x — ¢+0 and x — ¢—0;
(ii) there exist C'* diffeomorphisms &,  of R such that £(c) = 0 = n(f(c)) and |£(z)[/®) =
n(f(x)) for all z near c.

The flat critical point ¢ is of polynomial order if there exists a C3 function v on X such that
v(c) > 0 and for all z near ¢, £(z) = |z — ¢["®). Define .7 = .Z(f; -): M — [—00,0] by

F) = h(v) — [log|Df|dv if vis f-invariant;
|- otherwise.

The —.% is not lower semi-continuous. Hence, we introduce its lower semi-continuous regular-
ization . = Z(f; -) by
S (u) = — inf sup F (v),
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FIGURE 1. The sets of zeros of the rate functions for the family {f,}p~0-

where the infimum is taken over all open subsets G of M containing .

Theorem A. ([2]) Let f: X — X be a topologically exact S-unimodal map with non-recurrent
flat critical point that is of polynomial order. Then the LDP holds. The rate function is given
by S .

We now consider a parametrized family { f;}y~0 of unimodal maps given by

9P — 12V 1 for e [0,1]) {1/2):

folw) = 1 for x = 1/2.

The 1/2 is a flat critical point of polynomial order. Theorem A applies to the map f,. This map
has an invariant measure that is absolutely continuous with respect to the Lebesgue measure.
This measure is finite if and only if b < 1. In this case, the normalized measure is denoted by
Hach- We have a complete characterization of the zeros of the rate function for f:

Theorem B. ([2]) The following holds for {fy}:
- for 1/v/6 < b < 1, Z(fy;p) = 0 if and only if there exists p € [0,1] such that p =

poo + (1 — p)ttacp:
- forb>1, Z(fp; ) =0 if and only if p = do.

Combining the result [7, Theorem A.2] and that of Freitas and Todd [3] one can show that
b€ [1/V6,1) = pacpy € M is continuous (continuous in the L* norm). Also, one can show that

Hac,p converges weakly to dg as b 1. As a consequence, the set of zeros of the rate function for
f» depends continuously on b > 0 (See FIGURE 1).
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Multiray generalization of the arcsine laws for
occupation times of infinite ergodic transformations

Toru Sera (Kyoto Univ.) and Kouji Yano (Kyoto Univ.)

In this talk, we consider a certain distributional convergence of occupation time ra-
tios for ergodic transformations preserving an infinite measure. We give a general limit
theorem which can be regarded as a multiray extension of the 2-ray results by Thaler [3]
and Thaler—Zweimiiler [4]. We also explain applications to interval maps with indifferent
fixed points.

1 Multiray generalized arcsine laws

Let N > 2 be an integer. For a € (0,1) and 8 = (B4,...,8y) € [0,1]" with Zf\il B =1,
let (Zt(a’ﬁ))tzo be a skew Bessel diffusion process, starting at 0, of dimension 2—2« € (0, 2)
and with skewness parameter 8 on N rays which are all connected at 0. In the special
case of N = 2 and a = ff; = 5 = 1/2, this process is nothing else but a standard one-

dimensional Brownian motion. Let us denote by Az(-a"g ) the occupation time of (Zt(a’ﬁ )>t20
on i-th ray up to time 1 for i = 1,..., N. Barlow—Pitman—Yor [1] showed

' N
(AEQ’B)XVI = (Zj\z §j>i17

where &1, ..., &; are R, -valued independent random variables with the one-sided a-stable
distributions characterized by E[exp(—\¢;)] = exp(—FiA*) for A >0, i =1,..., N. In the
special case of a = 51 = 1/2, the A?’B is arcsine distributed.

2 Main results

Let (X, B, i) be a standard measurable space with a o-finite measure such that p(X) =
oo, and let T : (X,B,u) — (X,B,u) be a conservative, ergodic, measure preserving
transformation (which is abbreviated by CEMPT), i.e., uT—' = pand Y, o, 1a(T*z) =
00, p-a.e.r, for any A € B with pu(A) > 0. -

Assumption 2.1. The state space X is decomposed into X = Zf\il X, +Y for the rays
X; € Bwith u(X;) =00 (i =1,...,N) and the junction Y € B with p(Y) = 1 such that,
when the orbit (T*x)y>o changes rays, it must visit the junction.



We will denote by H,(z) the n-th hitting time of (T"x),> for Y. Set
N (2) = max{k > 1; Ty Ty € X3}, e,
= (000,

where max () = 0. Note that 7 is the n-th X;-side excursion length of (T*z);>o from Y,
and the sequence ({™),>1 is stationary w.r.t. a probability measure puy := u(-NY).

Assumption 2.2. The sequence (£"),,>1 under py may be regarded to be i.i.d. in a certain
asymptotical sense.

Set Spi(z) == Sp—y Ix,(T"x) for n >0, i = 1,..., N. We now give our general limit
theorem as follows.
Theorem 2.3 (S.-Yano [2]). Let o € (0,1) and 8 = (By, ..., 8x) € [0, 1] with N, 6 =
1. Suppose that T is a CEMPT on (X, B, 1) and that Assumptions 2.1 and 2.2 hold. We
consider the following conditions:

(i) For eachi=1,...,N and X\ > 0,

1
lim py (6 > Ar)

— BA.
A (> =P

(ii) For any probability measure v < pu on X,

N
(n_lsn,i>£\;1 under v - (Aga’ﬁ)> '

n—>00 i=1
Then, (i) implies (ii). Furthermore, if 8 € [0,1)Y, then (ii) implies (i).

The case N = 2 was due to [3] and [4]. The proofs in [3] and [4] were based on the
moment method, which does not seem to be suitable for our multiray case. We adopt
instead the double Laplace transform method, which was utilized in the study [1] of
occupation times of diffusions on multiray.
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1. T—LERIIOWVT
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2, T —L08k LWO5E, /AR VIIBEAMhr—Lo8ime Yy a2t
53'5%173’7 LHEER IR E NG, T — LBEmIE S SIZEEE Rt 1 — LB R
(Transferable utility game, TU game & %\ & side payment D & 51K — L) £ £ 5 T
2\ — LB (Non Transferable utility game, NTU game ) 2120505, TU game
TTVA Y —DEAE NERES) & N OBITESEDOREK 2N ETERSI N FEEUEREE v T
KX NE. v TR EIENS. PN, REREEE T — L4 (N,v) LS. d@E, Rk
BT — L THEKRI N BHE I

(D) v@) =0, 2)VS,Te2Vst.SNT=0;v(S)+v(T) <v(SUT) (supper additivity)

D2DTHb. IO, /AXY - ELTYYaTILy (1944) TlEwbpidEaHh Ly —
LThHDBZ L,

(3) VS €2V v(S) +v(5¢) =0
EIRELTWVS,

W-T, EFED(1),2),3) 2KETSE, (4)FEat(S) > 0iMiETE RV, LA,
(1) & (2) DEAEEE (4) DIEAMEPS (5) BN S C T = v(S) <o(T) BES. AR
2 (3) DY LMEIFABENZNE TR WE b D TUEIE (1) & (5) DAEE L
7z,

AT, I —LHEERIIBIAEAMSZROVBNALTEL. ARES ADE
D% A TET.
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- fid7> (imputaion) : N IRIGRZ MV T = (21,...,05x) D Z &.
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- ¥ ¥ — 7V A1 : Shapley(1953) IZ L > TEAI N, (N, 0) IZH UL T—RIZEHRINS
Ml oZ k.
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ﬁ?&ﬁéﬁ&ﬁ%.$m¢~Au%W%%®ﬁwmuﬂAezmvmy:u%éwuﬁ%
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THh-oTHHREDGEEETE, 7D, EIMENHEDORS >V TIVEHE > T\W5,

2. FEMERVRIE
AFEFRTIEME (2016, FEMIERTHIE & IERER . TEUF) 684 35, 266-292) IZHE-> T,
FJENERHIE 2 IRD S IZEET 5.

EE 2.1 (X, F) 2afllzEfed s, 22T, X FETRVHIRES, FII&Rre X &
B o-algebra £ 95, ZDE X, RD 3 DOEMEN -3 F ETERI N-BEEIEIE
BRI IO, (X, F,v) &Kl T 5.

(1-1) v : F — [0,00] (GE&EM)
(1-2) v(@) =0 CFHAEFME)
(1-3) VA,B: AC B=v(A) <v(B) (B

LU s, EEOEMEEZIDIIIEDTLED &, JE\WT T ADIENNTEMHIE —
FRIZH U TR T A VWNEDEH 2B Z DML 5. X oMM 2T
MM U B, 3% (ibid.) (ZIXFENERIE 2 801 5 30 L EOBEEBFIZE I T
5. ZOHGE, YRETNOOMEOMHAEMR, FETHLEH, Mt Thsdr, A&
RIZHZDH, FVMEICRD. T o OB Z T 255 F 0D B HIEIZEARR
il RTZETHS.

AFEROBEME, FEIERRIE B2 NERDEZERTEOE TLAEWY] OT, £TFN
MY LT —L2HHm TR LSS NT W B EHY — LD —f% LT d % BitIENER
BEZEHZLT, WSOH»DHIZBNTEIETHS. My —LHgTHSNTWBIES
REENE Z F TIEMIERHIE ORI AN TH 20T 5B OFEE L Lz,

EFE 2.2. IROSEM %72 9 FENERTIE (X, F,v) & BHFEIERTE & \0» 5.
VAe F, v(A) =0or 1.

fEAY0 & 1 UDELS 22 WHIERTHIEE 1L AL 06 U Dy WS — L &2 il U TE R 7272
T CHBEMIEMERNREZEL IFEDOEHEZF>TWB I e Rbh b,

T4 Y= (LT, T4 Y —0ELE=nHllEMX ThHs) PEEEGDHEIZE
W LSOO & DITEGEEOMER D D, NIZFHARBOES, A, X FIIETI2HEED
¥ilne N &3 5.

(1) M sEfett - VA, | 0 = v(4,) ] 0.
(2) BRIEFFEERENE : VA A, | A v(A) =0 = v(A,) | 0.
(3) Ed S Dl : VA A, | A= v(4,) | v(A).

T TIEER I TR, JEIEEIGHIE T 0(A) + 0(A%) = o(X) AR D 120 & 1Z
57 B RS DS M < HHT 2 BN D . 25 ORI MR
DRFATHHIEMES 2 EANTES, &SI BMIMENIED S, M, BIZOWT BN
13.

SCHk : Grabisch, M., 2016. Set Functions, Games and Capacities in Decision Making.
Theory and Decision Library C. Game Theory, Social Choice, Decision Theory, and Opti-
mization Volmume 46. Springer.



Existence and uniqueness results for one type of first order
conservation laws involving a ()-Brownian motion

by

Yueyuan Gao (MathAM-OIL, AIST c¢/o AIMR, Tohoku University, Japan)

Abstract :

We consider a first order conservation law with a multiplica-
tive source term involving a ()-Brownian motion. We first present
the result that the discrete solution obtained by a finite volume
method converges along a subsequence in the sense of Young
measures to a measure-valued entropy solution as the maximum
diameter of the volume elements and the time step tend to zero.
This convergence result yields the existence of a measure-valued
entropy solution.

We then prove the uniqueness of the measure-valued entropy
solution. We present the Kato inequality and as a corollary we
deduce the uniqueness result. The Kato inequality is proved by
a doubling of variables method; to that purpose, we prove the
existence and the uniqueness of the weak solution of an associ-
ated nonlinear parabolic problem.

In the proof of the associated nonlinear parabolic problem,
we apply an implicit time discretization to obtain a semi-discrete
solution and prove the convergence of the discrete solution by
using It0’s formula and a priori estimates. The convergence re-
sult yields the existence of a weak solution and we then prove
the uniqueness of the weak solution.

Finally we show some numerical results for stochastic Burg-
ers equation.



This is joint work with Tadahisa Funaki and Danielle Hil-
horst.



A RELATION BETWEEN MODELED DISTRIBUTIONS
AND PARACONTROLLED DISTRIBUTIONS

MASATO HOSHINO (WASEDA UNIVERSITY)

In the field of singular SPDEs, there are two big theories: the theory of
regularity structures [4] by Hairer and the paracontrolled calculus [2] by Gu-
binelli, Imkeller and Perkowski. These two theories are based on a common
principle but composed of different mathematical tools. Therefore we can
use either of them according to the situation. For example, the former is
useful to show a universal property of a large number of SPDEs (e.g. [5, 6]),
and the latter is useful to get more detailed information of a specific SPDE
(e.g. [3, 7]). However, there is a gap between the two theories about the
range of application. For example, the Hairer’s theory can be applied to the
3-dimensional parabolic Anderson model

(0 — A)u(t,z) = u(t,z)é(z), t>0, z €T,

for &€ € C~3/27¢(T?) with € > 0, but the GIP theory cannot be.

In this talk, we discuss how to overcome this gap. Recently, Bailleul and
Bernicot [1] are tying to improve the GIP theory. Our plan is to complete
their work by combining the essence of the Hairer’s theory. There is a differ-
ence between both theories about the definition of solutions. In the Hairer’s
theory, the solution is defined as a modeled distribution, which represents a
local behavior of the solution. In the GIP theory, the solution is defined as
a paracontrolled distribution, which is defined by nonlocal operators. Each
definition has an advantage to each other. We compare these two notions
and aim to find a better way.
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On the Gibbs equilibrium in stochastic complex Ginzburg-Landau equations

Reika Fukuizumi

Research Center for Pure and Applied Mathematics,
Graduate School of Information Sciences,

Tohoku University, Japan

Abstract

In Physics, the stochastic Gross-Pitaevskii equation is used as a model to describe Bose-Einstein
condensation at positive temperature. The equation is in fact a complex Ginzburg-Landau
equation with a trapping potential and an additive space-time white noise. I am going to talk
about two important questions and corresponding our results for this system: the global existence
of solutions in the support of the Gibbs measure, and the convergence of those solutions to the
equilibrium for large time. This is a joint work with A. de Bouard (Ecole Polytechnique) and
A. Debussche (ENS Rennes).
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The invariant measure and flow associated to
the ®3-quantum field model

Seiichiro Kusuoka
(Research Institute for Interdisciplinary Science, Okayama University)

We consider the invariant measure and flow for the stochastic quantization equa-
tion associated to the ®3-model on the torus, which appears in quantum field the-
ory. By virtue of Hairer’s breakthrough, such nonlinear stochastic partial differential
equations became solvable and are intensively studied now. In this talk, we present
a direct construction to both a global solution and an invariant measure for this
equation.

Let mo > 0, A be the 3-dimensional torusi.e. A = (R/Z)3, and jo be the centered
Gaussian measure on the space of Schwartz distributions &’'(A) with the covariance
operator [2(—A+m2)]~'. We remark that j is different from the Nelson’s Euclidean
free field measure by the scaling v/2. In order to adjust our setting to those of known
results, we define pg as above. In the constructive quantum field theory, there was
a problem to construct a measure

p(de) = Z~ exp (—U(9)) po(do)
where

v) = [ (Go) - Gt ) ar

A > 0 and Z is the normalizing constant. Since the support of p is in the space of
tempered distributions, ¢* and ¢? are not defined in usual sense. So, we approximate
¢ and take the limit.

Let (f,g) be the inner product on L?*(A;C). For k € Z%, define e(z) := e2™F*
where k - x := kyxq + koo + ksxs. For N € N, denote {j € Z;|j| < N} by Zy, and
let Py be the mapping from S'(A) to L*(A; C) given by

Png = Z (¢, ex)ex.

keZ3;
Define a function Uy on S’'(A) by
A 3\
(o) = [ {Fevora = 3 (e - ane") (o)} do

1 1 N 1 1

cM =N ———, o= .

! 2 Z k2 +mg 2 2 Z B+md)3+md)(13+13+ (11 +12)%2 + 3md)
kGZ“;’V ll,lQEZ?\]

We remark that limy_,eo C™) = limy 0o CSY) = 00, and C™) and C{™) are called
renormalization constants. Consider the probability measure py on S’(A) given by

pn (do) = Zy" exp (—Un(9)) po(do)



where Zy is the normalizing constant. We remark that {ux} is the approximation
sequence of the ®3-measure which will be constructed below as the invariant measure
of the associated flow.

Now we consider the stochastic quantization equation associated to {un} as
follows.

dX{ (@) = dWi(z) — (=5 +mg) X (x)dt

{PN [(PyXNY](2) — 3 (C{N) - 3AC§N>) Py XN (x)} dt
X§'(x) =én(2)
where W;(z) is a white noise with parameter (¢,z) € [0,00) x A and &x(x) is a
random variable which has py as the law, and independent of W;. We remark that
pn is the invariant measure with respect to the semigroup generated by the solution

to the equation. Let XV := PyX" for N € N. Then, XV satisfies the stochastic
partial differential equation

dXN(z) = PydWi(z) — (=N +m2) XY (2)dt

Pl )(@) = 3 = XY @) far (D)

Xo'(x) = Pnén(z)
To apply the Hairer’s reconstruction method, which enables us to transform (1)
for a solvable partial differential equation, we supplementary introduce the infinite-

dimensional Ornstein-Uhlenbeck process Z as follows. Let Z be the solution to the
stochastic partial differential equation on A

dZy(z) = dWy(z) — (=A +md)Z,(x)dt, (t,x) €[0,00) x A
Zo(z) = ((z), reA

where ( is 2 random variable which has pg as its law and is independent of W; and

En. Let XV = xN = z0N 4 A zO3N) g1 ¢ € [0, 00) where

t
P / =B =m) (Py(Py Z,)* — 30N Py Z,) ds, t € [0,00),
0

and decompose XV® into XN(2)< and XN(2:> by means of paraproduct. Then,
we have a solvable, coupled, semilinear and dissipative parabolic partial differential
equation, which the pair (XV:®:< XN:(2)2) satisfies. By applying the technique
of the semilinear and dissipative parabolic equation, we obtain some estimates for
XN@)< and XN(2):> which yields the tightness of X2 As the result we obtain

the following theorem for the ®3-measure and the associated flow.
Theorem 1. For ¢ € (0, 1] sufficiently small, {X™} is tight on C([0, c0); B;/g/%g)}
where B, is the Besov space. Moreover, if X is a limit of a subsequence {XN(’“)}

of {XN} on C([0, 00); BZ/I:,)/Q_E) then X is a continuous Markov process on B4/13/2 °

the limit measure ji of the associated subsequence {Ln@} i an invariant measure
with respect to X and it holds that

/||¢||Z;41/2eﬂ(d¢) < 00
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