The conservativeness of Girsanov transformed symmetric Markov processes

Yusuke Miura

Mathematical Institute, Tohoku University (mail: sb0m32@math.tohoku.ac.jp)

1 Settings

- \bullet E: locally compact separable metric space
- m: Radon measure with supp[m] = E
- $\bullet \ \mathbb{M} = (\Omega, X_t, \mathbb{P}_x, \zeta)$: m-symmetric Hunt process
- ullet $(\mathcal{E},\mathcal{F})$: Dirichlet form on $L^2(E;m)$ generated by \mathbb{M}

$$\mathcal{F}_{ ext{loc}}^{\dagger} := \left\{ u \in \mathcal{F}_{ ext{loc}} \, \middle| \, \int_{y \in E} (u(x) - u(y))^2 J(dx, dy)
ight.$$
 is a Radon measure $brace$

Fukushima's decomposition [Kuwae ('10, '12)]

For $u\in\mathcal{F}_{\mathrm{loc}}^{\dagger},\,u(X_t)-u(X_0)$ can be decomposed as $u(X_t)-u(X_0)=M_t^{[u]}+N_t^{[u]},$

where $M^{[u]}$: martingale AF, $N^{[u]}$: continuous AF.

2 Girsanov transformations

Take nonnegative $\rho \in \mathcal{F}_{loc}^{\dagger}$.

- $E_{\rho} := \{x \in E : 0 < \rho(x) < \infty\}$
- ullet $L_t^
 ho$ the solution to

$$L^{
ho}_t = 1 + \int_0^t L^{
ho}_{s-} rac{1}{
ho(X_{s-})} dM^{[
ho]}_s, \quad t < \zeta \wedge au_{E_{
ho}}.$$

 $\Longrightarrow L_t^{
ho}:$ supermartingale multiplicative functional

$$d\mathbb{P}_x := L_t^
ho d\mathbb{P}_x.$$

 $ightharpoonup \widetilde{\mathbb{M}}^{
ho} = \left(\Omega, X_t, \widetilde{\mathbb{P}}_x\right)$ is a symmetric Markov process on $E_{
ho}$ (the Girsanov transformed process)

 $(\widetilde{\mathcal{E}}^{\rho}, \widetilde{\mathcal{F}}^{\rho})$: Dirichlet form generated by $\widetilde{\mathbb{M}}^{\rho}$.

3 Main Result

Theorem 1

Let $\rho \in \mathcal{F}_e \cap \mathfrak{B}_b(E)$ with $\rho > 0$. Then

- (i) $(\widetilde{\mathcal{E}}^{\rho}, \widetilde{\mathcal{F}}^{\rho})$ is recurrent,
- (ii) $\mathcal{F} \subset \widetilde{\mathcal{F}}^{\rho}$ and for $u \in \mathcal{F}$,

$$egin{aligned} \widetilde{\mathcal{E}}^
ho(u,u) &= \int_E
ho(x)^2 \mu^c_{\langle u
angle}(dx) \ &+ \int_{E imes E} (u(x) - u(y))^2
ho(x)
ho(y) J(dx,dy). \end{aligned}$$

Remark.

The conservativeness of \mathbb{M} is not assumed.

However, for $\rho \in \mathcal{F}_e$, $\widetilde{\mathbb{M}}^{\rho}$ is always conservative.

Theorem 2

Assume M is conservative and $\mu_{\langle \rho \rangle}(E) < \infty$.

Then $\widetilde{\mathbb{M}}^{\rho}$ is conservative and never hits $\{\rho(x)=0\}$.

i.e., $\mathbb{P}_x(\zeta \wedge au_{E_
ho} = \infty) = 1, \quad
ho^2 m$ -a.e.

Key Lemma

If there exists a constant c > 1 s.t. $c^{-1} \le \rho \le c$, then $\widetilde{\mathbb{M}}^{\rho}$ is conservative.

 \uparrow

 $L_t^
ho$ is a martingale under \mathbb{P}_x \cdots (*)

Idea of the proof.

We cannot apply Novikov's theorem to show (*).

 \rightsquigarrow We check a condition due to Z.-Q. Chen ('12).

4 Application

Assumption. M: transient, irreducible and strong Feller

 μ : positive Green-tight measure $(\ ^{\forall} \varepsilon > 0,\ ^{\exists} K : \mathrm{cpt},\ ^{\exists} \delta > 0 \mathrm{\ s.t.}\ ^{\forall} B \subset K \mathrm{\ with\ } \mu(B) < \delta,\ \|R(1\!\!1_{K^c \cup B} \mu)\|_{\infty} < \varepsilon)$

$$egin{aligned} rac{Takeda('14)}{\longrightarrow} & \exists h \in \mathcal{F}_e \; ext{ s.t.} \; \; h > 0, \; \int_E h^2 d\mu = 1, \; \; \mathcal{E}(h,h) = \lambda(\mu) \; \left(:= \inf \left\{ \mathcal{E}(u,u) : u \in \mathcal{F}_e, \int_E u^2 d\mu = 1
ight\}
ight), \ & ext{and} \; \; h(X_t) - h(X_0) = M_t^{[h]} - \int_0^t h(X_s) \, dA_s^{\lambda(\mu) \cdot \mu}. \end{aligned}$$

$$rac{h(X_t)}{h(X_0)} \, \exp A_t^{\lambda(\mu) \cdot \mu} \, = L_t^h$$

↓ Theorem 1

$$\mathcal{E}(hu,hu)-\lambda(\mu)\int_E(hu)^2d\mu \ = \ rac{1}{2}\int_Eh(x)^2\,\mu^c_{\langle u
angle}(dx)+\int_{E imes E}(u(x)-u(y))^2h(x)h(y)J(dx,dy), \quad u\in\mathcal{F}.$$