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1 Disease spreading models

1.1 The SIS model (Susceptible-Infected-Susceptible
model)

* single species of IV individuals, N € N

* entire population splits into two groups of individuals (susceptible (S)
and infected (I)) (compartmental model)

 groups indicate the total number of susceptible (S) and infected (1)
iIndividuals

« individuals travel from one compartment to another

e individuals in S are able to get infected by contagious individuals
« r € Nl denotes number of contacts per unit time

5 €[0,1] is the probability of disease transmission per contact

€ [0, 1] is the recovery rate per capita

infection rate r
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* the underlying ode system
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Figure 1: N =1000, §y=999, [ =1,r=6, 5=0.03, «a =0.8

* no birth, no death, no migration of individuals

For an overview of compartmental models see e.g. [CH11].

1.2 Modeling via Interacting Particle Systems
e interacting particles of two types (susceptible (+) and infected (-)) in
R*-space
« particles can move in space (mobility)
« particles interact via an interaction potential
« particles can change their types according to certain rates
* new particles can appear (birth process)
» particles can disappear (death process)
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2 The mathematical background

The general mathematical background is provided in [FKO13].

2.1 The setting
« one-component configuration space I
[:=Tg:={y cR*|#(ynK) < oo for all K = R* compact},

where #S denotes the cardinality of a set S

* one can identify each y € I' with a positive, integer-valued Radon mea-
sure

o let 28(I') denote the Borel-o-algeba corresponding to the vague topol-
ogy on I’

e we equip the measurable space (F,%(F)) with a probability measure
1 and obtain the probability space (F,%(F),M)

* one-component configuration space of finite configurations

To:=| T, where T'"":={yeT|#y=n}for neNand I'”:= {&}
n=0

(To, B(T'p), 1) denotes the Lebesgue—Poisson space
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* two-component configuration space
Given two copies of the space I', denoted by I'" and I'", let
I*:={(y",y)el*xI |y"'ny =g}
Similarly, given two copies of the space I'y, denoted by I'j and I, let
Lo:={n"n)ely xIy|n" nn” = a7},
Using the product structure we obtain
(T%,8((%),u”) and (T5, BTG, A%

as state spaces, where u“ is a probability measure on (I'%, 28(I'?)).

2.2 The strategy

Evolution of observables

* heuristically, the stochastic evolution of an infinite two-component par-
ticle system is described by a Markov process on I'*

» determined by its Markov generator L defined on a proper space of
functions on I'?

* it provides a solution to the Kolmogorov backward equation

d
EE =LF, F|,_,=F. (EvO)

Evolution of states
e stochastic evolution in terms of mean values

- for functions F : I'* — R integrable with respect to a probability mea-
sure 1 on %B(I?), i.e., a state of the system, the expected values are
given by

(F, ) := frzF(V,’y‘) du*(y*,y")

e time evolution problem on states

d
—(B ) = (LB, ey = 1o (EvS)

Evolution of correlation functionals

- for F being of type F = KG, where G : T — R is bounded, measurable
and of bounded support and K denotes the K-transform, (EvS) may be
rewritten in terms of correlation functionals k, := k2 corresponding to
the measures p; provided, these functionals exist

« time evolution problem on correlation functionals
iIn weak formulation:

d .
—— (G k) = (LG, k., k|, = ko, (WEVC)

where L:= K"'LK and (-, -)) is the usual pairing

(G, k) := f Gty ) k(nt,n7)dA®* (", n7) (P)
Ig
In strong formulation:
d T %
Ekt =L kt) kt| r=0 — k() (SEVC)

for L* being the dual operator of L in the sense defined in (P)

3 Application

3.1 Modeling infection and recovery: the flip generator

Infection of particles
« Markov pre-generator

Le Py )= ) ¢ (xy)

xey*

X

Fly"\{x},y uix}) - F(y+,)f—)], Fe9,

where ¢ (x,y") = 0 is the rate at which a +-particle at x € y™ flips to
a —-particle in dependence of the surrounding —-particles and & is a
suitable domain of functions F : I'* — R.

- specification of the flip rate for L

¢,y )= ) o(lx—yl), xeR? y eI~
yer™
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Figure 2: rate of infection ¢ for a single particle
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» The corresponding operator L!" reads

(Lwk)mn) = Y ¢(lx=yl) k@ uixhn \{x})
{x,ytcn~

- Y ollx-yl) k@07

xen* yen~

+ 3 | (lx=yl) k(" uiyhn \(yhuix)dx

yen~ JR
- > | d(lx—y)k(n*,n uiy)dy
xent JR?

acting on correlation functionals

 one-particle-correlation functionals

R*3 x— k*(x) := k" (x) = k({x}, ©)
and R*3x— k™ (x):=k"P(x) = k(2,{x})

* time evolution on one-particle-correlation functionals, x € R?and =0,
conform to (sEvC),

d
ki == [ @lix-y)k(i, 1)) dy
[ R2

d
Ek;(x) :fchp(lx—yl)kt({x},{y})dy (SEvC1)

* note that the two-particles-correlation functionals

, =0,

k() if 2= ({x}, 1)) €T
kgl,l)(x,y)::{ t(()ﬂ) It 7 ({;CI}Se{y})E :

are involved

Vlasov Scaling

* in order to tackle equations (sEvC1) we apply a mean field-type scal-
iIng, the so called Vlasov scaling, to obtain

a. . - +
Ekt (x) = _((P * Ky )(x) k; (x)

d
—k; (x) = (p* k;)(x0) k] (x),

EvC1
pp (ssevC1)

a closed system of equations with x € R?

Recovery of particles

» Markov pre-generator

LB (yhy)i=a ) [F(fu{y}»y‘\{y}) —F (YW‘)]» Fe9,
Yey-

where a € [0, 1] is the constant rate at which a —-particle at x € y~
flips to a +-particle and 9 is a suitable domain of functions F:T'* — R

Resulting equations for infection and recovery of particles

 applying the above procedure yields

d
Ek:m =—(¢p* k;)(x) k] (x) + a k; (x)

d
—k; (x) = (p*k;)(x0) kf (x) —ak; (x), xeR

EvC2
P (ssevC2)

4 Outlook

Mobility of particles

» Markov pre-generator for hopping +-particles

Lo )"y = Y | (2, y Vi, y)

xey+ JR?

X

Fy'\(xpuix'h,y) - Fly*,y") | dx’
+2 | Yy iy )
yey JR®
Fly",y " \{ytuly}) - F(Y+,Y‘)] dy', Fe9,

X

where ¢ (x,x',y" \ {x},¥”) = 0 indicates the rate at which a +-particle
located at x € y* hops to a free site x' € R*. & is a suitable domain of
functions F:I? — R, see [FKO13].
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