Karl-Theodor Sturm

Hausdorff Center for Mathematics Institute for Applied Mathematics Universität Bonn

OT and BM on Manifolds with $Ric \ge 0$

Nonnegative Ricci curvature implies that – in many respects – optimal transports, heat flows, and Brownian motions behave as nicely as on Euclidean spaces. For instance

Heat kernel comparison

$$p_t(x,y) \ge (4\pi t)^{-n/2} \exp\left(-\frac{d^2(x,y)}{4t}\right)$$

- Li-Yau estimates
- Gradient estimates

$$|\nabla P_t u| \leq P_t(|\nabla u|)$$

Transport estimates

$$W(P_t\mu, P_t\nu) \leq W(\mu, \nu)$$

■ $\forall x, y$: \exists coupled Brownian motions $(X_s, Y_s)_{s\geq 0}$ starting at (x, y) s.t. \mathbb{P} -a.s. for all s > 0

$$d(X_s, Y_s) \leq d(x, y)$$

Indeed, $\mathrm{Ric} \geq 0$ is necessary and sufficient for each of the latter properties.

OT and BM on Manifolds with $Ric \ge 0$

Nonnegative Ricci curvature implies that – in many respects – optimal transports, heat flows, and Brownian motions behave as nicely as on Euclidean spaces. For instance

Heat kernel comparison

$$p_t(x,y) \ge (4\pi t)^{-n/2} \exp\left(-\frac{d^2(x,y)}{4t}\right)$$

- Li-Yau estimates
- Gradient estimates

$$|\nabla P_t u| \leq P_t(|\nabla u|)$$

Transport estimates

$$W(P_t\mu, P_t\nu) \leq W(\mu, \nu)$$

■ $\forall x, y$: \exists coupled Brownian motions $(X_s, Y_s)_{s\geq 0}$ starting at (x, y) s.t. \mathbb{P} -a.s. for all s > 0

$$d(X_s, Y_s) < d(x, y)$$

Indeed, Ric > 0 is necessary and sufficient for each of the latter properties.

Among the applications:

'Market Fragility, Systemic Risk, and Ricci Curvature' (Sandhu et al. 2015) 'Ricci curvature and robustness of cancer networks' (Tannenbaum et al. 2015)

Super Ricci Flows

A family of Riemannian manifolds $(M,g_t),t\in[0,T]$, is called super-Ricci flow iff

$$\mathrm{Ric}_t \geq -\frac{1}{2}\partial_t g_t.$$

Super Ricci Flows

A family of Riemannian manifolds $(M,g_t),t\in[0,T]$, is called super-Ricci flow iff

$$\mathrm{Ric}_t \geq -\frac{1}{2}\partial_t g_t.$$

Two main examples

- Static manifolds with $\mathrm{Ric} \geq 0$ ('elliptic case')
- Ricci flows $\mathrm{Ric}_t = -\frac{1}{2}\partial_t g_t$ ('minimal super-Ricci flows')

Super Ricci Flows

A family of Riemannian manifolds $(M, g_t), t \in [0, T]$, is called super-Ricci flow iff

$$\mathrm{Ric}_t \geq -\frac{1}{2}\partial_t g_t.$$

Two main examples

- Static manifolds with $Ric \ge 0$ ('elliptic case')
- Ricci flows $\mathrm{Ric}_t = -\frac{1}{2}\partial_t g_t$ ('minimal super-Ricci flows')

Goal.

- Extend Sturm'06, Lott/Villani'09, Ambrosio/Gigli/Savare'11-'14, Er-bar/Kuwada/Sturm'14 ('Synthetic Ricci bounds for metric measure spaces') to time-dependent setting
 - Extend Bakry/Emery'83 ('Γ-calculus') to time-dependent setting
- Extend McCann/Topping'10, Lott'09, Arnaudon/Coulibaly/Thalmaier'08, Kuwada/Philipowski'11, X.-D.Li'14, Kleiner/Lott'14, Haslhofer/Naber'15 ('OT and BM on time-dependent manifolds') to singular setting

Given a family $(L_t)_{t\in[0,T)}$ of diffusion operators defined on a common algebra $\mathcal A$ e.g. $L_t=\Delta_t$ Laplace-Beltrami w.r.t. g_t , $\mathcal A=C_c^\infty(M)$, X=Riem.mfd. M

For each t, define

- Square field operator $\Gamma_t(f,g) = \frac{1}{2}[L_t(fg) fL_tg gL_tf]$
- Γ_2 -operator $\Gamma_{2,t}(f,g) = \frac{1}{2}[L_t\Gamma_t(f,g) \Gamma_t(f,L_tg) \Gamma_t(g,L_tf)]$

Given a family $(L_t)_{t\in[0,T)}$ of diffusion operators defined on a common algebra $\mathcal A$ e.g. $\mathcal L_t=\Delta_t$ Laplace-Beltrami w.r.t. g_t , $\mathcal A=C_c^\infty(M)$, X=Riem.mfd. M

For each t, define

- Square field operator $\Gamma_t(f,g) = \frac{1}{2}[L_t(fg) fL_tg gL_tf]$
- Γ_2 -operator $\Gamma_{2,t}(f,g) = \frac{1}{2}[L_t\Gamma_t(f,g) \Gamma_t(f,L_tg) \Gamma_t(g,L_tf)]$

We say that $(L_t)_{t\in[0,T)}$ is a super-Ricci flow if

$$\Gamma_{2,t} \geq \frac{1}{2} \partial_t \Gamma_t.$$

It is a super-N-Ricci flow if

$$\Gamma_{2,t}(f) - \frac{1}{N}(L_t f)^2 \geq \frac{1}{2}\partial_t \Gamma_t(f).$$

Given a family $(L_t)_{t\in[0,T)}$ of diffusion operators defined on a common algebra $\mathcal A$ e.g. $L_t=\Delta_t$ Laplace-Beltrami w.r.t. g_t , $\mathcal A=\mathcal C_c^\infty(M)$, $X=\operatorname{Riem.mfd.} M$

For each t, define

- Square field operator $\Gamma_t(f,g) = \frac{1}{2}[L_t(fg) fL_tg gL_tf]$
- Γ_2 -operator $\Gamma_{2,t}(f,g) = \frac{1}{2}[L_t\Gamma_t(f,g) \Gamma_t(f,L_tg) \Gamma_t(g,L_tf)]$

We say that $(L_t)_{t\in[0,T)}$ is a super-Ricci flow if

$$\Gamma_{2,t} \geq \frac{1}{2} \partial_t \Gamma_t.$$

It is a super-N-Ricci flow if

$$\Gamma_{2,t}(f) - \frac{1}{N}(L_t f)^2 \geq \frac{1}{2}\partial_t\Gamma_t(f).$$

Definition consistent in Riemannian case! Note that $\Gamma_t(f,g) = \nabla_t f \nabla_t g$,

$$\Gamma_{2,t}(f,f) = \frac{1}{2}\Delta_t(|\nabla_t f|^2) - \nabla_t f \nabla_t \Delta_t f = \mathrm{Ric}_t(\nabla_t f, \nabla_t f) + \|\nabla_t^2 f\|_{HS}^2$$

and recall that $(M,g_t),t\in[0,T]$, is a super Ricci flow iff $\mathrm{Ric}_t\geq -\frac{1}{2}\partial_t g_t.$

Theorem. The following are equivalent:

- (i) $\Gamma_{2,t}(u) \geq \frac{1}{2}\partial_t\Gamma_t(u)$
- (ii) $\Gamma_t(P_t^s u) \leq P_t^s(\Gamma_s(u))$

Here $(P_s^s)_{0 \le s \le t < T}$ is the propagator for $(L_t)_t$, i.e. a 2-parameter family of linear operators on $\mathcal A$ satisfying for all $s \le r \le t$ and all $u \in \mathcal A$

- $P_t^r(P_r^s u) = P_t^s u$

Theorem. The following are equivalent:

- (i) $\Gamma_{2,t}(u) \geq \frac{1}{2}\partial_t\Gamma_t(u)$
- (ii) $\Gamma_t(P_t^s u) \leq P_t^s(\Gamma_s(u))$

Here $(P_t^s)_{0 \le s \le t < T}$ is the propagator for $(L_t)_t$, i.e. a 2-parameter family of linear operators on $\mathcal A$ satisfying for all $s \le r \le t$ and all $u \in \mathcal A$

- $P_t^r(P_r^s u) = P_t^s u$
- $\partial_t P_t^s u = \mathcal{L}_t P_t^s u$
- $\partial_s P_t^s u = -P_t^s (\mathbf{L}_s u)$

Proof. Differentiating the function $q_r := P_t^r \Gamma_r(P_r^s u)$ w.r.t. $r \in (s, t)$ yields

$$\begin{split} \partial_r q_r &= P_t^r \Big(- \operatorname{L}_r \Gamma_r (P_r^s u) + (\partial_r \Gamma_r) (P_r^s u) + 2 \Gamma_r (\partial_r P_r^s u, P_r^s u) \Big) \\ &= P_t^r \Big(- \operatorname{L}_r \Gamma_r (v) + \partial_r \Gamma_r (v) + 2 \Gamma_r (\operatorname{L}_r v, v) \Big) \\ &= P_t^r \Big(- 2 \Gamma_{2,r} (v) + \partial_r \Gamma_r (v) \Big) \end{split}$$

where $v = P_r^s u$. Thus (i) implies $\partial_r q_r \leq 0$ for all $r \in [s,t]$ which in turn yields $q_t \leq q_s$. This is (ii).

Theorem. The following are equivalent:

- (i) $\Gamma_{2,t}(u) \frac{1}{N}(L_t u)^2 \geq \frac{1}{2}\partial_t \Gamma_t(u)$
- (ii) $\Gamma_t(P_t^s u) + \frac{2}{N} \int_s^t (P_t^r L_r P_r^s u)^2 dr \le P_t^s (\Gamma_s(u))$

Theorem. The following are equivalent:

- (i) $\Gamma_{2,t}(u) \frac{1}{N}(L_t u)^2 \ge \frac{1}{2}\partial_t \Gamma_t(u)$
- (ii) $\Gamma_t(P_t^s u) + \frac{2}{N} \int_s^t (P_t^r L_r P_r^s u)^2 dr \leq P_t^s (\Gamma_s(u))$

Possible extensions:

Lt discrete Laplacian, general Markov operator

In the sequel:

 L_t Laplacian on time-dependent metric measure space (X, d_t, m_t)

Heat Flow on (Static) Metric Measure Spaces

(X, d) complete separable metric space, m locally finite measure

Heat equation on X

• either as gradient flow on $L^2(X, m)$ for the energy

$$\mathcal{E}(u) = \frac{1}{2} \int_{X} |\nabla u|^{2} dm = \liminf_{v \to u \text{ in } L^{2}} \frac{1}{2} \int_{X} (\operatorname{lip}_{x} v)^{2} dm(x)$$

with $|\nabla u| = \text{minimal weak upper gradient}$

• or as gradient flow on $\mathcal{P}_2(X,d)$ for the **relative entropy**

$$\mathsf{Ent}(u) = \int_X u \log u \, dm.$$

Heat Flow on (Static) Metric Measure Spaces

(X, d) complete separable metric space, m locally finite measure

Heat equation on X

• either as gradient flow on $L^2(X, m)$ for the energy

$$\mathcal{E}(u) = \frac{1}{2} \int_{X} |\nabla u|^{2} dm = \liminf_{v \to u \text{ in } L^{2}} \frac{1}{2} \int_{X} (\operatorname{lip}_{x} v)^{2} dm(x)$$

with $|\nabla u| = \text{minimal weak upper gradient}$

• or as gradient flow on $\mathcal{P}_2(X,d)$ for the relative entropy

$$\mathsf{Ent}(u) = \int_X u \log u \, dm.$$

Theorem (Ambrosio/Gigli/Savare).

For arbitrary metric measure spaces (X,d,m) satisfying $CD(K,\infty)$ both approaches coincide.

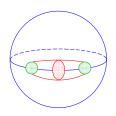
 \mathbb{R}^n : Jordan/Kinderlehrer/Otto Riemann (M,g): Ohta, Savare, Villani, Erbar Finsler (M,F,m): Ohta/Sturm Alexandrov spaces: Gigli/Kuwada/Ohta Neumann Laplacian: Lierl/Sturm Wiener space: Fang/Shao/Sturm Heisenberg group: Juillet Discrete spaces: Maas, Mielke Levy semigroups: Erbar

The Curvature-Dimension Condition $CD(K, \infty)$

$$\begin{array}{cccc} \textbf{Definition.} & \textit{CD}(K,\infty) & \text{or} & \operatorname{Ric}(X,\operatorname{d},m) \geq K \\ \\ \iff & \forall \mu_0,\mu_1 \in \mathcal{P}_2(X): \ \exists \ \mathsf{geodesic} \ (\mu_t)_t \ \mathsf{s.t.} \ \forall t \in [0,1]: \\ \\ & & \operatorname{Ent}(\mu_t|m) & \leq & (1-t)\operatorname{Ent}(\mu_0|m) + t\operatorname{Ent}(\mu_1|m) \\ & & -\frac{K}{2} \ t(1-t) \ W_2^2(\mu_0,\mu_1) \end{array}$$

$$\operatorname{Ent}(\nu|m) = \left\{ \begin{array}{l} \int_X \rho \log \rho \, dm & \text{, if } \nu = \rho \cdot m \\ +\infty & \text{, if } \nu \not\ll m \end{array} \right.$$

$$W_2(\mu_0, \mu_1) = \inf_q \left[\int_{X \times X} d^2(x, y) \, d \, q(x, y) \right]^{1/2}$$



The Curvature-Dimension Condition CD(K, N)

Def. A metric measure space (X, d, m) satisfies CD(K, N)

$$\iff$$
 S:= Ent(.) is (K,N)-convex on $\mathcal{P}_2(X,d)$

$$\iff$$
 Hess $S - \frac{1}{N} (\nabla S \otimes \nabla S) \geq K$

The Curvature-Dimension Condition CD(K, N)

Def. A metric measure space (X, d, m) satisfies CD(K, N)

$$\iff$$
 S:= Ent(.) is (K,N)-convex on $\mathcal{P}_2(X,d)$

$$\iff$$
 Hess $S - \frac{1}{N} (\nabla S \otimes \nabla S) \geq K$

Riemannian manifolds:

$$CD(K, N) \iff \operatorname{Ric}_M \geq K \text{ and } \dim_M \leq N$$

Weighted Riemannian spaces (M, d, m) with $dm = e^{-V} dvol$:

$$\operatorname{Ric}_M + \operatorname{Hess} V - \frac{1}{N-n}DV \otimes DV \geq K$$
 and $\dim_M \leq N$

Further examples: Ricci limit spaces, Alexandrov spaces, Wiener space $(K = 1, N = \infty)$.

Constructions: Products, cones, suspensions, warped products.

For the sequel: $(X, d_t, m_t)_{t \in I}$ with $\frac{d_t(x, y)}{d_s(x, y)} \le C$ and $m_t(dx) = e^{-f_t(x)} m_0(dx)$ where

$$f_t(x) - f_s(x) \le C,$$
 $f_t(x) - f_t(y) \le C \cdot d_t(x, y)$

Assume $\forall t \in I$: the metric measure space (X, d_t, m_t) is infinitesimally Hilbertian (i.e. the energy \mathcal{E}_t is quadratic) and satisfies CD(K, N)

Thus $\forall t \in I$: Dirichlet form \mathcal{E}_t , Laplacian Δ_t , squared gradient $\Gamma_t(u) = |\nabla_t u|^2$.

For the sequel: $(X, d_t, m_t)_{t \in I}$ with $\frac{d_t(x, y)}{d_s(x, y)} \le C$ and $m_t(dx) = e^{-f_t(x)} m_0(dx)$ where

$$f_t(x) - f_s(x) \le C,$$
 $f_t(x) - f_t(y) \le C \cdot d_t(x, y)$

Assume $\forall t \in I$: the metric measure space (X, d_t, m_t) is infinitesimally Hilbertian (i.e. the energy \mathcal{E}_t is quadratic) and satisfies $\mathsf{CD}(K, N)$

Thus $\forall t \in I$: Dirichlet form \mathcal{E}_t , Laplacian Δ_t , squared gradient $\Gamma_t(u) = |\nabla_t u|^2$.

Theorem $\forall (s, T) \subset I$

■ $\forall h \in L^2 : \exists! u_t = P_t^s h$ which solves $\partial_t u_t = \Delta_t u_t$ on $(s, T) \times X$ and $u_s = h$

For the sequel: $(X, d_t, m_t)_{t \in I}$ with $\frac{d_t(x, y)}{d_s(x, y)} \le C$ and $m_t(dx) = e^{-f_t(x)} m_0(dx)$ where

$$f_t(x) - f_s(x) \le C, \qquad f_t(x) - f_t(y) \le C \cdot d_t(x, y)$$

Assume $\forall t \in I$: the metric measure space (X, d_t, m_t) is infinitesimally Hilbertian (i.e. the energy \mathcal{E}_t is quadratic) and satisfies CD(K, N)

Thus $\forall t \in I$: Dirichlet form \mathcal{E}_t , Laplacian Δ_t , squared gradient $\Gamma_t(u) = |\nabla_t u|^2$.

Theorem $\forall (s, T) \subset I$

- $\forall h \in L^2 : \exists ! u_t = P_t^s h$ which solves $\partial_t u_t = \Delta_t u_t$ on $(s, T) \times X$ and $u_s = h$
- \exists kernel $p_t^s(x, y)$ s.t. $P_t^s h(x) = \int p_t^s(x, y) h(y) m_s(dy)$

For the sequel: $(X, d_t, m_t)_{t \in I}$ with $\frac{d_t(x, y)}{d_s(x, y)} \le C$ and $m_t(dx) = e^{-f_t(x)} m_0(dx)$ where

$$f_t(x) - f_s(x) \leq C, \qquad f_t(x) - f_t(y) \leq C \cdot d_t(x, y)$$

Assume $\forall t \in I$: the metric measure space (X, d_t, m_t) is infinitesimally Hilbertian (i.e. the energy \mathcal{E}_t is quadratic) and satisfies CD(K, N)

Thus $\forall t \in I$: Dirichlet form \mathcal{E}_t , Laplacian Δ_t , squared gradient $\Gamma_t(u) = |\nabla_t u|^2$.

Theorem $\forall (s, T) \subset I$

- $\forall h \in L^2 : \exists ! u_t = P_t^s h$ which solves $\partial_t u_t = \Delta_t u_t$ on $(s, T) \times X$ and $u_s = h$
- \exists kernel $p_t^s(x, y)$ s.t. $P_t^s h(x) = \int p_t^s(x, y) h(y) m_s(dy)$
- All solutions to heat equation are Holder continuous, nonnegative solutions satisfy parabolic Harnack inequality

 $Lions/Magenes,\ Renardy/Rogers,\ Lierl/Saloff-Coste$

The Dual Propagator

Def $\hat{P}_t^s: \mathcal{P} \to \mathcal{P}$ by duality

$$\int ud\left(\hat{P}_t^s\mu\right) = \int \left(P_t^su\right)d\mu \qquad (\forall u \in \mathcal{C}_b, \forall \mu \in \mathcal{P})$$

Then $\nu_s = \hat{P}_t^s \mu$ solves

$$-\partial_s \nu_s = \hat{\Delta}_s \nu_s, \qquad \nu_t = \mu$$

where $\int ud(\hat{\Delta}_s\nu_s) = \int (\Delta_s u)d\nu_s$. Moreover, it is the upward gradient flow for the Boltzmann entropy in the time-dependent Wasserstein space (\mathcal{P}, W_s) :

$$\dot{
u}_s =
abla_s Ent(
u_s | m_s)$$

The Dual Propagator

Def $\hat{P}_t^s: \mathcal{P} \to \mathcal{P}$ by duality

$$\int ud\left(\hat{P}_t^s\mu\right) = \int \left(P_t^su\right)d\mu \qquad (\forall u \in \mathcal{C}_b, \forall \mu \in \mathcal{P})$$

Then $\nu_s = \hat{P}_t^s \mu$ solves

$$-\partial_s \nu_s = \hat{\Delta}_s \nu_s, \qquad \nu_t = \mu$$

where $\int ud(\hat{\Delta}_s\nu_s) = \int (\Delta_s u)d\nu_s$. Moreover, it is the upward gradient flow for the Boltzmann entropy in the time-dependent Wasserstein space (\mathcal{P}, W_s) :

$$\dot{
u}_s =
abla_s Ent(
u_s | m_s)$$

Assume $|\partial_s f_s| \leq C$. Then

- density $w_s = \frac{dv_s}{dm_s}$ solves $-\partial_s w_s = \Delta_s w_s (\partial_s f_s) \cdot w_s$
- all solutions to this equation are Holder continuous, nonnegative solutions satisfy parabolic Harnack inequality
- $\forall (t,x)$: the function $(s,y) \mapsto p_t^s(x,y)$ solves this equation

Given a 1-parameter family of metric measure spaces (X, d_t, m_t) . Consider the function

$$S: (0,T) \times \mathcal{P}(X) \to (-\infty,\infty], \quad (t,\mu) \mapsto S_t(\mu) = \operatorname{Ent}(\mu|m_t)$$

where $\mathcal{P}(X)$ is equipped with the 1-parameter family of metrics W_t (= L^2 -Wasserstein metrics w.r.t. d_t).

Definition.

 $(X,d_t,m_t)_{t\in(0,T)}$ is a super-Ricci flow iff for all μ^0,μ^1 and a.e. t there exists a W_t -geodesic $(\mu^a)_{a\in[0,1]}$ s.t.

$$\partial_{\mathsf{a}} S_t(\mu^0) - \partial_{\mathsf{a}} S_t(\mu^1) \leq \frac{1}{2} \partial_t W_t^2(\mu^0, \mu^1).$$

Given a 1-parameter family of metric measure spaces (X, d_t, m_t) . Consider the function

$$S: (0,T) \times \mathcal{P}(X) \to (-\infty,\infty], \quad (t,\mu) \mapsto S_t(\mu) = \operatorname{Ent}(\mu|m_t)$$

where $\mathcal{P}(X)$ is equipped with the 1-parameter family of metrics W_t (= L^2 -Wasserstein metrics w.r.t. d_t).

Definition.

 $(X,d_t,m_t)_{t\in(0,T)}$ is a super-Ricci flow iff for all μ^0,μ^1 and a.e. t there exists a W_t -geodesic $(\mu^a)_{a\in[0,1]}$ s.t.

$$\partial_{\boldsymbol{a}} S_t(\mu^0) - \partial_{\boldsymbol{a}} S_t(\mu^1) \leq \frac{1}{2} \partial_t W_t^2(\mu^0, \mu^1).$$

Consistent with the Riemannian definition: a family of Riemannian manifolds (M, g_t) , $t \in (0, T)$, evolves according to super-Ricci flow iff

$$\operatorname{Ric}_t \geq -\frac{1}{2}\partial_t g_t.$$

Definition.

 $(X, d_t, m_t)_{t \in (0,T)}$ is a super-N-Ricci flow iff for all μ^0, μ^1 and a.e. t there exists a W_t -geodesic $(\mu^a)_{a \in [0,1]}$ s.t.

$$\partial_{\boldsymbol{a}} S_t(\boldsymbol{\mu}^0) - \partial_{\boldsymbol{a}} S_t(\boldsymbol{\mu}^1) \leq \frac{1}{2} \partial_t W_t^2(\boldsymbol{\mu}^0, \boldsymbol{\mu}^1) - \frac{1}{N} \left(S_t(\boldsymbol{m} \boldsymbol{u}^0) - S_t(\boldsymbol{\mu}^1) \right)^2.$$

Definition.

 $(X, d_t, m_t)_{t \in (0,T)}$ is a super-N-Ricci flow iff for all μ^0, μ^1 and a.e. t there exists a W_t -geodesic $(\mu^a)_{a \in [0,1]}$ s.t.

$$\partial_a S_t(\mu^0) - \partial_a S_t(\mu^1) \leq \frac{1}{2} \partial_t W_t^2(\mu^0, \mu^1) - \frac{1}{N} \left(S_t(mu^0) - S_t(\mu^1) \right)^2.$$

Theorem.

The family of all super-N-Ricci flows $(X, d_t, m_t)_{t \in (0,T)}$ with uniform bounds for the diameter and for the growth of d_t and m_t is compact.

The following are equivalent:

- $(X, d_t, m_t)_{t \in (0,T)}$ is a super-Ricci flow
- $W_s(\hat{P}_t^s\mu,\hat{P}_t^s\nu) \leq W_t(\mu,\nu)$
- $|\nabla_t (P_t^s u)|^2 \le P_t^s (|\nabla_s u|^2)$
- $\Gamma_{2,t} \geq \frac{1}{2} \partial_t \Gamma_t$

Here and in the sequel we assume

- $\log \frac{d_t(x,y)}{d_s(x,y)}$ uniformly bounded and Lip in t
- $\log \frac{m_t(dx)}{m_s(dx)}$ uniformly bounded and Lip in x,
- (X, d_t, m_t) is infinitesimally Hilbertian for each t
 (i.e. Cheeger energy is quadratic).

The following are equivalent:

- $(X, d_t, m_t)_{t \in (0,T)}$ is a super-Ricci flow
- $W_s^{\infty}(\hat{P}_t^s\mu,\hat{P}_t^s\nu) \leq W_t^{\infty}(\mu,\nu)$
- $\forall x, y$ there exist coupled backward Brownian motions $(X_s)_{s \leq t}$, $(Y_s)_{s \leq t}$ starting at x, y at time t s.t. \mathbb{P} -a.s. for all $s \leq t$

$$d_s(X_s, Y_s) \leq d_t(x, y)$$

- $|\nabla_t P_t^s u| \leq P_t^s(|\nabla_s u|)$
- $\Gamma_{2,t} \geq \frac{1}{2}\partial_t\Gamma_t$

Thank You For Your Attention!