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.. Introduction

In this talk, we focus on the following type SPDE (heat
equation with noise):

ut =
1

2
uxx + a(u)Ẇ (t, x),

where a(·) is a real valued continuous function and W is time
space white noise.
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. . . . . .

.. Introduction

Super-Brownian motion {Xt(·) : t ≥ 0} is a measure valued
process which is characterized by several ways. (PDE,
martingale problem...)
In this talk, we will characterize it as the unique solution of
some martingale problem.
.
super-Brownian motion (SBM)
..

......

Super-Brownian motion {Xt(·) : t ≥ 0} is the unique solution of
the following martingale problem:

For all ϕ ∈ C2
b

(
Rd

)
,

Zt(ϕ) = Xt(ϕ)−X0(ϕ)−
∫ t
0

1
2Xs (∆ϕ) ds

is an FX
t -martingale such that

⟨Z(ϕ)⟩t =
∫ t
0 Xs

(
ϕ2

)
ds.

Remark: {Xt(·) : t ≥ 0} ∈ C([0,∞),MF (Rd)).
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.. Super-Brownian motion

We have some remarkable properties on SBM as follows.
.
Properties
..

......

...1 (d = 1, Konno-Shiga, Reimers) Xt(·) is absolutely
continuous w.r.t. Lebesgue measure for all t ∈ (0,∞)
almost surely and its density u(t, x)
(i.e.Xt(dx) = u(t, x)dx) satisfies the following SPDE:

ut =
1

2
uxx +

√
uẆ (t, x), lim

t→0+
u(t, x)dx = X0(dx),

where W is space-time white noise.
...2 (d ≥ 2, Perkins, Dawson-Perkins, et.al.) If Xt(1) ̸= 0, then
Xt(·) is singular w.r.t. Lebesgue measure. Also, the
Hausdorff dimension of supp(Xt) is 2 a.s.
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.. SPDE

By Konno-Shiga or Reimers, we find that a sol. of SPDE for
a(u) =

√
u corresponds with 1-dim. SBM.

Others:
...1 a(u) = λu for λ ∈ R ⇔ Cole-Hopf solution for KPZ
equation.

...2 a(u) =
√
u− u2 ⇔ the density of stepping stone model.

Can we find any models associated to the sol. of SPDE for other
a(·)?
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.. Suggestion by Mytnik

Mytnik constructed super-Brownian motion in random
environment.
.
SBMRE(Mytnik)
..

......

For d ≥ 1, we can construct SBMRE {Xt(·) : t ≥ 0} as the limit
of BBM in random environment which is the unique solution of
the martingale problem:

For all ϕ ∈ C2
b (Rd),

Zt(ϕ) = Xt(ϕ)−X0(ϕ)−
∫ t
0 Xs

(
1
2∆ϕ

)
ds

is an FX
t -martingale and

⟨Z(ϕ)⟩t =
∫ t
0 Xs

(
ϕ2

)
ds

+
∫ t
0

∫
Rd×Rd g(x, y)ϕ(x)ϕ(y)Xs(dx)Xs(dy)ds,

where g(x, y) is bounded symmetric continuous function.
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.. Suggestion by Mytnik

Mytnik gave a remark in the paper that if g is replaced by δx−y,
then a solution of the above martingale problem must have
density a.s. and its density u is a solution of SPDE

ut =
1

2
uxx +

√
u+ u2Ẇ (t, x). (A)

Thus, we have a question: can we construct SBMRE which is a
solution of SPDE (A)?
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.. Branching Brownian motions

Also, SBM is obtained as the limit of the critical branching
Brownian motions. Branching Brownian motions is defined as
follows in this talk:
.
Branching Brownian motions (BBM)
..

......

...1 There exist N particles at the origin at time 0.

...2 Each particle at time k
N independently performs Brownian

motion up to time t = k+1
N and it splits into two particles

with probability 1
2 or dies with probability 1

2 independently.
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Figure : N = 2, d = 1
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.. Super-Brownian motion

We identify each particle as a Dirac mass, i.e. if a particle
locates at site x, then we regard it as δx. We denote the

positions of particles at time t by {x1t , · · · , x
B

(N)
t

t }, where B
(N)
t

is the total number of particles at time t. Then we define the

measure valued process {X(N)
t (·) : t ≥ 0} by

X
(N)
0 = δ0, X

(N)
t (·) = 1

N

B
(N)
t∑
i=1

δxi
t
,

or for each A ∈ B(Rd),

X
(N)
t (A) =

♯ {particles locates in A }
N

.

Then, {X(N)
t (·) : t ≥ 0} ∈ D([0,∞),MF (Rd)).
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.. Super-Brownian motion

.
Theorem A (Watanabe ’68)
..

......

{
X

(N)
t (·)

}
⇒ {Xt(·) : t ≥ 0}, where X is the unique solution of

the martingale problem:
For all ϕ ∈ C2

b

(
Rd

)
,

Zt(ϕ) = Xt(ϕ)− ϕ(0)−
∫ t
0

1
2Xs (∆ϕ) ds

is an FX
t -martingale such that

⟨Z(ϕ)⟩t =
∫ t
0 Xs

(
ϕ2

)
ds.
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.. Construction by Mytnik

Let ξ = {ξ(x) : x ∈ Rd} be a random field such that
...1 P (ξ(x) > z) = P (ξ(x) < −z) for all x ∈ Rd and z ∈ R.
...2 g(x, y) = E[ξ(x)ξ(y)].

Let {ξk : k ∈ N} be independent copies of ξ. Then, the limit of
the following BBM in random environment is SBMRE(Mytnik).

.
BBMRE
..

......

...1 There exist N particles at time 0.

...2 Particles independently perform Brownian motion in
t ∈

[
k
N , k+1

N

)
. Then, at time t = k+1

N , a particle
independently splits into two particles with probability
1
2 +

ξk+1(x)

2N1/2 or dies out with probability 1
2 − ξk+1(x)

2N1/2 , where x

is the site it reached at time t = k+1
N .

Makoto Nakashima SBMRE and heat eq. with noise



. . . . . .

Figure : N = 1, d = 1
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Figure : N = 1, d = 1
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Figure : N = 1, d = 1
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Figure : N = 1, d = 1
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Figure : N = 1, d = 1
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.. Superprocesses in random environment (by Mytnik)

When we define the measure valued processes {X(N)
t (·) : t ≥ 0}

in the same way, it weakly converges to the SBMRE given as
above.
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.. Question (again)

Can we construct SBMRE which is a solution of SPDE

ut =
1

2
uxx +

√
u+ u2Ẇ (t, x)?
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.. Idea

.
Idea 1
..

......

Replace g(x, y) by δx−y.
⇒ No. (Branchings have no interaction since particles cannot
reach the same site at each branching time a.s.)

.
Idea 2
..

......

Construct SBMRE as a limit of some branching processes in
which particles can reach the same site with positive probability.
⇒ Branching random walks in random environment.
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.. BRWRE

Let {ξ(n, x) : (n, x) ∈ N× Z} be {−1, 1}-valued i.i.d. random
variables with P (ξ(n, x) = 1) = 1

2 . BRWRE is defined by the
following way.
.
BRWRE
..

......

...1 There are N particles at the origin at time 0.

...2 Each particle at site x at time n moves to an independently
and uniformly chosen nearest neighbor site and then it
splits into two particles with probability 1

2 + βξ(n,x)

2N1/4 or dies

out with probability 1
2 − βξ(n,x)

2N1/4 , where β ∈ R is a constant.
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Figure : N = 1
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Figure : N = 1
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Figure : N = 1
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Figure : N = 1
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Figure : N = 1
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Figure : N = 1
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.. BRWRE

We define BRWRE as measure valued processes like BBM. For
A ∈ B(R)

X
(N)
t (A) =

∑
x∈

√
NA

B
(N)
⌊Nt⌋,x

N

=
♯
{

particles locates in
√
NA at time ⌊Nt⌋

}
N

,

where

B(N)
n,x = ♯ {particles at site x at time n.}
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.. Main result

.
Theorem [N ’12]
..

......

(
X

(N)
t (·) : t ≥ 0

)
is tight and its limit point (Xt(·) : t ≥ 0)

is a solution of the following martingale problem:

For all ϕ ∈ C2
b (R),

X0(ϕ) = ϕ(0),

Zt(ϕ) = Xt(ϕ)−X0(ϕ)−
∫ t
0 Xs

(
1
2∆ϕ

)
ds

is an FX
t -martingale and

⟨Z(ϕ)⟩ =
∫ t
0 Xs(ϕ

2)ds

+β2

2

∫ t
0

∫
R×R δx−yϕ(x)ϕ(y)Xs(dx)Xs(dy)ds.

Makoto Nakashima SBMRE and heat eq. with noise



. . . . . .

.. Conclusion

Thus, we can construct a SBMRE which is a solution of SPDE:

ut =
1

2
uxx +

√
u+

β2

2
u2Ẇ (t, x), lim

t→0+
u(t, x)dx = δ0.

Moreover, we can construct SBMRE by the same way which is
a solution of SPDE:

ut =
1

2
uxx +

√
γu+ β2u2Ẇ (t, x), lim

t→0+
u(t, x)dx = m(dx)

for γ > 0, β ∈ R, m ∈ MF (R).

Uniqueness?
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.. Sketch of proof

For ϕ ∈ C2
b (R), the martingale part of XN

k
N

(ϕ) is divided into

three parts:

M
(b,N)
· (ϕ) : branching term

M
(r,N)
· (ϕ) : random walk term

M
(e,N)
· (ϕ) : environment term

Then,
⟨
M (b,N)(ϕ)

⟩
·
⇒

∫ ·

0
Xt(ϕ)dt as N → ∞

and
⟨
M (r,N)(ϕ)

⟩
·
⇒ 0.
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.. Sketch of proof

The quadratic variation of the last one is written as

⟨
M (e,N)(ϕ)

⟩
n/N

=
β2

N2

n−1∑
k=0

∑
x∈Z

ϕ
( x

N1/2

)2

(
B

(N)
k,x

)2

N1/2
.

We approximate B
(N)
k,x as “density”. We set

u(N)(t, z) =
B

(N)
k,x

2N1/2
1

{[
k

N
,
k + 1

N

)
×

[
x− 1

N1/2
,
x+ 1

N1/2

)
∋ (t, z)

}
.

Remark:

∫
z∈[ x−1

N1/2
, x+1

N1/2
)
u(N)(t, z)dz =

1

N
B

(N)
k,x for t ∈ [ kN , k+1

N ).
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.. Sketch of proof

Then, we have that⟨
M (e,N)(ϕ)

⟩
n/N

∼ β2

2

∫ n/N

0

∫
R
ϕ(z)2

(
u(N)(t, z)

)2
dzdt

If u(N)(·, ·) ⇒ u(·, ·), then this term converges to
β2

2

∫ ·

0

∫
R
ϕ(x)2u(t, x)2dxdt.
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Thank you for your attention!
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