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Minimal thinness in classical potential theory

Thin sets

Let X = (Xt ,Px) be a Markov process in Rd , E ⊂ Rd and
TE = inf{t > 0 : Xt ∈ E}. We say that E is thin at y with respect to X if
Py (TE = 0) = 0; X starting at y does not hit E immediately.

Thinness is a concept which describes smallness of a set E at the point y
with respect to the process X .
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Minimal thinness in classical potential theory

Classical example: the Lebesgue thorn set

Let f : [0,∞)→ [0,∞) be increasing, f (r) > f (0) for all r > 0, f (r)/r
non-decreasing for r small. Let E = {x = (x̃ , xd) : |x̃ | < f (xd)}.

Then E
is thin at 0 with respect to Brownian motion iff∫ 1

0

(
f (r)

r

)d−3 dr

r
<∞ , d ≥ 4 ,∫ 1

0

∣∣∣ log
f (r)

r

∣∣∣−1 dr

r
<∞ , d = 3 .
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Minimal thinness in classical potential theory

The Lebesgue thorn for the isotropic α-stable process

Let f : [0,∞)→ [0,∞) be increasing, f (r) > f (0) for all r > 0, f (r)/r
non-decreasing for r small. Let E = {x = (x̃ , xd) : |x̃ | < f (xd)}, d ≥ 3.

Then E is thin at 0 with respect to the isotropic α-stable process if and
only if ∫ 1

0

(
f (r)

r

)d−α−1 dr

r
<∞ .
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Minimal thinness in classical potential theory

Martin boundary

Let D ⊂ Rd be an open connected Greenian set and GW
D (x , y) its Green’s

function for Brownian motion W on D.

Fix x0 ∈ D and define

MW
D (x , y) =

GW
D (x , y)

GW
D (x0, y)

, x , y ∈ D ,

the Martin kernel. Then D has a Martin boundary ∂MD and MW
D (x , ·)

extends continuously to ∂MD. The function MW
D (x , z), x ∈ D, z ∈ ∂MD

is the Martin kernel.
A point z ∈ ∂MD is called a minimal Martin boundary point if MW

D (·, z) is
a minimal harmonic function in D. The minimal Martin boundary is
denoted by ∂mD.

If D is a bounded Lipschitz domain, then the Martin and the minimal
Martin boundary with respect to W are identified with ∂D.
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Minimal thinness in classical potential theory

Minimal thinness

A subset E ⊂ D is minimally thin in D at z ∈ ∂mD with respect to killed
Brownian motion WD if

E·[MW
D (WD

TE
, z)] 6= MW

D (·, z) .

Probabilistic interpretation: Let (WD,z ,Pz
x) be the Brownian motion

conditioned to exit D at z – Doob’s h-transform with the harmonic
function h = MW

D (·, z). The lifetime of WD,z is ζ and WD,z
ζ− = z .

Then A is minimally thin in D at z ∈ ∂mD if and only if Pz
x(TA < ζ) < 1

for some x ∈ D.

Minimal thinness in the half-space H = {x = (x̃ , xd) ∈ Rd : xd > 0}
introduced by J. Lelong-Ferrand in 1949. Minimal thinness in a general
open set developed L. Näım in 1957. Probabilistic interpretation by
J. Doob in 1957.
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Minimal thinness in classical potential theory

Integral tests for minimal thinness

Let D ⊂ Rd have smooth boundary, E ⊂ D and z ∈ ∂D.

If∫
E∩B(z,1)

|x − z |−d dx =∞ ,

then E is not minimally thin in D at z (A. Beurling 1965, d = 2,
B. Dahlberg 1976, d ≥ 3). If E is the union of a subfamily of Whitney
cubes of D, the converse is also true (H. Aikawa 1993).

Panki Kim Minimal thinness for jump processes Sendai, Aug.31–Sept.4, 2015 10 / 45



Minimal thinness in classical potential theory

Integral tests for minimal thinness

Let D ⊂ Rd have smooth boundary, E ⊂ D and z ∈ ∂D. If∫
E∩B(z,1)

|x − z |−d dx =∞ ,

then E is not minimally thin in D at z (A. Beurling 1965, d = 2,
B. Dahlberg 1976, d ≥ 3).

If E is the union of a subfamily of Whitney
cubes of D, the converse is also true (H. Aikawa 1993).

Panki Kim Minimal thinness for jump processes Sendai, Aug.31–Sept.4, 2015 10 / 45



Minimal thinness in classical potential theory

Integral tests for minimal thinness

Let D ⊂ Rd have smooth boundary, E ⊂ D and z ∈ ∂D. If∫
E∩B(z,1)

|x − z |−d dx =∞ ,

then E is not minimally thin in D at z (A. Beurling 1965, d = 2,
B. Dahlberg 1976, d ≥ 3). If E is the union of a subfamily of Whitney
cubes of D, the converse is also true (H. Aikawa 1993).

Panki Kim Minimal thinness for jump processes Sendai, Aug.31–Sept.4, 2015 10 / 45



Minimal thinness in classical potential theory

Whitney decomposition

A Whitney decomposition of an open set D: a family {Qj}j∈N of closed
cubes, with sides all parallel to the axes, satisfying the following properties:
(i) D = ∪jQj ,
(ii) int(Qj) ∩ int(Qk) = ∅, j 6= k ;
(iii) for any j , diam(Qj) ≤ dist(Qj , ∂D) ≤ 4diam(Qj),
where dist(Qj , ∂D) denotes the Euclidean distance between Qj and ∂D.
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Minimal thinness in classical potential theory

Integral tests for minimal thinness, cont.

Let f : Rd → [0,∞) be a Lipschitz function. Then the set
E := {x = (x̃ , xd) ∈ H : 0 < xd ≤ f (x̃)} is minimally thin in H at z = 0 if
and only if ∫

{|x̃ |<1}
f (x̃)|x̃ |−d dx̃ <∞ ;

K. Burdzy 1987 (probabilistic proof), S. J. Gardiner 1991.
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Minimal thinness in classical potential theory

Wiener-type criteria for minimal thinness (H. Aikawa 1993)

Let D be a smooth bounded domain; E ⊂ D is minimally thin in D at
z ∈ ∂D if and only if∑

j≥1

dist(z ,Qj)
−ddist(Qj , ∂D)2 Cap(E ∩ Qj) <∞ .

Here {Qj} is a Whitney decomposition of D, Cap the Newtonian capacity.
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Minimal thinness in classical potential theory

Until very recently, no concrete criteria for minimal thinness with respect
to jump processes (for subordinate Brownian motion in half space, see K,
Song & Vondracek, 2012).

Summary of the results in [KS1, KS2]

We work with a broader class of purely discontinuous Markov
processes and prove a version of Aikawa’s Wiener-type criterion for
minimal thinness at any finite (minimal Martin) boundary point.

We obtain criteria for minimal thinness of a subset of half-space-like
open sets at infinity.

Remark: In the classical case of the Laplacian, such results at infinity are
direct consequences of the corresponding finite boundary point results by
use of the inversion with respect to a sphere and the Kelvin transform,
which is not available in our case.
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Minimal thinness for Lévy processes [KSV1]
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Minimal thinness for Lévy processes [KSV1]

Description of the processes

Let X = (Xt ,Px) be an isotropic unimodal Lévy process in Rd : for each
t > 0 there is a decreasing function pt : (0,∞)→ (0,∞) such that

P0(Xt ∈ A) =

∫
A
pt(|x |) dx , A ⊂ Rd Borel .

Its Lévy measure ν of X has a radial decreasing density.

The characteristic exponent Ψ of X defined by

E0

[
e i〈x ,Xt〉

]
= e−tΨ(x) , x ∈ Rd .

Ψ is a radial function; use interchangeably Ψ(x) and Ψ(|x |)

Panki Kim Minimal thinness for jump processes Sendai, Aug.31–Sept.4, 2015 16 / 45



Minimal thinness for Lévy processes [KSV1]
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Minimal thinness for Lévy processes [KSV1]

Description of the processes, cont.

Scaling conditions:
(H1): There exist constants 0 < δ1 ≤ δ2 < 1 and a1, a2 > 0 such that

a1λ
2δ1Ψ(t) ≤ Ψ(λt) ≤ a2λ

2δ2Ψ(t), λ ≥ 1, t ≥ 1 .

(H2): There exist constants 0 < δ3 ≤ δ4 < 1 and a3, a4 > 0 such that

a3λ
2δ3Ψ(t) ≤ Ψ(λt) ≤ a4λ

2δ4Ψ(t), λ ≤ 1, t ≤ 1 .

(H1) governs small time – small space behavior of X , needed for local
results; (H2) large time – large space, needed for behavior at ∞.
M. Zähle, P. Kim, R. Song, Z. Vondracek, T. Grzywny, K. Bogdan,
M. Ryznar
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Minimal thinness for Lévy processes [KSV1]

Examples

(a) Isotropic α-stable process; Ψ(x) = |x |α, α ∈ (0, 2);

(b) Independent sum of two isotropic stable processes;
Ψ(x) = |x |α + |x |β, α, β ∈ (0, 2);

(c) Subordinate Brownian motion via subordinator whose Laplace
exponent φ satisfies scaling conditions similar to (H1) and (H2). For
example, φ is comparable to a regularly varying function at zero and
at infinity with (not necessarily same) indices from (0, 1):
Ψ(x) = φ(|x |2) where φ(x) � |x |β`1(x), |x | → 0, φ(x) � |x |γ`2(x),
|x | → ∞;
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Minimal thinness for Lévy processes [KSV1]

Preliminary results

We assume that the process X is transient. Then it has the (radial) Green
function (occupation density) G (x) = G (|x |) =

∫∞
0 pt(x) dt.

Estimates for G : There exists C > 1 such that (KSV 2014, T. Grzywny
2014)

C−1 1

|x |dΨ(|x |−1)
≤ G (x) ≤ C

1

|x |dΨ(|x |−1)
, |x | ≤ 1, (x ∈ Rd \ {0}) .

The Lévy measure of X has the density j(x) = j(|x |) satisfying

C−1 Ψ(|x |−1)

|x |d
≤ j(x) ≤ C

Ψ(|x |−1)

|x |d
, |x | ≤ 1, (x ∈ Rd \ {0}) .
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Minimal thinness for Lévy processes [KSV1]

Minimal thinness revisited

Let D ⊂ Rd be an open set, XD the process X killed upon exiting D.

Let GD(x , y) be the Green function of D with respect to the process XD .

Fix x0 ∈ D and define MD(x , y) = GD(x ,y)
GD(x0,y) , x , y ∈ D – the Martin kernel.

Then D has a Martin boundary ∂MD and MD(x , ·) extends continuously
to ∂MD. The function MD(x , z), x ∈ D, z ∈ ∂MD is the Martin kernel.
A point z ∈ ∂MD is called a minimal Martin boundary point if MD(·, z) is
a minimal harmonic function for the process XD . The minimal Martin
boundary is denoted by ∂mD.

Panki Kim Minimal thinness for jump processes Sendai, Aug.31–Sept.4, 2015 20 / 45



Minimal thinness for Lévy processes [KSV1]
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Minimal thinness for Lévy processes [KSV1]

Minimal thinness revisited, cont.

A subset E ⊂ D is minimally thin in D at z ∈ ∂mD with respect to XD if

E·[MD(XD
TE
, z)] 6= MD(·, z) .

Probabilistic interpretation in terms of the process XD conditioned to die
at z . Abstract theory developed by H. Föllmer 1969.

We will consider the following two types of D ⊂ Rd :

(1) D a C 1,1 open set: Then the finite part of ∂mD can be identified with
the Euclidean ∂D;

(2) D a half-space-like C 1,1 open set, H1 ⊂ D ⊂ H: Then the infinite
part of ∂mD consists of a single point, ∞;
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Minimal thinness revisited, cont.

A subset E ⊂ D is minimally thin in D at z ∈ ∂mD with respect to XD if

E·[MD(XD
TE
, z)] 6= MD(·, z) .

Probabilistic interpretation in terms of the process XD conditioned to die
at z . Abstract theory developed by H. Föllmer 1969.
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Minimal thinness for Lévy processes [KSV1]

Wiener-Aikawa-type criteria for minimal thinness

(1) Let D be a C 1,1 open set, {Qj} a Whitney decomposition for D and
E ⊂ D. Then E is minimally thin at z ∈ ∂D if and only if∑

j :Qj⊂B(z,1)

dist(z ,Qj)
−dΨ(dist(Qj , ∂D)−1)−1Cap(E ∩ Qj) <∞

(2) Let D be a half-space-like C 1,1 open set, H1 ⊂ D ⊂ H, {Qj} a
Whitney decomposition for D and E ⊂ D. Then E is minimally thin at
infinity in D if and only if∑

j :Qj⊂B(0,1)c

dist(0,Qj)
−dΨ(dist(0,Qj)

−1)−1Cap(E ∩ Qj) <∞

Cap(B(0, r)) � rdΨ(r−1)
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Minimal thinness for Lévy processes [KSV1]

Integral tests for minimal thinness

The following integral tests are consequences of Wiener-Aikava-type
criteria:

Theorem: [KSV1]
(1) Let D be a C 1,1 open set, E ⊂ D. If E is minimally thin at z ∈ ∂D,
then ∫

E∩B(z,1)
|x − z |−d dx <∞ .

If E is the union of a subfamily of {Qj}, the converse also holds true.

(2) Let D be a half-space-like C 1,1 open set, H1 ⊂ D ⊂ H. If E is
minimally thin at infinity, then∫

E∩B(0,1)c
|x |−d dx <∞ .

If E is the union of a subfamily of {Qj}, the converse also holds true.
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Integral tests for minimal thinness

The following integral tests are consequences of Wiener-Aikava-type
criteria:

Theorem: [KSV1]
(1) Let D be a C 1,1 open set, E ⊂ D. If E is minimally thin at z ∈ ∂D,
then ∫

E∩B(z,1)
|x − z |−d dx <∞ .

If E is the union of a subfamily of {Qj}, the converse also holds true.

(2) Let D be a half-space-like C 1,1 open set, H1 ⊂ D ⊂ H. If E is
minimally thin at infinity, then∫

E∩B(0,1)c
|x |−d dx <∞ .

If E is the union of a subfamily of {Qj}, the converse also holds true.

Panki Kim Minimal thinness for jump processes Sendai, Aug.31–Sept.4, 2015 23 / 45



Minimal thinness for Lévy processes [KSV1]
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Minimal thinness for Lévy processes [KSV1]

Sets below graphs of Lipschitz functions

f : Rd−1 → [0,∞) Lipschitz, E = {x = (x̃ , xd) ∈ H : 0 < xd ≤ f (x̃)}.

Corollary:
(a) E is minimally thin in H at 0 if and only if

∫
|x̃ |<1 f (x̃)|x̃ |−d dx̃ <∞.

(b) E is minimally thin in H at ∞ if and only if
∫
|x̃ |>1 f (x̃)|x̃ |−d dx̃ <∞.

Remark: the criteria in the theorem and corollary do not depend on the
process X (or Ψ).

They are the same as in the classical potential theory
(Brownian motion case). Somewhat surprising! An explanation hinges on
sharp two-sided estimates for GD(x , y) which imply that the singularity of
the Martin kernel MD(x , z) near z ∈ ∂D is of the order |x − z |−d for all
such processes.
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Sets below graphs of Lipschitz functions

f : Rd−1 → [0,∞) Lipschitz, E = {x = (x̃ , xd) ∈ H : 0 < xd ≤ f (x̃)}.

Corollary:
(a) E is minimally thin in H at 0 if and only if

∫
|x̃ |<1 f (x̃)|x̃ |−d dx̃ <∞.

(b) E is minimally thin in H at ∞ if and only if
∫
|x̃ |>1 f (x̃)|x̃ |−d dx̃ <∞.

Remark: the criteria in the theorem and corollary do not depend on the
process X (or Ψ).

They are the same as in the classical potential theory
(Brownian motion case). Somewhat surprising! An explanation hinges on
sharp two-sided estimates for GD(x , y) which imply that the singularity of
the Martin kernel MD(x , z) near z ∈ ∂D is of the order |x − z |−d for all
such processes.

Panki Kim Minimal thinness for jump processes Sendai, Aug.31–Sept.4, 2015 24 / 45



Minimal thinness for Lévy processes [KSV1]
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Minimal thinness for Lévy processes [KSV1]

The Lebesgue thorn revisited

Let f : [0,∞)→ [0,∞) be increasing, f (r) > f (0) for all r > 0, f (r)/r
non-decreasing for r small. Let E = {x = (x̃ , xd) : |x̃ | < f (xd)}, d ≥ 3.

Then E is thin at 0 with respect to the isotropic α-stable process if and
only if ∫ 1

0

(
f (r)

r

)d−α−1 dr

r
<∞ .
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Minimal thinness for some other jump processes [KSV2]

1 Minimal thinness in classical potential theory

2 Minimal thinness for Lévy processes [KSV1]

3 Minimal thinness for some other jump processes [KSV2]

4 Examples
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Minimal thinness for some other jump processes [KSV2]

Description of processes and D

Let D be either a bounded C 1,1 domain, or a C 1,1 domain with compact
complement, or a domain above the graph of a bounded C 1,1 function.

W = (Wt) Brownian motion in Rd , WD = (WD
t ) Brownian motion killed

upon exiting D, S = (St) an independent subordinator with Laplace
exponent φ: E[exp(−λSt)] = exp(−tφ(λ)).

Xt := W (St) subordinate Brownian motion; a Lévy process with the
characteristic exponent Ψ(x) = φ(|x |2).
XD the process X killed upon exiting D, killed subordinate Brownian
motion (KSBM).
Y D
t : WD(St) subordinate killed Brownian motion (SKBM); a strong

Markov process in D with the infinitesimal generator φ(−∆|D).

The semigroup of Y D subordinate to the semigroup of XD in the sense
that for f : D → [0,∞), Ex [f (Y D

t )] ≤ Ex [f (XD
t )] – Y D is a “smaller”

process.
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characteristic exponent Ψ(x) = φ(|x |2).
XD the process X killed upon exiting D, killed subordinate Brownian
motion (KSBM).
Y D
t : WD(St) subordinate killed Brownian motion (SKBM); a strong

Markov process in D with the infinitesimal generator φ(−∆|D).

The semigroup of Y D subordinate to the semigroup of XD in the sense
that for f : D → [0,∞), Ex [f (Y D

t )] ≤ Ex [f (XD
t )] – Y D is a “smaller”

process.
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Minimal thinness for some other jump processes [KSV2]

Scaling conditions for φ

Scaling conditions for φ:
(A1): There exist constants 0 < δ1 ≤ δ2 < 1 and a1, a2 > 0 such that

a1λ
δ1φ(t) ≤ φ(λt) ≤ a2λ

δ2φ(t), λ ≥ 1, t ≥ 1 .

(A2): There exist constants 0 < δ3 ≤ δ4 < 1 and a3, a4 > 0 such that

a3λ
δ3φ(t) ≤ φ(λt) ≤ a4λ

δ4φ(t), λ ≤ 1, t ≤ 1 .

(A1) always assumed, (A2) for unbounded D.

If φ satisfies (A1), respectively (A2), then Ψ(x) = φ(|x |2) satisfies (H1),
respectively (H2).

Scaling conditions on φ can be weakened to include subordinators which
scale with order zero: φ(λ) = log(1 + λα/2) (0 < α ≤ 2) – geometric
stable subordinators and Γ-subordinators.
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Minimal thinness for some other jump processes [KSV2]

More on Laplace exponent φ

The Laplace exponent φ is a Bernstein function:

φ(λ) = a + bλ+

∫
(0,∞)

(1− e−λx)µ(dx) .

Assume a = 0 (no killing), b = 0 (zero drift) and µ infinite.

Assume also that φ is a special Bernstein function, i.e., φ∗(λ) = λ
φ(λ) is

again a Bernstein function.

Important consequence: Let V ∗ be the potential operator of the
subordinate killed Brownian motion WD(S∗t ) where S∗ is the independent
subordinator with Laplace exponent φ∗:
If UD(x , y) is the Green function of Y D and GW

D (x , y) the Green function
of WD , then

UD(x , y) = V ∗(GW
D (·, y))(x)
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Minimal thinness for some other jump processes [KSV2]

Identification of (minimal) Martin boundary

Identification of (minimal) Martin boundary is non-trivial and, in many
case it depends on Harnack inequality and boundary Harnack principle.

The key step is to establish that for every z ∈ ∂D, there exists the limit

lim
y→z

MD(x , y) = lim
y→z

GD(x , y)

GD(x0, y)

through some oscillation reduction technique based on the boundary
Harnack principle.

But the boundary Harnack principle does not hold for SKBM, partially
because the jumping kernel JD of Y D has the estimates

JD(x , y) �
(
δD(x)δD(y)

|x − y |2
∧ 1

)
φ(|x − y |−2)

|x − y |d
, |x − y | ≤ M .
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Minimal thinness for some other jump processes [KSV2]

Martin kernel for SKBM

The existence of the limit

lim
y→z∈∂D

UD(x , y)

UD(x0, y)
=: MD(x , z)

is based on two facts:

lim
y→z

PW ,D
t

(
GW
D (·, y)

GW
D (x0, y)

)
= PW ,D

t MW
D (·, z) , PW ,D

t semigroup of WD
t ,

lim
y→z

V ∗
(

GW
D (·, y)

GW
D (x0, y)

)
= V ∗MW

D (·, z) .

MD(x , z) =
V ∗MW

D (x , z)

V ∗MW
D (x0, z)

.
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Minimal thinness for some other jump processes [KSV2]

Green and Martin kernel estimates for SKBM

UD(x , y) �
(
δD(x)δD(y)

|x − y |2
∧ 1

)
|x − y |−dφ(|x − y |−2)−1, |x − y | ≤ 1

Based on sharp two sided estimates of the heat kernel of WD .

For |x − z | ≤ 1,

MD(x , z) � δD(x)

|x − z |d+2φ(|x − z |−2)
� UD(x , x0) ∧ 1

|x − z |d+2φ(|x − z |−2)
,
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Minimal thinness for some other jump processes [KSV2]

Poisson kernel estimates for SKBM

For any open subset B of D, let UD,B(x , y) be the Green function of Y D

killed upon exiting B. We define the Poisson kernel

KD,B(x , y) :=

∫
B
UD,B(x , z)JD(z , y)dz , (x , y) ∈ B × (D \ B).

For every M > 0, there exists c = c(M) > 0 such that for any ball
B(x0, r) ⊂ D of radius r ∈ (0, 1], we have for all
(x , y) ∈ B(x0, r)× (D \ B(x0, r)) with |x − y | ≤ M,

KD,B(x0,r)(x , y) ≤ c δD(y)
φ((|y − x0| − r)−2)

(|y − x0| − r)d+1
φ(r−2)−1.
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Minimal thinness for some other jump processes [KSV2]

The first criterion for minimal thinness

SA = inf{t ≥ 0 : Y D
t ∈ A}, RA

u (x) = Ex [u(Y D
SA

)], R̂A
u (x) = Ex [u(Y D

TA
)] .

Let E ⊂ D. Fix z ∈ ∂D and let
En = E ∩{x ∈ Rd : 2−n−1 ≤ |x−z | < 2−n}.

(1) In case D is a C 1,1 open set, E is minimally thin at D at z ∈ ∂D iff∑
n≥1

REn

MD(·,z)(x0) <∞ .

(2) If D is a half-space-like C 1,1 open set, E is minimally thin at D at ∞
iff
∑

n≥1 R
En

MD(·,∞)(x0) <∞, where En = E ∩ {x ∈ Rd : 2n ≤ |x | < 2n+1}.
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Minimal thinness for some other jump processes [KSV2]

Let g(x) = UD(x , x0) ∧ 1. Then MD(x , z) � g(x)
|x−z|d+2φ(|x−z|−2)

which gives

that
∑

n≥1 R
En

MD(·,z)(x0) <∞ iff
∑

n=1
2n(d+2)

φ(22n)
REn
g (En) <∞.

For every A ⊂ Qj , we have RA
g (x0) � g(xj)

2CapD(A),

where
CapD(A) := inf{µ(D) : UDµ ≥ 1 on A} .
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Minimal thinness for some other jump processes [KSV2]

Quasi-additivity of capacity

Capacity is always subadditive: CapD(∪∞j=1Aj) ≤
∑∞

j=1 CapD(Aj)

Capacity is (locally) quasi-additive (at z) with respect to {Qj}: ∃ C > 0

∞∑
j=1

CapD(A ∩ Qj) ≤ C CapD(A) , A ⊂ D ∩ B(z , r) (A ⊂ D)
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Minimal thinness for some other jump processes [KSV2]

Comparable measure and Hardy’s inequality

The proof of quasi-additivity of capacity relies on the existence of a
comparable measure: the measure σ is comparable to the capacity CapD if

σ(Qj) � CapD(Qj) and σ(A) ≤ cCapD(A), all A ⊂ D .

Define σ(A) :=
∫
A φ(δD(x)−2) dx , A ⊂ D. Then σ is comparable to CapD .

The Dirichlet form (E ,F) of Y D satisfies a local Hardy’s inequality at
z ∈ ∂D if there exist c > 0 and (the localization radius) R0 > 0 such that

E(v , v) ≥ c

∫
D∩B(z,r0)

v2(x)φ(δD(x)−2) dx , v ∈ F .
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v2(x)φ(δD(x)−2) dx , v ∈ F .
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Minimal thinness for some other jump processes [KSV2]

Wiener-Aikawa-type criterion for minimal thinness for
SKBM

Let {Qj} be a Whitney decomposition of D, E ⊂ D and z ∈ ∂D. Then E
is minimally thin in D at z with respect to Y D if and only if

∑
j :Qj⊂B(z,1)

dist(Qj , ∂D)2

dist(z ,Qj)d+2φ(dist(z ,Qj)−2)
Cap(E ∩ Qj) <∞

Compare with the criterion for minimal thinness with respect to XD :∑
j :Qj⊂B(z,1)

1

dist(z ,Qj)dφ(dist(Qj , ∂D)−2)
Cap(E ∩ Qj) <∞
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Minimal thinness for some other jump processes [KSV2]

Integral criterion for minimal thinness

Theorem: [KSV2] Let D be either a bounded C 1,1 domain, or a C 1,1

domain with compact complement, or a domain above the graph of a
bounded C 1,1 function, let E ⊂ D and z ∈ ∂D. If E is minimally thin in D
at z with respect to Y D , then∫

E∩B(z,1)

δD(x)2φ(δD(x)−2)

|x − z |d+2φ(|x − z |−2)
dx <∞ .

Conversely, if E is the union of a subfamily of Whitney cubes for D, then
the converse also holds true.

f : Rd → [0,∞) Lipschitz, E = {x = (x̃ , xd ∈ H : 0 < xd ≤ f (x̃)}.
Corollary: E is minimally thin in H at 0 if and only if∫

{|x̃ |<1}

f (x̃)3φ(f (x̃)−2)

|x̃ |d+2φ(|x̃ |−2)
dx̃ <∞ .
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Minimal thinness for some other jump processes [KSV2]

Censored stable process

Let D be either a bounded C 1,1 domain or a half-space. Let X be an
isotropic α-stable process in Rd , Ψ(x) = |x |α (0 < α < 2).

Whenever X makes a jump outside D, this jump is suppressed and the
process starts afresh at the position XτD− (Ikeda-Nagasawa-Watanabe
piecing together procedure). This new process ZD is called a censored
α-stable process in D (Bogdan, Burdzy & Chen, 2003). It is a stable
process not allowed to jump outside D.
Alternatively, let

E(u, u) =

∫
D

∫
D

(u(x)− u(y))2|x − y |−d−α dx dy u ∈ C∞c (D) .

Then E extends to a regular Dirichlet form on L2(D, dx) and ZD is the
corresponding Markov (Hunt) process.
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Minimal thinness for some other jump processes [KSV2]

Wiener-Aikawa-type criterion

For 0 < α ≤ 1, ZD is conservative and never approaches ∂D. For
1 < α < 2, ZD has finite lifetime ζ and ZD

ζ− ∈ ∂D.

Let α ∈ (1, 2), D be a bounded C 1,1 domain in Rd or a half-space
(d ≥ 2), z ∈ ∂D and E ⊂ D. Then E is minimally thin at z with respect
to the censored α-stable process if and only if

∑
j :Qj∩B(z,1)6=∅

dist(Qj , ∂D)2(α−1)

dist(z ,Qj)d+α−2
CapD(E ∩ Qj) <∞ ,

(Mimica & Vondracek 2014)
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Examples

1 Minimal thinness in classical potential theory

2 Minimal thinness for Lévy processes [KSV1]

3 Minimal thinness for some other jump processes [KSV2]

4 Examples
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Examples

Processes related to the stable process

D a bounded C 1,1 domain or a half-space.

(a) XD - α-stable process killed upon exiting D;

(b) Y D - subordinate killed Brownian motion in D via α/2-stable
subordinator;

(c) ZD - censored α-stable process, 1 < α < 2.

Criteria for minimal thinness of E ⊂ D at z ∈ ∂D:

(a) For XD :
∫
E∩B(z,1)

1
|x−z|d dx <∞;

(b) For Y D :
∫
E∩B(z,1)

δD(x)α−2

|x−z|d+α−2 dx <∞;

(c) For ZD :
∫
E∩B(z,1)

δD(x)−α+2

|x−z|d−α+2 dx <∞;

Minimal thinness for Y D =⇒ minimal thinness for XD =⇒ minimal
thinness for ZD .
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Examples

Minimal thinness under the graph of a function

f : Rd → [0,∞) Lipschitz, E = {x = (x̃ , xd) ∈ H : 0 < xd ≤ f (x̃)}.

Then E is minimally thin in H at z = 0

(a) for XD iff
∫
{|x̃ |<1}

f (x̃)
|x̃ |d dx̃ <∞;

(b) for Y D iff
∫
{|x̃ |<1}

f (x̃)3−α

|x̃ |d+2−α dx̃ <∞;

(c) for ZD iff
∫
{|x̃ |<1}

f (x̃)α−1

|x̃ |d+α−2 dx̃ <∞.

Example: If f (x̃) = |x̃ |γ , γ ≥ 1, all three integrals are finite iff γ > 1.

Let f (x̃) = |x̃ |
(

log(1/|x̃ |)
)−β

, β ≥ 0. Then E is minimally thin at z = 0

(a) for XD iff β > 1;

(b) for Y D iff β > 1/(3− α);

(c) for ZD iff β > 1/(α− 1).
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Examples

Thank you !
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