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Variable speed BMs and RWs on R

© Donsker: X = (X;);>0 (cont. time) RW on Z, X/ := 1X .,

T n
@ X/ is RW on 1Z with (homogeneous) jump rates n> = n-n

~ X" £ X in Skorohod pathspace, where X is Brownian motion
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Variable speed BMs and RWs on R

@ Donsker: X = (X;)>0 (cont. time) RW on Z, X/ := %)A(,,zt
@ X/ is RW on 1Z with (homogeneous) jump rates n> = n-n

~ X" £ X in Skorohod pathspace, where X is Brownian motion

@ For 07! € [2 (\Rr), want to approximate solution X of SDE

loc
dXt = O'(Xt) dBt

o ‘variable speed”, speed measure v = % - AR
~> We call X the v-Brownian motion (v-BM)

o Need variable rates for RWs X" on %Z to obtain X" £> X.
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Variable speed BMs and RWs on R

@ Donsker: X = (X;)>0 (cont. time) RW on Z, X/ := %)A(,,zt
@ X/ is RW on 1Z with (homogeneous) jump rates n> = n-n

~ X" £ X in Skorohod pathspace, where X is Brownian motion

@ For 07! € [2 (\Rr), want to approximate solution X of SDE

loc

dXt = O'(Xt) dBt

©

“variable speed”, speed measure v = % ‘AR
~> We call X the v-Brownian motion (v-BM)

o Need variable rates for RWs X" on %Z to obtain X" £> X.

1 n; n
For measure v, on ~Z, let X" jump from x at rate PREET))

~> We call X" the v,-random walk (v,-RW)
o Example: v = AR, v, = n-# ~» situation of @
Observe: v, — v vaguely.

©
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Speed-rv motions on R

v-BM: v = 072)g solves dX; = o(X:)dB:;  v-RW: jump rates o) ©n iz

What do v-BMs and v-RWs have in common?

@ process on supp(v), does not jump over points in supp(v)

o natural scale, i.e. Py({7s < 7p}) = 2=% if x € [a, b]

@ speed determined by v ~» process characterised by v
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Speed-rv motions on R

v-BM: v = 072)g solves dX; = o(X:)dB:;  v-RW: jump rates o) ©n iz

What do v-BMs and v-RWs have in common?
@ process on supp(v), does not jump over points in supp(v)
o natural scale, i.e. Py({7s < 7p}) = 2=% if x € [a, b]
@ speed determined by v ~» process characterised by v
°

time transformation of BM: Let Ls(x) be local time of B at x
X: = Bs,, St = inf{s ‘ [ Lsdv > t} (1)

@ Alternative: characterise via occupation time formula (x > a)

([ FO0 de) = 3 [TF) 1y~ A al) o) (@)

~» For any Radon measure v on R, the speed-v motion X on
supp(v) is defined by (1), or (2) + strong Markov property
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Stone's invariance principle & Our goal

© SDE dX;: = o(X:)dB:, v = 02 Ag; vn-RW: rates —"— on 17

Theorem ([STONE ’63], continuity in v of speed-v motions)

v, — v vaguely, supp(v,) — supp(v) in local Hausdorff topology.
Then X" 55 X in pathspace. (X" speed-v, motion, X speed-v motion)

Example: can approximate SDE of @ by RWs on %Z with rates

X+% —1
n-v(x,x+ 37t = n(/ %dy)
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Stone's invariance principle & Our goal

© SDE dX;: = (X:)dB:, v = 072 \g; Vn-RW: rates 2 on iz

Theorem ([STONE ’63], continuity in v of speed-v motions)

v, — v vaguely, supp(v,) — supp(v) in local Hausdorff topology.
Then X" £ X in pathspace. (X" speed-v, motion, X speed-v motion)

Example: can approximate SDE of @ by RWs on %Z with rates

X+% —1
nv(ex+ )7 = ([ @)

Generalise Stone's theorem to converging trees T,— T replacing R

Example: RW on Galton-Watson tree (conditioned on size n)
£, BM on Aldous’s Brownian Continuum Random Tree (CRT)

This particular case shown in [CROYDON ’08: Convergence of simple...]

Wolfgang Lohr (Duisburg-Essen) Invariance principle (joint with S. Athreya, A. Winter)



Stone's invariance principle & Our goal

© SDE dX;: = (X:)dB:, v = 072 \g; Vn-RW: rates 2 on iz

Theorem ([STONE ’63], continuity in v of speed-v motions)

v, — v vaguely, supp(v,) — supp(v) in local Hausdorff topology.
Then X" 55 X in pathspace. (X" speed-v, motion, X speed-v motion)

Generalise Stone's theorem to converging trees T,— T replacing R

Result (informal): continuity of (T,v) + X for the speed-v motion X on T
ToDo for precise formulation:

O Define what we mean by tree: metric measure tree (T, v)
@ Define v-motions on metric measure trees

© Define convergence of metric measure trees
and of processes living on different spaces T,, T
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Metric trees for us, trees are metric spaces

A metric space (T, r) is 0-hyperbolic if the 4-point condition holds:
r(x1, x2)+r(x3,xa) < max{r(x1,x3)+r(x2,xa), r(x1, xa)+r(x2,x3)}

0-hyperbolicity implies for x,y,z € T:

o [xyl={meT|rlxy)=r(x,m)+r(my)} €T
is isometric to a subset of the interval [0, r(x,y)] C R,

o #(xyINly.Znfzx) <1

o If (T,r) is connected, it is an R-tree
Note: R-trees (usually) have curvature —oo ~» no CD-condition
(T, r) is Heine-Borel if closed, bounded sets are compact.

A measure v is boundedly-finite if v(A) < oo for bounded AC T
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Metric measure trees for us, trees are metric spaces

Definition (Metric measure tree)

A (rooted) metric measure tree (mm-tree) is (T, r, p,v), where

e (T,r) is a 0-hyperbolic Heine-Borel space with
. yInly,zZlN[z,x] = c(x,y,2) € T

@ p € T, called the root
@ v is a boundedly-finite measure on T with full support,

supp(v) = T
c(x,y, z) is the branch point corresponding to x,y, z
o, T~ N
\
—oC(x:y,2) o’
/ AN e

From now on, x = (T.r,p,v), X, = (Tp, rn, pn,Vy) are mm-trees
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Particular cases of metric trees

An edge in (T,r) is a pair (x,y), x #y € T, with [x,y] = {x,y}

finite trees e o o °
.. . . N /
o (T,E) finite (undirected) graph tree with NP /
. [ ] /
edge weights r,, >0, (x,y) € E . .
@ Metric r on T: maximal extension of \o\ \/o/
r(x,y) = Ik (Xay) €E AN
. . . [ ]
~ (T,r) topologically discrete, 0-hyperbolic P
] finite tree: edges (dashed)
~» edges are precisely the elements of E are not in the space (T, r)
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Particular cases of metric trees

An edge in (T,r) is a pair (x,y), x #y € T, with [x,y] = {x,y}

finite trees e o o °
.. . . N /
o (T,E) finite (undirected) graph tree with NP /
. [ ] /
edge weights r,, >0, (x,y) € E . ./
@ Metric r on T: maximal extension of \o\ \/o
r(x,y) = Ik (Xay)EE AN
. . . [
~ (T,r) topologically discrete, 0-hyperbolic P
] finite tree: edges (dashed)
~» edges are precisely the elements of E are not in the space (T, r)
R-trees

@ Connected 0-hyperbolic ~» no edges
@ infinite degrees, dense leaves possible

@ Hausdorff dimension arbitrary,
topological dimension one ~» fractal

corresponding IR-tree: no edges
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Speed-v motions on trees

x=(T,r,p,v)is an mm-tree. Recall T =supp(v), c(x,y, z) is branch point

Proposition ([ATHREYA, L., WINTER *14": Invariance...], compact case)

If (T, r) is compact, then there exists a unique strong Markov
process X = (X¢)e>0 on T satisfying the occupation time formula

IEX[/OTy f(Xs) ds} = 2/Tr(y,c(x,y,z))f(z) v(dz)

for all x,y € T, f bounded measurable, T, first hitting time of y.
v is reversible for X. We call X the speed-v motion on (T,r).

Proofidea.

Uniqueness: Resolvent calculation
Existence: Construct via Dirichlet form (see following slides) [
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Speed-v motions on trees

Proposition ([ATHREYA, L., WINTER *147: Invariance...], compact case)

If (T,r) is compact, then there exists a unique strong Markov
process X = (X¢)r>0 on T satisfying the occupation time formula

E, [/OTy F(Xs) dS} = 2/Tr(y,c(x,y,z)) f(z) v(dz)

for all x,y € T, f bounded measurable, T, first hitting time of y.
v is reversible for X. We call X the speed-v motion on (T,r).

-

Remark (general case)

o If (T, r) is not compact, we still get a unique strong Markov
process X, also called speed-v motion, by approximating
with balls Bg(p) (R — o0). Or using the Dirichlet form

o If X is recurrent, we still obtain the occupation time formula

-
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The Dirichlet form

Unsurprisingly, the Dirichlet form of the speed-v motion in defined
on L2(v) as the closure of (£,D(E€)) with

£(F. g) /w Ved\r, f.gcD(E),
D(E) = {feP(V)NCx | VF € LP(A7) },

but we have to define the length measure At and the gradient V
properly.
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The Dirichlet form: Length measure on metric trees

E(f,g) = %fTVf-ng/\T7 DE)={f e l?’(v)NCx | VF € L2(\7)}

Lemma (length measure

There is a unique measure A\t = \(T,,) (length measure) with
/\T([P,X]) =r(p,x) VxeT and Ar(L) = 0,

where L consists of p and all leaves that are not isolated in (T,r).

@ For T = R, AR is the Lebesgue-measure

AT need not be locally finite, but is always o-finite
@ For R-trees (i.e. (T,r) connected), At is the usual length
measure (1-dim. Hausdorff measure on T \ L)
~» non-atomic and independent of p
o If (T,r) has an edge, A\t has an atom at the end further
away from p. Its mass equals the length of the edge.
In particular, A1 depends in this case on p
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The Dirichlet form: Gradient on metric trees

E(f,g) =31 [, VFf-VgdAr, DE)={fel’(V)NCx | VF e L*(A1)}

Lemma (\/, [ATHREYA, L., WINTER *14": Invariance...])

If f: T — R is absolutely continuous, then there exists a unique
(up to A1-zero sets) gradient Vf € LI (A7) with

loc

f(x)—f(p) = Vi dir Vxe T
[p:x]

@ V depends on p, even for R-trees, where At does not

@ T =R,, p=0: Vis the usual gradient on R

o T =R, p=0: VFf(x)=sgn(x)f'(x) = £f'(x)

e finite tree: Vf(x) = f(x) — f(y) where (x, y) is the unique
edge towards p, i.e. with y € [p, x]
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The Dirichlet form: speed-r motion

E(f,g) =131 [, VFf-VgdAr, DE)={fel’(V)NCx | VF e L*(\1)}

Fact [FukusHiMA, OsHIMA, TAKEDA '94]: To a regular Dirichlet form on
L?(v) corresponds a v-symmetric Markov process with generator G
characterised by E(f, g) = (Gf, g),

Proposition ([ATHREYA, L., WINTER *147: Invariance...])

(€,D(&)) is closable and its closure is a regular Dirichlet form. The
corresponding Markov process X = (X;)t>0 is the speed-v motion.

Although At and V depend on p, the form £ does not

& need not be conservative, i.e. X may hit oo in finite time
X has continuous paths iff (T, r) is an R-tree, i.e. connected
Jumps occur precisely over edges

T =R, v = Ar: X is standard Brownian motion

T =R, v arbitrary: X is process considered in [STONE ’63]
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The Dirichlet form: speed-r motion

E(f,g) =131 [, VFf-VgdAr, DE)={fel’(V)NCx | VF e L*(\1)}

Proposition ([ATHREYA, L., WINTER *14": Invariance...])

(€,D(&)) is closable and its closure is a regular Dirichlet form. The
corresponding Markov process X = (X;)t>0 is the speed-v motion.

o (T,r) R-tree: X is the v-BM [ArHREYA, ECKHOFF, WINTER ’13]
o (T,r) finite tree: X jumps from x to y ~ x with rate

Yy = (20({x})r(x,y))

o (T,r) finite tree with unit edge-lengths: r,, =1 for x ~ y.
v counting measure ~» degree-dependent total jump rate

T = Dy y = 3 deg(x)
We get the constant speed (simple) RW with

v({x}) = ; deg(x)
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Convergence of mm-trees

xn = (T, tny pn,vn), x = (T, r,p,v) are mm-trees. Recall T, = supp(vn)

Definition (Gromov-vague & Gromov-Hausdorff-vague topology)

x, =% x (Gromov-vague convergence) if (Tp, ), (T, r) can be
isometrically embedded in a metric space (E, d) such that, in this
embedding, p, — p and for balls B = Bg(p) of radius R in (E, d)

Vnlg — Vg for almost all R > 0

n—oo

@ Gv-topology is a simple modification of Gromov-weak topology
(finite measures) [GREVEN, PFAFFELHUBER, WINTER ’09]

@ Gromov's O;-metric [GROMOV '99: Metric structures...] induces the
Gw-topology, shown in [L. ’13: Equivalence of Gromov-Prohorov...]
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Convergence of mm-trees

xn = (T, tny pn,vn), x = (T, r,p,v) are mm-trees. Recall T, = supp(vn)

Definition (Gromov-vague & Gromov-Hausdorff-vague topology)

¥, = x (Gromov-vague convergence) if (Tp, ), (T, r) can be
isometrically embedded in a metric space (E, d) such that, in this
embedding, p, — p and for balls B = Bg(p) of radius R in (E, d)

Unlp iﬂ/[B for almost all R >0

Xy (Gromov-Hausdorff-vague convergence) if additionally

TnﬂBMTﬂB for almost all R > 0

@ GHv-topology closely related to Gromov-Hausdorff-Prohorov metric
but subtle difference: full-support assumption / equivalence classes

~» The GHP-metric is not complete on spaces of spaces with full
support
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The gap between Gv and GHv topologies

Proposition ([ATHREYA, L., WINTER *147: The gap between...])

@ The GHv-topology is Polish, the Gv-topology is Lusin

@ The Gv-topology not Polish. It becomes Polish if we drop the
Heine-Borel assumption
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The gap between Gv and GHv topologies

Proposition ([ATHREYA, L., WINTER *14": The gap between...])

@ The GHv-topology is Polish, the Gv-topology is Lusin
o x, 2% x if and only if x, 2% x and the lower mass-bound

liminf inf v,(Bs(x)) >0 VR >0 (3)

n—00 x€Bgr(pn)

In this case, (E, d) can be chosen as Heine-Borel space.

o Gv-topology is induced by the algebra of functions of the form

o) = [ o(r65)igmo.m) V(@) 205,

for me N, ¢ € Cc(RMFD*(m+1))  Can use Le Cam:
~» For random variables: &, Gi> X < E[¢(X,)] — E[¢(X)] Vo

@ (3) acts as a tightness condition
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Convergence of processes

We use the same embedding approach as for the definition of Gv-
and GHV-topology to define convergence of processes living on
different spaces:

Definition (convergence of processes on different spaces)

Let X" = (X{)t>0, n € INU {00}, be stochastic processes with
values in (T,, r,). We say that X" converges to X = X in
pathspace or f.d.d. if (T,, r,) can be isometrically embedded in a
metric space (E, d) such that, in this embedding, X" converges to
X in pathspace or f.d.d., respectively, as E-valued processes.
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The Result

xn = (T, tny pn,vn); X" is the speed-v, motion on ( Ty, ry) started in p,

Theorem ([ATHREYA, L., WINTER 14 Invariance principle...])

Assume X is conservative, and consider the conditions (R > 0)
© Edge-length bound:
lim sup,,_, oo sup{ ra(x,y) | rn(pn, x) < R, (x,y) edge} < 0o
© Gromov-vague convergence: X, —s x
© Lower mass-bound: liminf,_ s ianGBR(pn) Vn(Bg(X)) >0
Q Diameter bound: sup, diam(T,, r,) < co

If @, @ and © hold, then X" converges in pathspace to X.
If @, Q and @ hold, then X" converges f.d.d. to X.

© is a weak condition; trivially satisfied for R-trees (no edges)
© can be weakened, but some condition is needed
Q + O is equivalent to Gromov-Hausdorff-vague convergence
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The Result

xn = (T, tny pn,vn); X" is the speed-v, motion on ( Ty, ry) started in p,

Theorem ([ATHR.EYA, L., WINTER ’14%: Invariance princip/e...])

Consider the conditions (R > 0)
© Edge-length bound:
lim sup,,_ o0 sup{ ra(x,y) | rn(pny x) < R, (x,y) edge} < 00
© Gromov-vague convergence: X, — x
© Lower mass-bound: liminf,_,o infyep,(pn) Va(Bs(x)) > 0

If @, @ and @ hold, then X" converges in pathspace to a process
Y on the one-point compactification of T, and Y killed at infinity
coincides with X

@ Speed v-motions are always killed at infinity
@ The limit process Y may hit oo and not stay there
~» Y looses the Markov property at oo and defines entrance laws
for X from oo
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Proof strategy

For pathspace convergence (under the lower mass-bound):

© Tightness using the Aldous criterion
© Strong Markov property of all limit processes (compact case)
@ show equicontinuity of the maps P,: (t,x) — L (X]), n€ NN,
where L, is the law of a process started in x; use Arzela-Ascoli
© Show occupation time formula for all limit processes
~ All limit processes coincide with X in the compact case

© approximate non-compact trees with compact trees
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Proof strategy

For pathspace convergence (under the lower mass-bound):

© Tightness using the Aldous criterion
© Strong Markov property of all limit processes (compact case)
@ show equicontinuity of the maps P,: (t,x) — L (X]), n€ NN,
where L, is the law of a process started in x; use Arzela-Ascoli

© Show occupation time formula for all limit processes
~ All limit processes coincide with X in the compact case

© approximate non-compact trees with compact trees
For the f.d.d.-case (without the lower mass-bound):
Q@ 7,C T, Un(Th \ ?_,,) <eg, ('AI',,, rn,Vp) satisfies mass-bound
O Show closeness of marginals of X" and X"
@ Use a simple heat-kernel bound satisfied for speed-v motions X:

la:(x, )| < A(T)~ +diam(T) - t8  VxeT,t>0

@ Use pathspace convergence of X" and Markov property
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The End

Thank you for your attention!

Arigato gozaimasu!
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