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Minimal thinness in classical potential theory

@ Minimal thinness in classical potential theory
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Thin sets

Let X = (X;,Px) be a Markov process in RY, E ¢ RY and
Te=inf{t >0: X; € E}. We say that E is thin at y with respect to X if
P,(Te = 0) = 0; X starting at y does not hit E immediately.
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Minimal thinness in classical potential theory

Thin sets

Let X = (X;,Px) be a Markov process in RY, E ¢ RY and
Te=inf{t >0: X; € E}. We say that E is thin at y with respect to X if
P,(Te = 0) = 0; X starting at y does not hit E immediately.

v

Thinness is a concept which describes smallness of a set E at the point y
with respect to the process X.
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Minimal thinness in classical potential theory

Classical example: the Lebesgue thorn set

Let f : [0,00) — [0, 00) be increasing, f(r) > f(0) for all r >0, f(r)/r
non-decreasing for r small. Let E = {x = (X, xq) : |x] < f(xq)}-

/0&
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Minimal thinness in classical potential theory

Classical example: the Lebesgue thorn set

Let f : [0,00) — [0, 00) be increasing, f(r) > f(0) for all r >0, f(r)/r
non-decreasing for r small. Let E = {x = (X, xq) : |x| < f(xq)}. Then E
is thin at 0 with respect to Brownian motion iff

1 f d-3
/ ((r)) ﬂ<oo, d>4,
0 r r

1 -1
/ ‘Iog@‘ ﬂ<o<>7 d=3.
0 r r

X
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Minimal thinness in classical potential theory

The Lebesgue thorn for the isotropic a-stable process

Let f : [0,00) — [0, 00) be increasing, f(r) > f(0) for all r >0, f(r)/r
non-decreasing for r small. Let E = {x = (X, xq) : x| < f(xq)}, d > 3.
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Minimal thinness in classical potential theory

The Lebesgue thorn for the isotropic a-stable process

Let f : [0,00) — [0, 00) be increasing, f(r) > f(0) for all r >0, f(r)/r
non-decreasing for r small. Let E = {x = (X, xq) : x| < f(xq)}, d > 3.
Then E is thin at 0 with respect to the isotropic a-stable process if and

only if
1 d—a—1
[y e
0 r r
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Martin boundary

Let D C RY be an open connected Greenian set and G}/ (x, y) its Green's
function for Brownian motion W on D.
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Martin boundary

Let D C RY be an open connected Greenian set and G}/ (x, y) its Green's
function for Brownian motion W on D.
Fix xo € D and define

Gyl (x,y)

MW(X7y) = Wi >
° GY (%0, )

x,y €D,

the Martin kernel. Then D has a Martin boundary dyD and MY (x, )

extends continuously to Oy D. The function MY (x, z), x € D, z € OyD
is the Martin kernel.




Martin boundary

Let D C RY be an open connected Greenian set and G}/ (x, y) its Green's
function for Brownian motion W on D.
Fix xo € D and define

Gy (x,y)
va(x()ay) ,

the Martin kernel. Then D has a Martin boundary dyD and MY (x, )
extends continuously to Oy D. The function MY (x, z), x € D, z € OyD
is the Martin kernel.

A point z € 9y D is called a minimal Martin boundary point if M[V)V(-,z) is
a minimal harmonic function in D. The minimal Martin boundary is
denoted by 9,D.

MY (x,y) = x,y€D,
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Martin boundary

Let D C RY be an open connected Greenian set and G}/ (x, y) its Green's
function for Brownian motion W on D.
Fix xo € D and define

Gy (x,y)
va(x()ay) ,

the Martin kernel. Then D has a Martin boundary dyD and MY (x, )
extends continuously to Oy D. The function MY (x, z), x € D, z € OyD
is the Martin kernel.

A point z € 9y D is called a minimal Martin boundary point if M[V)V(-,z) is
a minimal harmonic function in D. The minimal Martin boundary is
denoted by 9,D.

MY (x,y) = x,y€D,

If D is a bounded Lipschitz domain, then the Martin and the minimal

Martin boundary with respect to W are identified with 9D.
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Minimal thinness in classical potential theory

Minimal thinness

A subset E C D is minimally thin in D at z € 0,,,D with respect to killed
Brownian motion WP if

E.[Mp (WF..2)] # Mp (-, 2).
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Minimal thinness

A subset E C D is minimally thin in D at z € 0,,,D with respect to killed
Brownian motion WP if

E.[Mp (WF..2)] # Mp (-, 2).

Probabilistic interpretation: Let (WP?,PZ) be the Brownian motion
conditioned to exit D at z — Doob’s h-transform with the harmonic
function h = MY (-, z). The lifetime of WP+ is ¢ and WCD_’Z =z.

Then A is minimally thin in D at z € 9,,D if and only if PZ(Ta < () <1
for some x € D.
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Minimal thinness

A subset E C D is minimally thin in D at z € 0,,,D with respect to killed
Brownian motion WP if

E.[Mp (WF..2)] # Mp (-, 2).

Probabilistic interpretation: Let (WP?,PZ) be the Brownian motion
conditioned to exit D at z — Doob’s h-transform with the harmonic
function h = MY (-, z). The lifetime of WP+ is ¢ and WCD_’Z =z.

Then A is minimally thin in D at z € 9,,D if and only if PZ(Ta < () <1
for some x € D.

Minimal thinness in the half-space H = {x = (X, x4) € RY : x4 > 0}
introduced by J. Lelong-Ferrand in 1949. Minimal thinness in a general
open set developed L. Naim in 1957. Probabilistic interpretation by

J. Doob in 1957. )
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Minimal thinness in classical potential theory

Integral tests for minimal thinness

Let D C R have smooth boundary, E C D and z € 9D.

z
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Minimal thinness in classical potential theory

Integral tests for minimal thinness
Let D C R have smooth boundary, EC D and z € 9D. If

/ Ix — z| 9 dx = o0,
ENB(z,1)

then E is not minimally thin in D at z (A. Beurling 1965, d = 2,
B. Dahlberg 1976, d > 3).

z
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Minimal thinness in classical potential theory

Integral tests for minimal thinness

Let D C R have smooth boundary, EC D and z € 9D. If

/ Ix — z| 9 dx = o0,
ENB(z,1)

then E is not minimally thin in D at z (A. Beurling 1965, d = 2,
B. Dahlberg 1976, d > 3). If E is the union of a subfamily of Whitney
cubes of D, the converse is also true (H. Aikawa 1993).

D

z
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Minimal thinness in classical potential theory

Whitney decomposition

A Whitney decomposition of an open set D: a family {Q;};en of closed
cubes, with sides all parallel to the axes, satisfying the following properties:
(i) D=U;Q;,

(i) int(@)) M int(Qu) = 0. j # k

(iii) for any j, diam(Q;) < dist(Q;, 0D) < 4diam(Q;),

where dist(Qj,E)D) denotes the Euclidean distance between Q; and 0D.
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Minimal thinness in classical potential theory

Integral tests for minimal thinness, cont.

Let f: R? — [0,00) be a Lipschitz function. Then the set
E:={x=X,xq4) €H: 0< xqg <f(x)} is minimally thin in H at z =0 if

and only if
/ f(X)|X]79 dX < o0;
{IxI<1}

K. Burdzy 1987 (probabilistic proof), S. J. Gardiner 1991.

Xy
~
~ ~ X
Xi=1 0 wi=\
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Wiener-type criteria for minimal thinness (H. Aikawa 1993)

Let D be a smooth bounded domain; E C D is minimally thin in D at
z € 9D if and only if

> dist(z, Q) ?dist(Q;, dD)* Cap(E N Q)) < 0.

jz1

Here {Q;} is a Whitney decomposition of D, Cap the Newtonian capacity.
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Minimal thinness in classical potential theory

Until very recently, no concrete criteria for minimal thinness with respect
to jump processes (for subordinate Brownian motion in half space, see K,
Song & Vondracek, 2012).
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Minimal thinness in classical potential theory

Until very recently, no concrete criteria for minimal thinness with respect
to jump processes (for subordinate Brownian motion in half space, see K,
Song & Vondracek, 2012).

Summary of the results in [KS1, KS2]
@ We work with a broader class of purely discontinuous Markov
processes and prove a version of Aikawa's Wiener-type criterion for
minimal thinness at any finite (minimal Martin) boundary point.
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to jump processes (for subordinate Brownian motion in half space, see K,
Song & Vondracek, 2012).

Summary of the results in [KS1, KS2]

@ We work with a broader class of purely discontinuous Markov
processes and prove a version of Aikawa's Wiener-type criterion for
minimal thinness at any finite (minimal Martin) boundary point.

@ We obtain criteria for minimal thinness of a subset of half-space-like
open sets at infinity.
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Minimal thinness in classical potential theory

Until very recently, no concrete criteria for minimal thinness with respect
to jump processes (for subordinate Brownian motion in half space, see K,
Song & Vondracek, 2012).

Summary of the results in [KS1, KS2]

@ We work with a broader class of purely discontinuous Markov
processes and prove a version of Aikawa's Wiener-type criterion for
minimal thinness at any finite (minimal Martin) boundary point.

@ We obtain criteria for minimal thinness of a subset of half-space-like
open sets at infinity.

Remark: In the classical case of the Laplacian, such results at infinity are
direct consequences of the corresponding finite boundary point results by
use of the inversion with respect to a sphere and the Kelvin transform,
which is not available in our case.
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Minimal thinness for Lévy processes [KSV1]

© Minimal thinness for Lévy processes [KSV1]
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Minimal thinness for Lévy processes [KSV1]

Description of the processes

Let X = (X;,Px) be an isotropic unimodal Lévy process in RY: for each
t > 0 there is a decreasing function p; : (0,00) — (0,00) such that

Po(X: € A) = / pe(|x))dx, A cRY Borel.
A

Its Lévy measure v of X has a radial decreasing density.
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Let X = (X;,Px) be an isotropic unimodal Lévy process in RY: for each
t > 0 there is a decreasing function p; : (0,00) — (0,00) such that

Po(X: € A) = / pe(|x))dx, A cRY Borel.
A

Its Lévy measure v of X has a radial decreasing density.
The characteristic exponent W of X defined by

Eq [e"<X’Xf>} =e VM) xeRY
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Minimal thinness for Lévy processes [KSV1]

Description of the processes

Let X = (X;,Px) be an isotropic unimodal Lévy process in RY: for each
t > 0 there is a decreasing function p; : (0,00) — (0,00) such that

Po(X: € A) = / pe(|x))dx, A cRY Borel.
A

Its Lévy measure v of X has a radial decreasing density.
The characteristic exponent W of X defined by

Eq [e"<X’Xf>} =e VM) xeRY

V is a radial function; use interchangeably W(x) and W(|x|)
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Minimal thinness for Lévy processes [KSV1]

Description of the processes, cont.

Scaling conditions:
(H1): There exist constants 0 < ¢; < d2 < 1 and aj, a» > 0 such that

AN (t) < W(AL) < apA®2W(t), A>1,t>1.
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Description of the processes, cont.

Scaling conditions:

(H1): There exist constants 0 < ¢; < d2 < 1 and aj, a» > 0 such that
A NW(t) S W) < apA®2W(t), A>1,t>1.
(H2): There exist constants 0 < 63 < d4 < 1 and a3, as > 0 such that

BABY(t) < W(AL) < ag\2*W(t), A<1,t<1.
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Scaling conditions:
(H1): There exist constants 0 < ¢; < d2 < 1 and aj, a» > 0 such that

AN (t) < W(AL) < apA®2W(t), A>1,t>1.
(H2): There exist constants 0 < 63 < d4 < 1 and a3, as > 0 such that
BABY(t) < W(AL) < ag\2*W(t), A<1,t<1.

(H1) governs small time — small space behavior of X, needed for local
results; (H2) large time — large space, needed for behavior at co.
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Description of the processes, cont.

Scaling conditions:
(H1): There exist constants 0 < ¢; < d2 < 1 and aj, a» > 0 such that

AN (t) < W(AL) < apA®2W(t), A>1,t>1.
(H2): There exist constants 0 < 63 < d4 < 1 and a3, as > 0 such that
BABY(t) < W(AL) < ag\2*W(t), A<1,t<1.

(H1) governs small time — small space behavior of X, needed for local
results; (H2) large time — large space, needed for behavior at co.

M. Zahle, P. Kim, R. Song, Z. Vondracek, T. Grzywny, K. Bogdan,
M. Ryznar
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Minimal thinness for Lévy processes [KSV1]

Examples

(a) Isotropic a-stable process; W(x) = |x|%, « € (0,2);
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Examples

(a) Isotropic a-stable process; W(x) = |x|%, « € (0,2);

(b) Independent sum of two isotropic stable processes;
W(x) = |x|* + [x|°, o, B € (0,2);
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Minimal thinness for Lévy processes [KSV1]

Examples

(a) Isotropic a-stable process; W(x) = |x|%, « € (0,2);

(b) Independent sum of two isotropic stable processes;
W(x) = [x|* + x|, @, 8 € (0,2);

(c) Subordinate Brownian motion via subordinator whose Laplace
exponent ¢ satisfies scaling conditions similar to (H1) and (H2). For
example, ¢ is comparable to a regularly varying function at zero and
at infinity with (not necessarily same) indices from (0, 1):

W(x) = ¢(|x[?) where ¢(x) =< [x|7¢1(x), [x| = 0, ¢(x) =< [x|7a(x),
|x| = oo;
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We assume that the process X is transient Then it has the (radial) Green
function (occupation density) G(x) = G(|x|) =[5~ pe(x
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Preliminary results

We assume that the process X is transient Then it has the (radial) Green
function (occupation density) G(x) = G(|x|) =[5~ pe(x

Estimates for G: There exists C > 1 such that (KSV 2014 T. Grzywny
2014)

1 1
D i A 0 N
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Minimal thinness for Lévy processes [KSV1]

Preliminary results

We assume that the process X is transient Then it has the (radial) Green
function (occupation density) G(x) = G(|x|) =[5~ pe(x

Estimates for G: There exists C > 1 such that (KSV 2014 T Grzywny
2014)

WSG(X)SCW, x| <1, (xeRY\ {0}).

v

C*l

The Lévy measure of X has the density j(x) = j(|x|) satisfying

x|~1
< 1W(’|X||d)§J(X)SC|X|‘” X <1 (xe R\ {0}).
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Let Gp(x,y) be the Green function of D with respect to the process XP.
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Minimal thinness revisited

Let D C RY be an open set, X the process X killed upon exiting D.
Let Gp(x,y) be the Green function of D with respect to the process XP.

4

Fix xo € D and define Mp(x,y) = % x,y € D — the Martin kernel.
Then D has a Martin boundary 9D and Mp(x, -) extends continuously
to Oy D. The function Mp(x,z), x € D, z € Oy D is the Martin kernel.
A point z € Oy D is called a minimal Martin boundary point if Mp(-, z) is
a minimal harmonic function for the process X?. The minimal Martin

boundary is denoted by 0,,D.
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Minimal thinness for Lévy processes [KSV1]

Minimal thinness revisited, cont.

A subset E C D is minimally thin in D at z € 0,,,D with respect to XD if
E.[Mp(XZ.,2)] # Mp(-, z).

Probabilistic interpretation in terms of the process XP conditioned to die
at z. Abstract theory developed by H. Follmer 1969.
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A subset E C D is minimally thin in D at z € 0,,,D with respect to XD if
E.[Mp(XZ.,2)] # Mp(-, z).

Probabilistic interpretation in terms of the process XP conditioned to die
at z. Abstract theory developed by H. Follmer 1969.

We will consider the following two types of D C RY:

(1) D a C! open set: Then the finite part of 9,0 can be identified with
the Euclidean 0D;
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Minimal thinness revisited, cont.

A subset E C D is minimally thin in D at z € 0,,,D with respect to XD if
E.[Mp(XZ.,2)] # Mp(-, z).

Probabilistic interpretation in terms of the process XP conditioned to die
at z. Abstract theory developed by H. Follmer 1969.

We will consider the following two types of D C RY:

(1) D a C! open set: Then the finite part of 9,0 can be identified with
the Euclidean 0D;

(2) D a half-space-like C1! open set, H; C D C H: Then the infinite
part of 0,D consists of a single point, co;
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Minimal thinness for Lévy processes [KSV1]

Wiener-Aikawa-type criteria for minimal thinness

(1) Let D be a C! open set, {Q;} a Whitney decomposition for D and
E C D. Then E is minimally thin at z € 9D if and only if

Z dist(z, Qj)*dlll(dist(Qj, oD) H)~1Cap(EN Qj) < o0
J:Q;CB(z,1)
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Wiener-Aikawa-type criteria for minimal thinness

(1) Let D be a C! open set, {Q;} a Whitney decomposition for D and
E C D. Then E is minimally thin at z € 9D if and only if

Z dist(z, Qj)*dlll(dist(Qj, oD) H)~1Cap(EN Qj) < o0
J:Q;CB(z,1)

(2) Let D be a half-space-like C1! open set, H; ¢ D C H, {Q;} a
Whitney decomposition for D and E C D. Then E is minimally thin at
infinity in D if and only if

D dist(0, Q) ?W(dist(0, @) ) *Cap(E N Q) < oo
j:QjCB(O,l)C
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Minimal thinness for Lévy processes [KSV1]

Wiener-Aikawa-type criteria for minimal thinness

(1) Let D be a C! open set, {Q;} a Whitney decomposition for D and
E C D. Then E is minimally thin at z € 9D if and only if

Z dist(z, Qj)*dlll(dist(Qj, oD) H)~1Cap(EN Qj) < o0
J:Q;CB(z,1)

(2) Let D be a half-space-like C1! open set, H; ¢ D C H, {Q;} a
Whitney decomposition for D and E C D. Then E is minimally thin at
infinity in D if and only if

D dist(0, Q) ?W(dist(0, @) ) *Cap(E N Q) < oo
j:QjCB(O,l)C

Cap(B(0,r)) < rdw(r=1)
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Minimal thinness for Lévy processes [KSV1]

Integral tests for minimal thinness

The following integral tests are consequences of Wiener-Aikava-type J
criteria:

Minimal thinness for jump processes Sendai, Aug.31-Sept.4, 2015 23 /45



Minimal thinness for Lévy processes [KSV1]

Integral tests for minimal thinness

The following integral tests are consequences of Wiener-Aikava-type
criteria:

Theorem: [KSV1]
(1) Let D be a C™! open set, E C D. If E is minimally thin at z € 9D,

then
/ Ix — z| 9 dx < 0.
ENB(z,1)

If E is the union of a subfamily of {Qj}, the converse also holds true.
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Integral tests for minimal thinness

The following integral tests are consequences of Wiener-Aikava-type
criteria:

Theorem: [KSV1]
(1) Let D be a C™! open set, E C D. If E is minimally thin at z € 9D,

then
/ Ix — z| 9 dx < 0.
ENB(z,1)

If E is the union of a subfamily of {Qj}, the converse also holds true.
(2) Let D be a half-space-like C1! open set, H; ¢ D C H. If E is
minimally thin at infinity, then

/ Ix| 79 dx < c0.
ENB(0,1)¢

If E is the union of a subfamily of {Q;}, the converse also holds true.
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Minimal thinness for Lévy processes [KSV1]

Sets below graphs of Lipschitz functions

f:RI71 [0, 00) Lipschitz, E = {x = (X,xq) €EH: 0 < xg4 < f(X)}. )
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Sets below graphs of Lipschitz functions

f:RI71 [0, 00) Lipschitz, E = {x = (X,xq) €EH: 0 < xg4 < f(X)}. )

Corollary:
(a) E is minimally thin in H at 0 if and only if fX|<1 ~)|x| 4 dx < o0.

(b) E is minimally thin in H at oo if and only if f g1 f (X)[x]79 dx < oo.
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Sets below graphs of Lipschitz functions

f:RI71 [0, 00) Lipschitz, E = {x = (X,xq) €EH: 0 < xg4 < f(X)}. )

Corollary:
(a) E is minimally thin in H at 0 if and only if fX|<1 ~)|x| 4 dx < o0.

(b) E is minimally thin in H at oo if and only if f g1 f (X)[x]79 dx < oo.

Remark: the criteria in the theorem and corollary do not depend on the
process X (or V).
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(a) E is minimally thin in H at 0 if and only if fX|<1 ~)|x| 4 dx < o0.

(b) E is minimally thin in H at oo if and only |ff‘ s1f (X)[x]79 dx < oo.

Remark: the criteria in the theorem and corollary do not depend on the
process X (or W). They are the same as in the classical potential theory
(Brownian motion case).
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Minimal thinness for Lévy processes [KSV1]

Sets below graphs of Lipschitz functions

f:RI71 [0, 00) Lipschitz, E = {x = (X,xq) €EH: 0 < xg4 < f(X)}. )

Corollary:
(a) E is minimally thin in H at 0 if and only if f|7<|<1 f(X)|x]79 dx < 0.
(b) E is minimally thin in H at oo if and only if f‘; fF(X)|x]~9 dx < 0.

v

[>1

Remark: the criteria in the theorem and corollary do not depend on the
process X (or W). They are the same as in the classical potential theory
(Brownian motion case). Somewhat surprising! An explanation hinges on
sharp two-sided estimates for Gp(x, y) which imply that the singularity of
the Martin kernel Mp(x, z) near z € OD is of the order |x — z|~9 for all
such processes.
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The Lebesgue thorn revisited

Let f : [0,00) — [0, 00) be increasing, f(r) > f(0) for all r >0, f(r)/r
non-decreasing for r small. Let E = {x = (X, xq) : x| < f(xq)}, d > 3.
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Minimal thinness for Lévy processes [KSV1]

The Lebesgue thorn revisited

Let f : [0,00) — [0, 00) be increasing, f(r) > f(0) for all r >0, f(r)/r
non-decreasing for r small. Let E = {x = (X, xq) : x| < f(xq)}, d > 3.
Then E is thin at 0 with respect to the isotropic a-stable process if and

only if
1 d—a—1
[y e
0 r r
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Minimal thinness for some other jump processes [KSV2]

© Minimal thinness for some other jump processes [KSV?2]
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Minimal thinness for some other jump processes [KSV2]

Description of processes and D

Let D be either a bounded C%! domain, or a C1'! domain with compact
complement, or a domain above the graph of a bounded C%! function.
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Minimal thinness for some other jump processes [KSV2]

Description of processes and D

Let D be either a bounded C%! domain, or a C1'! domain with compact
complement, or a domain above the graph of a bounded C%! function.

W = (W;) Brownian motion in RY, WP = (WP) Brownian motion killed
upon exiting D, S = (S;) an independent subordinator with Laplace
exponent ¢: E[exp(—AS:)] = exp(—tp(N)).

v
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Let D be either a bounded C%! domain, or a C1'! domain with compact
complement, or a domain above the graph of a bounded C%! function.

W = (W;) Brownian motion in RY, WP = (WP) Brownian motion killed
upon exiting D, S = (S;) an independent subordinator with Laplace
exponent ¢: E[exp(—AS:)] = exp(—tp(N)).

X¢ := W(S;) subordinate Brownian motion; a Lévy process with the
characteristic exponent W(x) = &(|x|?).
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Let D be either a bounded C%! domain, or a C1'! domain with compact
complement, or a domain above the graph of a bounded C%! function.

W = (W;) Brownian motion in RY, WP = (WP) Brownian motion killed
upon exiting D, S = (S;) an independent subordinator with Laplace
exponent ¢: E[exp(—AS:)] = exp(—tp(N)).

X¢ := W(S;) subordinate Brownian motion; a Lévy process with the
characteristic exponent W(x) = &(|x|?).

XD the process X killed upon exiting D, killed subordinate Brownian
motion (KSBM).
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Description of processes and D

Let D be either a bounded C%! domain, or a C1'! domain with compact
complement, or a domain above the graph of a bounded C%! function.

W = (W;) Brownian motion in RY, WP = (WP) Brownian motion killed
upon exiting D, S = (S;) an independent subordinator with Laplace
exponent ¢: E[exp(—AS:)] = exp(—tp(N)).

X¢ := W(S;) subordinate Brownian motion; a Lévy process with the
characteristic exponent W(x) = &(|x|?).

XD the process X killed upon exiting D, killed subordinate Brownian
motion (KSBM).

YP . WP(S;) subordinate killed Brownian motion (SKBM); a strong
Markov process in D with the infinitesimal generator <Z>(—A|D).
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Minimal thinness for some other jump processes [KSV2]

Description of processes and D

Let D be either a bounded C%! domain, or a C1'! domain with compact
complement, or a domain above the graph of a bounded C%! function.

W = (W;) Brownian motion in RY, WP = (WP) Brownian motion killed
upon exiting D, S = (S;) an independent subordinator with Laplace
exponent ¢: E[exp(—AS:)] = exp(—tp(N)).

X¢ := W(S;) subordinate Brownian motion; a Lévy process with the
characteristic exponent W(x) = &(|x|?).

XD the process X killed upon exiting D, killed subordinate Brownian
motion (KSBM).

YP . WP(S;) subordinate killed Brownian motion (SKBM); a strong
Markov process in D with the infinitesimal generator <Z>(—A|D).

The semigroup of Y2 subordinate to the semigroup of X2 in the sense
that for f : D — [0,00), Ex[f(YP)] < Ex[f(XP)] = YP is a “smaller”
process. )
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Minimal thinness for some other jump processes [KSV2]

Scaling conditions for ¢

Scaling conditions for ¢:
(A1): There exist constants 0 < d; < d» < 1 and a1, a» > 0 such that

aNg(t) < p(At) < aX2¢(t), A>1,t>1.
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Scaling conditions for ¢

Scaling conditions for ¢:
(A1): There exist constants 0 < d; < d» < 1 and a1, a» > 0 such that

aNg(t) < p(At) < aX2¢(t), A>1,t>1.
(A2): There exist constants 0 < d3 < d4 < 1 and a3, as > 0 such that
asABp(t) < p(At) < asd®p(t), A<1,t<1.

(A1) always assumed, (A2) for unbounded D.
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Scaling conditions for ¢:
(A1): There exist constants 0 < d; < d» < 1 and a1, a» > 0 such that

aNg(t) < p(At) < aX2¢(t), A>1,t>1.
(A2): There exist constants 0 < d3 < d4 < 1 and a3, as > 0 such that
asABp(t) < p(At) < asd®p(t), A<1,t<1.

(A1) always assumed, (A2) for unbounded D.

If ¢ satisfies (A1), respectively (A2), then W(x) = ¢(|x|?) satisfies (H1),
respectively (H2).
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Minimal thinness for some other jump processes [KSV2]

Scaling conditions for ¢

Scaling conditions for ¢:
(A1): There exist constants 0 < d; < d» < 1 and a1, a» > 0 such that

aNg(t) < p(At) < aX2¢(t), A>1,t>1.
(A2): There exist constants 0 < d3 < d4 < 1 and a3, as > 0 such that
asABp(t) < p(At) < asd®p(t), A<1,t<1.

(A1) always assumed, (A2) for unbounded D.

If ¢ satisfies (A1), respectively (A2), then W(x) = ¢(|x|?) satisfies (H1),
respectively (H2).

Scaling conditions on ¢ can be weakened to include subordinators which
scale with order zero: ¢()\) = log(1 4+ A\%/2) (0 < a < 2) — geometric
stable subordinators and l-subordinators.

v
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More on Laplace exponent ¢

The Laplace exponent ¢ is a Bernstein function:

¢(A):a+b>\+/(o )(1—e_AX),u(dx).




Minimal thinness for some other jump processes [KSV2]

More on Laplace exponent ¢

The Laplace exponent ¢ is a Bernstein function:

¢(A):a+b>\+/(o )(1—e_AX),u(dx).

Assume a = 0 (no killing), b = 0 (zero drift) and p infinite.
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Minimal thinness for some other jump processes [KSV2]

More on Laplace exponent ¢

The Laplace exponent ¢ is a Bernstein function:

H(N) = a+ bA + / (1—e ™) p(dx).

(0,00)

Assume a = 0 (no killing), b = 0 (zero drift) and p infinite.

Assume also that ¢ is a special Bernstein function, i.e., ¢*(\) = ﬁ is
again a Bernstein function.
.
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Minimal thinness for some other jump processes [KSV2]

More on Laplace exponent ¢

The Laplace exponent ¢ is a Bernstein function:

(X)) = a+ bA +/ (1—e ™) p(dx).

(0,00)

Assume a = 0 (no killing), b = 0 (zero drift) and p infinite.

Assume also that ¢ is a special Bernstein function, i.e., ¢*(\) = ﬁ is
again a Bernstein function.

Important consequence: Let V* be the potential operator of the
subordinate killed Brownian motion WP (S;) where S* is the independent
subordinator with Laplace exponent ¢*:

If Up(x,y) is the Green function of Y2 and G} (x,y) the Green function
of WP then

Up(x,y) = V*(Gp' (-, y))(x)

v

Minimal thinness for jump processes Sendai, Aug.31-Sept.4, 2015 29 / 45



Minimal thinness for some other jump processes [KSV2]

|dentification of (minimal) Martin boundary

Identification of (minimal) Martin boundary is non-trivial and, in many
case it depends on Harnack inequality and boundary Harnack principle.
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Minimal thinness for some other jump processes [KSV2]

|dentification of (minimal) Martin boundary

Identification of (minimal) Martin boundary is non-trivial and, in many
case it depends on Harnack inequality and boundary Harnack principle.

The key step is to establish that for every z € 9D, there exists the limit
. . GD(X7 y)
lim Mp(x,y) = lim ————=
y—z p(x.¥) y=z Gp(x0, y)

through some oscillation reduction technique based on the boundary
Harnack principle.

v
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|dentification of (minimal) Martin boundary

Identification of (minimal) Martin boundary is non-trivial and, in many
case it depends on Harnack inequality and boundary Harnack principle.

The key step is to establish that for every z € 9D, there exists the limit
. . GD(X7 y)
lim Mp(x,y) = lim ————=
y—z p(x.¥) y=z Gp(x0, y)

through some oscillation reduction technique based on the boundary
Harnack principle.

But the boundary Harnack principle does not hold for SKBM, partially
because the jumping kernel JP of YP has the estimates

YN dp(x)op(y) o(|x — y|2)
”’”“( x—yP “) x—y[?

’ ’X_.y|SM

v
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Martin kernel for SKBM

The existence of the limit

lim UD(va)

=M
y—zedD Up(xp, y) p(x,2)

is based on two facts:
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Martin kernel for SKBM

The existence of the limit

lim UD(X,_)/)

=M
y—zedD Up(xp, y) p(x,2)

is based on two facts:

lim PtW’D <G[‘)/V(-,y) ) = PtW’DI\/IgV(-,z), PtW’D semigroup of W[ |
y—z va(xo,y)
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Martin kernel for SKBM

The existence of the limit

li UD(Xa y)
im —Z
y—z€dD Up(xp,y)

is based on two facts:

lim PtW’D <Gvf\)\j/("y) ) = PtW’DI\/I%V(-,z), PtW’D semigroup of WtD,
y—z Gp (x0,¥)
GY(.
lim V* (V?/ () > = VMY (- z).
y—z GD (X07.y)

: Mp(x, z)
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Martin kernel for SKBM

The existence of the limit

. UD(Xay) .
y—!lznean UD(Xo,y) o MD(X’ Z)

is based on two facts:

lim PtW’D <G[‘)/V(-,y) ) = PtW’DM%V(-?z), PtW’D semigroup of W[ |
y—z va(xo,y)

lim V* (GDW(y)> = VMY (-, z).

y—z G‘D/V(XOJ/)
VMY (x,z
Mp(x,z) = —I?V( ) .
V*MY (x0, 2)
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Green and Martin kernel estimates for SKBM

1 1)
Uo(ooy) = (P20 A1) x 1ol =y, x -yl <1

Based on sharp two sided estimates of the heat kernel of WP.
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Green and Martin kernel estimates for SKBM

1 1)
Uo(ooy) = (P20 A1) x 1ol =y, x -yl <1

Based on sharp two sided estimates of the heat kernel of WP.

For |x —z| <1,

- 5D(X) _ UD(X,Xo)/\l
Mo(x2) = 124 (x —212) ~ x = 219720 (x — 2|2’
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Minimal thinness for some other jump processes [KSV2]

Poisson kernel estimates for SKBM

For any open subset B of D, let UP-B(x,y) be the Green function of Y
killed upon exiting B. We define the Poisson kernel

KD’B(X,y) = / UD’B(X,Z)JD(z,y)dz, (x,y) € Bx (D\ B).
B
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Poisson kernel estimates for SKBM

For any open subset B of D, let UP-B(x,y) be the Green function of Y
killed upon exiting B. We define the Poisson kernel

KD’B(X,y) = / UD’B(X,Z)JD(z,y)dz, (x,y) € Bx (D\ B).
B

For every M > 0, there exists ¢ = ¢(M) > 0 such that for any ball
B(xo, r) C D of radius r € (0, 1], we have for all

(x,y) € B(x0,r) X (D\ B(xo,r)) with |[x —y| < M,

— xo| — r)72
KD’B(XOJ)(XJ/) < C(SD(y) ¢((’()ly_ XO’()’_ r)3+1)¢(r_2)_1'
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Minimal thinness for some other jump processes [KSV2]

The first criterion for minimal thinness

Sa=inf{t>0: YP € A}, RA(x) = Ex[u(Y2)], RA(x)=Elfu(YR)].

Let EC D. Fix z € 9D and let
En=En{xeR9: 27"l <|x—z| <27}
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Minimal thinness for some other jump processes [KSV2]

The first criterion for minimal thinness

Sa=inf{t>0: YP € A}, RA(x) = Ex[u(Y2)], RA(x)=Elfu(YR)].

Let EC D. Fix z € 9D and let
En=En{xeRY: 27"l <|x—z <27}

(1) In case D is a C™! open set, £ is minimally thin at D at z € 9D iff

ZRMD (-2) (x0) < 0.

n>1
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The first criterion for minimal thinness

Sa=inf{t>0: YP € A}, RA(x) = Ex[u(Y2)], RA(x)=Elfu(YR)].

Let EC D. Fix z € 9D and let
En=En{xeRY: 27"l <|x—z <27}

(1) In case D is a C™! open set, £ is minimally thin at D at z € 9D iff

ZRMD (-2) (x0) < 0.

n>1

(2) If D is a half-space-like C*! open set, E is minimally thin at D at co
iff > o1 R,E,;(, 00)(X0) < 00, where E" = EN{x € RY: 2" < |x| < 2n+1Y,
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Minimal thinness for some other jump processes [KSV2]

Let g(x) = Up(x,x0) A 1. Then Mp(x, z) < £0) which gives

) Ix—z|#H26(|x—2z|~2)
2n +2)

that > -, RMD(-,z)(XO) <ooiff >, 4 507y RE(En) < .
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Minimal thinness for some other jump processes [KSV2]

Let g(x) = Up(x, x0) A 1. Then Mp(x,z) = 7= Z|d+§g|)x -y which gives

2n (d+2)

that > -, MD(-,Z)(XO) <ooiff >, 4 507y RE "(Ep) < 0.

For every A C Q;, we have Rg,‘(xo) = g(x)*Capp(A), J

where

Capp(A) :=inf{u(D) : Upp >1on A}.

Sendai, Aug.31-Sept.4, 2015 35 /45



Quasi-additivity of capacity

Capacity is always subadditive: Capp(U2;A;) < 3772, Capp(A)) J
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Quasi-additivity of capacity

Capacity is always subadditive: Capp(U2;A;) < 3772, Capp(A)) J

Capacity is (locally) quasi-additive (at z) with respect to {Q;}: 3 C >0

Y Capp(AN Q) < CCapp(A), ACDNB(z,r) (ACD)
j=1
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Minimal thinness for some other jump processes [KSV2]

Comparable measure and Hardy's inequality

The proof of quasi-additivity of capacity relies on the existence of a
comparable measure: the measure ¢ is comparable to the capacity Capp if

o(Q;) < Capp(Q)) and o(A) < cCapp(A), al ACD.
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Comparable measure and Hardy's inequality

The proof of quasi-additivity of capacity relies on the existence of a
comparable measure: the measure ¢ is comparable to the capacity Capp if

o(Q;) < Capp(Q)) and o(A) < cCapp(A), al ACD.

Define o( fA )dx, AC D. Then o is comparable to CapD
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Comparable measure and Hardy's inequality

The proof of quasi-additivity of capacity relies on the existence of a
comparable measure: the measure ¢ is comparable to the capacity Capp if

o(Q;) < Capp(Q)) and o(A) < cCapp(A), al ACD.

Define o( fA )dx, AC D. Then o is comparable to Capp.

v

The Dirichlet form (&, F) of YD satisfies a local Hardy's inequality at
z € 0D if there exist ¢ > 0 and (the localization radius) Ry > 0 such that

E(v,v) > C/DmB( ) V2(x)p(8p(x)72) dx, veF.
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Minimal thinness for some other jump processes [KSV2]

Wiener-Aikawa-type criterion for minimal thinness for
SKBM

Let {Q;} be a Whitney decomposition of D, E C D and z € OD. Then E
is minimally thin in D at z with respect to Y if and only if

dist(z, Q;)9T2¢(dist(z, Q;)~2) Cap(ENQj) <0

J:Q;CB(z,1)
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Minimal thinness for some other jump processes [KSV2]

Wiener-Aikawa-type criterion for minimal thinness for
SKBM

Let {Q;} be a Whitney decomposition of D, E C D and z € OD. Then E
is minimally thin in D at z with respect to Y if and only if

diSt(Qj, 8D)2
D e Q) 2o (dist(z, Q) 2)

Cap(EN Q) < o0
J:Q;CB(z,1)

Compare with the criterion for minimal thinness with respect to XP:

1
i i Cap(EN Q) <
frogs%z,ud'st(zaQJ—)%(dnst(oj,ao)—Z) ap(EN Q) < o0
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Minimal thinness for some other jump processes [KSV2]

Integral criterion for minimal thinness

Theorem: [KSV2] Let D be either a bounded C! domain, or a C1!
domain with compact complement, or a domain above the graph of a

bounded C1:! function, let E C D and z € OD. If E is minimally thin in D
at z with respect to YD then

/ 6p(x)?¢(6p(x)2)
£

nB(z1) IX = 219T26(|x — 2| 7?)

dx < 0.

Conversely, if E is the union of a subfamily of Whitney cubes for D, then
the converse also holds true.
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Integral criterion for minimal thinness

Theorem: [KSV2] Let D be either a bounded C! domain, or a C1!
domain with compact complement, or a domain above the graph of a
bounded C1:! function, let E C D and z € OD. If E is minimally thin in D
at z with respect to YD then

/ 6p(x)?¢(6p(x)2)
£

nB(z1) IX = 219T26(|x — 2| 7?)

Conversely, if E is the union of a subfamily of Whitney cubes for D, then
the converse also holds true.

dx < 0.

f:R? = [0,00) Lipschitz, E = {x = (X,xg € H: 0 < x4 < f(X)}.
Corollary: E is minimally thin in H at 0 if and only if

/ F(X)°o(f(%) %)
{

~ v|d+2 ¥|—2
mi<1y 1XI7F20(1x]72)
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Minimal thinness for some other jump processes [KSV2]

Censored stable process

Let D be either a bounded C! domain or a half-space. Let X be an
isotropic a-stable process in RY, W(x) = [x|* (0 < a < 2).
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Minimal thinness for some other jump processes [KSV2]

Censored stable process

Let D be either a bounded CL! domain or a half-space. Let X be an
isotropic a-stable process in RY, W(x) = [x|* (0 < a < 2).

Whenever X makes a jump outside D, this jump is suppressed and the
process starts afresh at the position X;,_ (lkeda-Nagasawa-Watanabe
piecing together procedure). This new process ZP is called a censored
a-stable process in D (Bogdan, Burdzy & Chen, 2003). It is a stable
process not allowed to jump outside D.
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Minimal thinness for some other jump processes [KSV2]

Censored stable process

Let D be either a bounded CL! domain or a half-space. Let X be an
isotropic a-stable process in RY, W(x) = |x|* (0 < a < 2).

Whenever X makes a jump outside D, this jump is suppressed and the
process starts afresh at the position X;,_ (lkeda-Nagasawa-Watanabe
piecing together procedure). This new process ZP is called a censored
a-stable process in D (Bogdan, Burdzy & Chen, 2003). It is a stable
process not allowed to jump outside D.

Alternatively, let

= u(x) —u 2l — y|79 dx u o0 .
S(u,u)—/D/D(() W)2lx —y| 4 dxdy ue C2(D)

Then & extends to a regular Dirichlet form on L?(D, dx) and ZP is the
corresponding Markov (Hunt) process.
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Minimal thinness for some other jump processes [KSV2]

Wiener-Aikawa-type criterion

For 0 < a < 1, ZP is conservative and never approaches 9D. For
1 < a <2, ZP has finite lifetime ¢ and Zg € dD.

Minimal thinness for jump processes Sendai, Aug.31-Sept.4, 2015 41 / 45



Minimal thinness for some other jump processes [KSV2]

Wiener-Aikawa-type criterion

For 0 < a < 1, ZP is conservative and never approaches 9D. For
1 < a <2, ZP has finite lifetime ¢ and Zg € dD.

Let o € (1,2), D be a bounded C'* domain in R or a half-space
(d >2),z€ 9D and E C D. Then E is minimally thin at z with respect
to the censored a-stable process if and only if

. . D 2(06_1)
Z dISt((Qj»a ) CapD(Em QJ) < 00,

H Nd+a—2
J:QiNB(z,1)£0 dist(z, Q)

(Mimica & Vondracek 2014)
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e Examples
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Examples

Processes related to the stable process

D a bounded C'! domain or a half-space.
(a) XP - a-stable process killed upon exiting D;

(b) YP - subordinate killed Brownian motion in D via a/2-stable
subordinator;

(c) ZP - censored a-stable process, 1 < a < 2.
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Examples

Processes related to the stable process

D a bounded C'! domain or a half-space.
(a) XP - a-stable process killed upon exiting D;

(b) YP - subordinate killed Brownian motion in D via a/2-stable
subordinator;

(c) ZP - censored a-stable process, 1 < a < 2.

Criteria for minimal thinness of E C D at z € 9D:
(a) For XP: fEmB(z,l) V—%Id dx < o0;

x)a—2
(b) For YP: fEmB(z,l) &% dx < oo;

Sp(x)—at2
(c) For ZP: fEmB(z,l) lXD_(ZRW dx < oo;
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Examples

Processes related to the stable process

D a bounded C1! domain or a half-space.

(a) XP - a-stable process killed upon exiting D;

(b) YP - subordinate killed Brownian motion in D via a/2-stable
subordinator;

(c) ZP - censored a-stable process, 1 < a < 2.

Criteria for minimal thinness of E C D at z € 9D:
(a) For XP: fEmB(z,l) ﬁ dx < o0;

5D X)a—2

(b) For YP: fEmB(z,l) p(i;w dx < oo;

Sp(x)—at2
(c) For ZP: fEmB(z,l) lXD_(ZRW dx < oo;

Minimal thinness for Y2 = minimal thinness for X? = minimal

thinness for ZP.
Panki Kim Minimal thinness for jump processes Sendai, Aug.31-Sept.4, 2015 43 / 45




Examples

Minimal thinness under the graph of a function

f:R? = [0,00) Lipschitz, E = {x = (X,xq) € H: 0 < xq4 < f(X)}.




Examples

Minimal thinness under the graph of a function

f:R? = [0,00) Lipschitz, E = {x = (X,xq) € H: 0 < xq4 < f(X)}.
Then E is minimally thin in Hat z=10
(a) for XD iff f{\>~<\<1} %df( < 00;

(b) for YO iff [z qy \ngg "~ dx < 00;

X)) 1
(c) for ZP iff f{IX\<1} \iﬁdla > dX < 0.
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Examples

Minimal thinness under the graph of a function

f:R? = [0,00) Lipschitz, E = {x = (X,xq) € H: 0 < xq4 < f(X)}.
Then E is minimally thin in Hat z=10

(a) for XD iff f{\>~<\<1} %df( < 00;
(b) for YO iff [z qy \ngg "~ dx < 00;

X)) 1
(c) for ZP iff f{IX\<1} \iﬁdla > dX < 0.

Example: If f(x) = |x|?, v > 1, all three integrals are finite iff v > 1.

v
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Examples

Minimal thinness under the graph of a function

f:R? = [0,00) Lipschitz, E = {x = (X,xq) € H: 0 < xq4 < f(X)}.
Then E is minimally thin in Hat z=10

(a) for XD iff f{\>~<\<1} %df( < 00;

(b) for YO iff [z qy \ngg "~ dx < 00;

f(X)™ 1

(c) for ZP iff f{IX\<1} \x(|d2ra > dX < 0.

Example: If f(x) = |x|?, v > 1, all three integrals are finite iff v > 1.
Let f(x) = |>~<|(Iog(1/|§|))_6, B > 0. Then E is minimally thin at z=10
(a) for XD iff B > 1;

(b) for YPiff 3> 1/(3 — a);

(c) for ZPiff B > 1/(a — 1). )
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Examples

Thank you !
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