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Introduction

In this talk, we focus on the following type SPDE (heat
equation with noise):

1 .
up = ium + a(u)W(t,x),

where a(-) is a real valued continuous function and W is time
space white noise.
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Introduction

Super-Brownian motion {X;(-) : ¢ > 0} is a measure valued
process which is characterized by several ways. (PDE,
martingale problem...)

In this talk, we will characterize it as the unique solution of
some martingale problem.

super-Brownian motion (SBM)

Super-Brownian motion {X;(-) : t > 0} is the unique solution of
the following martingale problem:

For all ¢ € 02 (Rd)

Zy(¢) = Xi(¢) — — fo3X ds
is an FX —martmgale such that
= [ X, (¢?) ds.

Remark: {X;(-):t > 0} € C([0,00), Mp(R?)).



Super-Brownian motion

We have some remarkable properties on SBM as follows.

O (d =1, Konno-Shiga, Reimers) X,(-) is absolutely
continuous w.r.t. Lebesgue measure for all ¢ € (0, 00)
almost surely and its density u(¢, x)

(i.e. X¢(dz) = u(t, z)dzx) satisfies the following SPDE:

1 .

Ut = =Uze + VuW(t,z), lim u(t,z)dz = Xo(dz),
2 t—0+

where W is space-time white noise.

@ (d > 2, Perkins, Dawson-Perkins, et.al.) If X;(1) # 0, then
X¢(+) is singular w.r.t. Lebesgue measure. Also, the
Hausdorff dimension of supp(X;) is 2 a.s.
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SPDE

By Konno-Shiga or Reimers, we find that a sol. of SPDE for
a(u) = y/u corresponds with 1-dim. SBM.
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SPDE

By Konno-Shiga or Reimers, we find that a sol. of SPDE for
a(u) = y/u corresponds with 1-dim. SBM.

Others:
O a(u) = Mu for A € R & Cole-Hopf solution for KPZ
equation.

0 a(u) = Vu — u? < the density of stepping stone model.
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SPDE

By Konno-Shiga or Reimers, we find that a sol. of SPDE for
a(u) = y/u corresponds with 1-dim. SBM.

Others:
O a(u) = Mu for A € R & Cole-Hopf solution for KPZ
equation.

0 a(u) = Vu — u? < the density of stepping stone model.
Can we find any models associated to the sol. of SPDE for other

a(+)?
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Suggestion by Mytnik

Mytnik constructed super-Brownian motion in random
environment.

SBMRE(Mytnik)

For d > 1, we can construct SBMRE {X;() : ¢ > 0} as the limit
of BBM in random environment which is the unique solution of
the martingale problem:

(For all ¢ € CbQ(]Rd)
Z(¢) = Xe(¢) = = Jo Xs (3A0) ds
is an F;X —martmgale and
= Jo X (¢%) ds
\ [y Jraxcns 90, 9)0(@)0() Xo(d) X, (dy) ds,

where g(x,y) is bounded symmetric continuous function.
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Suggestion by Mytnik

Mytnik gave a remark in the paper that if g is replaced by d;_,
then a solution of the above martingale problem must have
density a.s. and its density u is a solution of SPDE

1 .
Ut = SUae + VUt utW(t, x). (A)
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Suggestion by Mytnik

Mytnik gave a remark in the paper that if g is replaced by d;_,
then a solution of the above martingale problem must have
density a.s. and its density u is a solution of SPDE

1 .
Ut = SUae + VUt utW(t, x). (A)

Thus, we have a question: can we construct SBMRE which is a
solution of SPDE (A)?
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Branching Brownian motions

Also, SBM is obtained as the limit of the critical branching
Brownian motions. Branching Brownian motions is defined as
follows in this talk:

Branching Brownian motions (BBM)

@ There exist N particles at the origin at time 0.

® Each particle at time ]]f, independently performs Brownian

motion up to time ¢t = k“ and it splits 1nto two particles

with probability % or dles with probability 5 independently.
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Figure : N=2,d=1
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Super-Brownian motion

We identify each particle as a Dirac mass, i.e. if a particle
locates at site x, then we regard it as §,. We denote the

. . . 1 B (N)
positions of particles at time ¢ by {x;,--- ,z,* }, where B,
is the total number of particles at time ¢. Then we define the
measure valued process {Xt(N)(-) :t >0} by

T

N N

X5 =00, X0 = 5 3 8
i=1

or for each A € B(RY),

_ t{particles locates in A }

XM (a) v

Then, {X™ () : ¢ > 0} € D([0, 00), Mp(RY)).
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Super-Brownian motion

Theorem A (Watanabe '68)

{Xt(N)(-)} = {Xy(-) : t > 0}, where X is the unique solution of
the martingale problem:

For all ¢ € C’b (]Rd)

2(9) = Xu(9) = 9(0) = [y 3X: (A9) ds
is an F;¥ —martlngale such that
= [y Xs (¢?) ds.
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Construction by Mytnik

Let & = {£() : 2 € R?} be a random field such that
@ P(&(z) > 2) = P(&(x) < —2) for all z € R? and z € R.
@ g(x,y) = ElE(x)¢(y)]-

Let {& : k € N} be independent copies of {. Then, the limit of
the following BBM in random environment is SBMRE(Mytnik).

BBMRE

@ There exist N particles at time 0.

@ Particles independently perform Brownian motion in

te [k k]ffl) Then, at time t = k“ , a particle

independently splits into two partlcles with probability
3+ 55];11%) or dies out with probability 5 — %Xfll%), where

is the site it reached at time ¢t = %
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Figure : N=1,d=1
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Superprocesses in random environment (by Mytnik)

When we define the measure valued processes {Xt(N)(-) :t >0}
in the same way, it weakly converges to the SBMRE given as
above.
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Question (again)

Can we construct SBMRE which is a solution of SPDE

1 .
Ut = 5z +Vu+ uwW(t,z)?
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Replace g(x,y) by dz—y.
= No. (Branchings have no interaction since particles cannot
reach the same site at each branching time a.s.)
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Replace g(x,y) by dz—y.
= No. (Branchings have no interaction since particles cannot
reach the same site at each branching time a.s.)

Construct SBMRE as a limit of some branching processes in
which particles can reach the same site with positive probability.
= Branching random walks in random environment.
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BRWRE

Let {¢£(n,z) : (n,x) € N x Z} be {—1,1}-valued i.i.d. random
variables with P(¢(n,z) = 1) = 2. BRWRE is defined by the
following way.

BRWRE
@ There are N particles at the origin at time 0.

® Each particle at site x at time n moves to an independently
and uniformly chosen nearest neighbor site and then it

splits into two particles with probability 1 + BET) o1 dies

2N1/4
gfj\(ﬁ/ﬁ), where 3 € R is a constant.

out with probability % —

<
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BRWRE

We define BRWRE as measure valued processes like BBM. For

A c B(R)
BW)
XMy = 3
zeVNA
jj{ particles locates in v NA at time | Nt }
N 5
where

Bfl{\;) = t {particles at site x at time n.}
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Main result

Theorem [N ’12]

(Xt(N)(-) it > 0) is tight and its limit point (X¢(-) : ¢t > 0)
is a solution of the following martingale problem:

(For all ¢ € C2(R),
Xo(9) = ¢(0),
Zi($) = Xo(9) — = Jo Xs (3A0) ds
is an .7-" 2 martmgale and
fo ¢2 ds
— 2 fo foR Oz—y ()P (y) X s(dx) Xs(dy)ds.

Makoto Nakashima SBMRE and heat eq. with noise



Conclusion

Thus, we can construct a SBMRE which is a solution of SPDE:

1 [
I = .2 1' g .
Ut = SUee + Ut Su W(t, x), Jim u(t, z)dx = by

Moreover, we can construct SBMRE by the same way which is
a solution of SPDE:

1 .
Ut = 5 Uae + Vyu + BPuPW(t, x), tli%1+u(t, x)dr = m(dx)
—

for v >0, 8 €R, m e Mp(R).
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Conclusion

Thus, we can construct a SBMRE which is a solution of SPDE:

1 [
I = .2 1' g .
Ut = SUee + Ut Su W(t, x), Jim u(t, z)dx = by

Moreover, we can construct SBMRE by the same way which is
a solution of SPDE:

1 .
Ut = 5 Uae + Vyu + BPuPW(t, x), tli%1+u(t, x)dr = m(dx)
—

for v >0, 8 €R, m e Mp(R).

Uniqueness?
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Sketch of proof

For ¢ € CZ(R), the martingale part of X% (¢) is divided into
N

three parts:

M.(b’N)(qS) : branching term
M.(T’N)(d)) : random walk term

M.(e’N)(qS) : environment term
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Sketch of proof

For ¢ € CZ(R), the martingale part of X% (¢) is divided into
N

three parts:

M.(b’N)(qS) : branching term
M.(T’N)(d)) : random walk term

M.(e’N)(qS) : environment term

Then, <M(b’N)(¢)> = / Xi(@)dt as N — o
’ 0
and <M(T’N)(¢)>. = 0.
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Sketch of proof

The quadratic variation of the last one is written as
<N)>2

B x
(o), =Sy y U

k=0x€Z
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Sketch of proof

The quadratic variation of the last one is written as

(V)2
2 Bk )
(e,N) ( o
(), = 2 5o ()
We approximate B,(C{\Q as “density”. We set
(N)
B k k+1 r—1 z+1
u) k,x Al
(t,z) = 2N1/21{{N7 ~ >><{N1/2,N1/2>9(t,z)}.
1
Remark: / uN(t, 2)dz = —B,g]\;) for t € [£, B4,
zel2gh 2tk N
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Sketch of proof

Then, we have that

V) (4 N <N) 2
M W (f) (t,2z)) dzdt
TZ

If u(N)(-, -) = wu(,-), then this term converges to

522/ o(x)u(t, z)?dxdt.
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Thank you for your attention!
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