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OT and BM on Manifolds with Ric > 0

Nonnegative Ricci curvature implies that — in many respects — optimal
transports, heat flows, and Brownian motions behave as nicely as on Euclidean
spaces. For instance

m Heat kernel comparison

pe(x,y) > (4mt)~"? exp (_%)

Li-Yau estimates

m Gradient estimates
|V Peu| < P(|Vul)

m Transport estimates
V‘/(IDf/L7 Ptl/) S W(/L, l/)

Vx,y : 3 coupled Brownian motions (Xs, Ys)s>0 starting at (x, y) s.t.
P-a.s. foralls >0

d(Xs, ¥5) < d(x,y)

Indeed, Ric > 0 is necessary and sufficient for each of the latter properties.
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m Transport estimates
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Vx,y : 3 coupled Brownian motions (Xs, Ys)s>0 starting at (x, y) s.t.
P-a.s. foralls >0

d(Xs, Ys) < d(x,y)
Indeed, Ric > 0 is necessary and sufficient for each of the latter properties.

Among the applications:
‘Market Fragility, Systemic Risk, and Ricci Curvature’ (Sandhu et al. 2015)
‘Ricci curvature and robustness of cancer networks’ (Tannenbaum et al. 2015)
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Super Ricci Flows

A family of Riemannian manifolds (M, g¢),t € [0, T], is called super-Ricci flow
iff 1
RiCt 2 7§atgt-

Two main examples
m Static manifolds with Ric > 0  (‘elliptic case’)

® Ricci flows Ric; = —10:ge  (‘minimal super-Ricci flows')

Goal.

m Extend Sturm‘06, Lott/Villani'09, Ambrosio/Gigli/Savare'11-'14, Er-
bar/Kuwada/Sturm’'14 (‘Synthetic Ricci bounds for metric measure
spaces’) to time-dependent setting

Extend Bakry/Emery’83 (‘T-calculus’) to time-dependent setting
m Extend McCann/Topping'10, Lott'09, Arnaudon/Coulibaly/Thalmaier'08,

Kuwada/Philipowski'1l, X.-D.Li'14, Kleiner/Lott'14, Haslhofer/Naber'15
(‘OT and BM on time-dependent manifolds’) to singular setting

o’




Super Ricci Flows for Diffusion Operators

Given a family (L¢)¢cpo, 1) of diffusion operators defined on a common algebra A
eg Lt = A Laplace-Beltrami w.rt. gr, A = C2°(M), X = Riem.mfd. M
For each t, define

m Square field operator  T:(f,g) = 3[Le(fg) — fLig — gL+f]

m [-operator [.(f,g) = %[Ltrt(f, g) —Te(f, Lig) — T(g, L:F)]
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Given a family (L¢)¢cpo, 1) of diffusion operators defined on a common algebra A
e.g. Ly = A Laplace-Beltrami w.r.t. gr, A = C2°(M), X = Riem.mfd. M

For each t, define
m Square field operator  T:(f,g) = 3[Le(fg) — fLig — gL+f]
m [-operator [.(f,g) = %[Ltrf(f, g) —Te(f, Lig) — T(g, L:F)]

We say that (Lt):cpo, 1) is a super-Ricci flow if

1
Mo > Eatrt-

It is a super-N-Ricci flow if

1 1
r2yt(f) - N(Ltf)z 2 Eatrt(f).

Definition consistent in Riemannian case! Note that ',(f,g) = V:f V.g,

1 .
Mo, f) = 5At(|vtf|2) — Vif VA = Ric(Vef, Vo) + | Vaf|lis

and recall that (M, g¢), t € [0, T], is a super Ricci flow iff Ric; > —10.g:.



Super Ricci Flows for Diffusion Operators

Theorem. The following are equivalent:

(i) Tae(u) > 30:Te(u)

(i) Te(Pfu) < PE(Ts(u))

Here (P?)o<s<t<T is the propagator for (L¢)e, i.e. a 2-parameter family of
linear operators on A satisfying for all s < r < tandallue A

m P{(Pu) = Pu
| atPfU:LtPfU
m O;Piu= —P;(Lsu)



Super Ricci Flows for Diffusion Operators

Theorem. The following are equivalent:

(i) Tae(u) > 30:Te(u)
(i) Te(Piu) < P(Ms(u))

Here (P?)o<s<t<T is the propagator for (L¢)e, i.e. a 2-parameter family of
linear operators on A satisfying for all s < r < tandallue A

m P{(Pu) = Pu
| 8tPfU:LtP?U
m O;Piu= —P;(Lsu)

Proof. Differentiating the function g, := P{I,(P;u) w.r.t. r € (s, t) yields
diar = P~ LT(Piu) + (OT)(Piu) + 2T (0,Pu, Piu)
= PI((= LTo(v) + 0T (v) + 20, Loy, v))
= Ptr( =20, (v) + &r,(v))

where v = P7u. Thus (i) implies 9,q, < 0 for all r € [s, t] which in turn yields
gr < gs. This is (ii).



Super Ricci Flows for Diffusion Operators

Theorem. The following are equivalent:
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Super Ricci Flows for Diffusion Operators

Theorem. The following are equivalent:

(i) T2.e(u) = £ (Leu)® > 20:T+(v)

(i) Te(Piu)+ 2 [f(P{L/P{u)*dr < P5(Ts(u))

Possible extensions:
L; discrete Laplacian, general Markov operator

In the sequel:
L; Laplacian on time-dependent metric measure space (X, d¢, m;)



Heat Flow on (Static) Metric Measure Spaces

(X, d) complete separable metric space, m locally finite measure

Heat equation on X
e either as gradient flow on L?(X, m) for the energy
E(u) = 1/ |Vul>dm = liminf 1/(liva)2 dm(x)
2 X v—uin L2 2 X
with |Vu| = minimal weak upper gradient
e or as gradient flow on P»(X, d) for the relative entropy

Ent(u) = / ulog udm.
X



Heat Flow on (Static) Metric Measure Spaces

(X, d) complete separable metric space, m locally finite measure

Heat equation on X
e either as gradient flow on L*(X, m) for the energy
E(u) = L |Vu| dm = liminf 1/(liva)2 dm(x)
2 v—uin L2 2 X

with |Vu| = minimal weak upper gradient
e or as gradient flow on P»(X, d) for the relative entropy

Ent(u):/ulogudm.
X

Theorem (Ambrosio/Gigli/Savare).

For arbitrary metric measure spaces (X, d, m) satisfying CD(K,o0) both ap-
proaches coincide.

R": Jordan/Kinderlehrer/Otto Ne_umann Laplacian: Lierl/Sturm
. S Wiener space: Fang/Shao/Sturm

Riemann (M, g): Ohta, Savare, Villani, Erbar Heisenberg group: Juillet

Finsler (M, F, m): Ohta/Sturm € group: U

Discrete spaces: Maas, Mielke

Alexandrov spaces: Gigli/Kuwada/Ohta Levy semigroups: Erbar



The Curvature-Dimension Condition CD(K, c0)

Definition. CD(K,c0) or

Ric(X, d,m) > K

< Vo, p1 € Po(X): 3 geodesic (u)r s.t. Vt € [0,1]:

Ent(u|m) <

(1 — t)Ent(uo|m) + t Ent(ui|m)
5 (1= ) W o, )

Ent(v|m) = { {f(opobgpdm

Wa(pto, p1) = infq |:fX><X d*(x,

Jifv=p-m
Jifv L m

y)daq(x, y)} v




The Curvature-Dimension Condition CD(K, N)

Def. A metric measure space (X, d, m) satisfies CD(K, N)
<= S:= Ent(.) is (K,N)-convex on P>(X, d)

< HessS— £ (VS®VS)>K




The Curvature-Dimension Condition CD(K, N)

Def. A metric measure space (X, d, m) satisfies CD(K, N)
<= S:= Ent(.) is (K,N)-convex on P>(X, d)

< HessS— £ (VS®VS)>K

Riemannian manifolds:
CD(K,N) <= Ricy > K and dimy <N J

Weighted Riemannian spaces (M, d, m) with dm = e~" dvol:

RicM—i-HessV—ﬁDV@DV > K and dimy < N

Further examples: Ricci limit spaces, Alexandrov spaces, Wiener space
(K=1,N=00).

Constructions: Products, cones, suspensions, warped products.



Time-dependent Metric Measure Spaces

For the sequel: (X, d¢, mi)ees with % < C and me(dx) = e~ mg(dx)
where
fi(x) —£(x) <€, filx) = fily) < C-di(x,y)

Assume Vt € I: the metric measure space (X, di, m;) is infinitesimally Hilbertian
(i.e. the energy &: is quadratic) and satisfies CD(K, ) J

Thus Vt € I: Dirichlet form &, Laplacian A;, squared gradient [';(u) = |V,ul?.
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Time-dependent Metric Measure Spaces

For the sequel: (X, d¢, mi)ees with % < C and me(dx) = e~ mg(dx)
where
fi(x) —£(x) <€, filx) = fily) < C-di(x,y)

Assume Vt € I: the metric measure space (X, di, m;) is infinitesimally Hilbertian
(i.e. the energy &: is quadratic) and satisfies CD(K, ) J

Thus Vt € I: Dirichlet form &, Laplacian A;, squared gradient [';(u) = |V,ul?.

Theorem V(s, T) C |

m Vh € L?: 3y, = P{h which solves d;u; = Aque on (s, T) x X and us = h
m 3 kernel pi(x,y) s.t. PPh(x) = [ pi(x,y)h(y) ms(dy)

m All solutions to heat equation are Holder continuous,
nonnegative solutions satisfy parabolic Harnack inequality

Lions/Magenes, Renardy/Rogers, Lierl/Saloff-Coste



The Dual Propagator

Def P? - P — P by duality
/ud(lA’f,u) = / (Pfu) du (VYu € Cp, VY € P)

Then vs = P solves
—0svs = Asvs, vVt =1

where [ ud(Asvs) = [(Asu)dvs. Moreover, it is the upward gradient flow for
the Boltzmann entropy in the time-dependent Wasserstein space (P, Ws):

vs = VsEnt(vs|ms)



The Dual Propagator

Def P? - P — P by duality
/ud(lA’f,u) = / (Pfu) du (VYu € Cp, VY € P)

Then vs = P solves
—0svs = Asvs, vVt =1

where [ ud(Asvs) = [(Asu)dvs. Moreover, it is the upward gradient flow for
the Boltzmann entropy in the time-dependent Wasserstein space (P, Ws):

vs = VsEnt(vs|ms)

Assume |0sfs| < C. Then

m density ws = gn‘ff solves —0sws = Asws — (0sfs) - s

m all solutions to this equation are Holder continuous, nonnegative solutions
satisfy parabolic Harnack inequality

m VY(t,x): the function (s,y) — pi(x,y) solves this equation




Super Ricci Flows for Metric Measure Spaces

Given a 1-parameter family of metric measure spaces (X, di, m:). Consider the
function

S: (0, T)x P(X) = (—o0,00], (t,p)— Se(p) = Ent(p|my)

where P(X) is equipped with the 1-parameter family of metrics W; (=
L[>-Wasserstein metrics w.r.t. d;).

Definition.

(X, de, mt)e(o, 1) is a super-Ricci flow iff for all 10, 1t and a.e. t there exists a
Wi-geodesic (14%)aeo0,1 S-t-

1
05S5e(1”) = 8aSe(n") < AW (1, 1)
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Given a 1-parameter family of metric measure spaces (X, di, m:). Consider the
function

S: (0, T)x P(X) = (—o0,00], (t,p)— Se(p) = Ent(p|my)

where P(X) is equipped with the 1-parameter family of metrics W; (=
L[>-Wasserstein metrics w.r.t. d;).

Definition.

(X, de, mt)e(o, 1) is a super-Ricci flow iff for all 10, 1t and a.e. t there exists a
Wi-geodesic (14%)aeo0,1 S-t-

1
05S5e(1”) = 8aSe(n") < AW (1, 1)

Consistent with the Riemannian definition: a family of Riemannian
manifolds (M, g¢), t € (0, T), evolves according to super-Ricci flow iff

1
RiCt 2 —_ Eatgt.



Super Ricci Flows for Metric Measure Spaces
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Super Ricci Flows for Metric Measure Spaces

Definition.

(X, dt, mt)ee(o,1) is a super-N-Ricci flow iff for all u®, 1t and a.e. t there exists
a W;-geodesic (11?)acpo,1 S-t-
B

1 1
02Se(1°) — 0:Se(p') < Eaer(MO,MI) N (St(muo) - St(Ml))

The family of all super-N-Ricci flows (X, d:, m:):c(o,7) with uniform bounds for
the diameter and for the growth of d; and m; is compact.




Super Ricci Flows for Metric Measure Spaces

The following are equivalent:

m (X, d:, mt)ec(o,7) is a super-Ricci flow

» Wi(Pip, Piv) < We(u,v)

[Ve(Piu)* < PE(IVsul?)

m [ > 10T,

Here and in the sequel we assume

= log % uniformly bounded and Lip in t

m log ’"fEdi uniformly bounded and Lip in x,

m (X, d:, m;) is infinitesimally Hilbertian for each t
(i.e. Cheeger energy is quadratic).



Super Ricci Flows for Metric Measure Spaces

The following are equivalent:

m (X, d:, mi)ic(o,) is a super-Ricci flow
w W (Pip, Piv) < Weo(u,v)

m Vx,y there exist coupled backward Brownian motions (Xs)s<:, (Ys)s<t
starting at x, y at time t s.t. P-a.s. forall s <t

dS(XS7 \/s) S dt(X7y)

[VePiul < P(|Vsul)

Oele

1
2
y

u r2,t >




Thank You For Your Attention!



