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Introduction

A cluster of related objects

e (X, d): a separable metric space such that all metric balls
B(x,r)={yeX:dxy)<r}

are compact;
e 1. a Radon measure with full support on X;
o (&,.7): aregular Dirichlet form (symmetric);
eg. F = HYR"), &(u,v)= [, (Vu-Vv)dm
e A: nonnegative definite generator;
e (P:)t>0: Markovian semigroup;

* (X%);>0: Hunt process.
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Introduction

Typical examples

Beurling-Deny: for u € .# N C(X)

Eluu) =69 u)+ [ () - uly)) S )

XxX—diag

+ /x u(x)v(x)k(dx),

e Brownian motion on a manifold, diffusions on metric
graphs, — strongly local Dirichlet forms;

e a-stable process on R”, random walks on weighted
graphs, — jump type process on metric spaces;

e jump-diffusion processes.
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Introduction

Stochastic (in)completeness

Various points of view
1. process: infinite lifetime almost surely;
2. process: upper escape rate, “forefront”;
3. semigroup or heat kernel: P.1 =1, [, pi(x,y)u(dy) =1
4

. heat equation: nonnegative bounded solutions to

0
EU(X7 t)+ Au(x,t) =0,

u(-,0) =0;

(1.1)



Introduction

Various points of view (continued)

5. "generator”: nonnegative bounded solutions to
Au+ A u=0,or Au-+Iu<Q0;

6. “generator” (weak Omori-Yau): Au < —a on
Q, ={x € X :u(x)>supu—a},

7. Dirichlet form: 3{u,} C . with 0 < u, <1,
lim, ooty =1, s.t. lim, oo &(u,,v) =0, Vv € L' N F;

8. large scale geometry: “very negative” curvature =—
stochastic incompleteness;

9. large scale geometry: “not very large” volume growth
—> stochastic completeness.
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Volume growth criteria

Riemannian manifold case:

e Grigor'yan (through heat equation): geodesic metric d,
Riemannian volume g,

> rdr
/ (i Balo )~ (©)

implies stochastic completeness;

e special case: 1 (By(xo,r)) < exp(CR?);

~
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Volume growth criteria

Riemannian manifold case (continued):

o Gaffney, Hsu, Karp-Li, Takeda, Davies,
Pigola-Rigoli-Setti, Takegoshi through different
approaches;

e Hsu and Qin: upper rate function,

o(t) rdr _
L= / In (1 (By(x0,r))) +Ininr’ (&)

Volume growth for stochastic completeness ({>) and escape
rate (&): sharp for model manifolds.
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Volume growth criteria

Strongly local case (Sturm):
e “calculus” through energy measure: dl'(u,u) ~ |Vul?dy;

e intrinsic metric p to replace d:

p(x,y) = sup{u(x) — u(y) : u € Fc N C(X),
dlfi(u,u) < dp}.

e Assumption: (X, p) =~ (X, d);

e stochastically complete if

& rdr
/ (1 (B0o.r) )

Key feature: dl(p(x, ), p(x,)) < du.
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Introduction Volume growth criteria Weighted graphs and metric graphs

Jump process case
Adapted metrics (Masamune-Uemura):

sup / (1A d(x,y))J(x. y)ldy) = M < 0. ()
X\{x}

xeX

Remark 2.1

related: Lévy process, Takeda, Frank-Lenz-Wingert
Example 2.2

a—stable processes (a € (0,2)) on R":

Cn,oz
J(x,y) = m,

Remark 2.3
(Q) is an analogue to |Vd(x,-)| <1 in the manifold case.
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Volume growth criteria

Jump process case:

e Masamune-Uemura: for any ¢ > 0
efsd(xo,x) c Ll(X,M),
e Grigor'yan-H.-Masamune:

lim inf log 11 (Ba (>0, 1))
r—00 rlogr

< 1'
2!
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Volume growth criteria

Jump process case:

e Masamune-Uemura-Wang (jump-diffusion):

lim inf 1284 (Babo. 1))
r—o0 rlogr

e Shiozawa-Uemura, Shiozawa: more general coefficients, d
not necessarily a metric but a reasonable “length”.
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Volume growth criteria

Basic strategy for jump process:
e truncation and stability, ¢ > 0 (jump size):
JI(X,}/) = J(Xa}/)ld(x,y)gc-
e Davies’ method: stochastic completeness <

lim (f — P,f,g,) =0

n—oo

for any f € Lip.(X), where {g,} C L2 N L=(X, p),

0<g 11
e Davies' method: estimate

(ue—f,80)° = (/Otg(us,g,,)ds>

2
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Volume growth criteria

Basic difficulty: lack of a chain rule due to non-locality.

Example 2.4
Let (x) = exp(ad(x, x0)),

[¥(x) = ¥(y)] < ad(x, y) exp(ac)(x).

The function 1/v is expected to compensate the volume
growth.
Open problem: volume growth criterion (<{>) and escape rate

(#)?
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Weighted graphs and metric graphs

Weighted graphs:
e (V,E): asimple graph;
e w:VxV —]0,00) as jump kernel J(dx, dy)
1. w(x,y) =w(y,x) forall x,y € V;
2. (x,y) € Esw(x,y)>0;

e 11:V — (0,00) as a Radon measure.
Example 3.1

1. “normalized”: w = 1, p = deg;
2. “physical” (Weber, Wojciechowski): w = 1g, n = 1.
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Weighted graphs and metric graphs
The graph metric dy:

do(x,y) = inf{n : 3 a path of length n connecting x, y}.

The regular Dirichlet form:

S0 u) = 2 33wl ) (ulx) — ()’

with domain .% = CC(V)(?1

The “formal Laplacian” (Keller-Lenz):

Au(x) = —= > w(x,y)(u(x) = u(y)).

yev
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Weighted graphs and metric graphs

The graph metric is in general not adapted:

1
(x)

>l y)d(x.y) = = 3 wlx.y) = Deg(s).

yev yev

Wojciechowski's example of anti-tree: stochastic
incompleteness with r

3¢ type volume growth

17 /34



Introduction Volume growth criteria Weighted graphs and metric graphs

Definition 3.2
A metric d on a simple weighted graph (V,w, 1) is called
adapted with jump size cg > 0 if

1. ﬁ Zyevw(x,y)d2(x,y) <1, for each x € V,;

2. w(x,y) =0 for (x,y) with d(x,y) > co.

Example 3.3
Let o(x,y) = min{\/Dlg(X), \/Dig(x),

d, = inf{zgol 0 (Xi, Xit1) : Xo = X, Xp = Y, X; ~ Xj11, V0 <
i<n-—1}

co} for x ~ y. Define
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Weighted graphs and metric graphs

Theorem 3.4 (Folz)

Let (V,w, u) be a simple weighted graph. Let d be an
adapted metric such that all closed metric balls B4(x,r) are
finite. If the volume growth with respect to d satisfies:

> rdr
| wwtoey == ()

for some reference point xo € V/, then the corresponding
Dirichlet form (&, .F) is stochastically complete.

Folz's strategy:
1. construct a related metric graph with loops;
2. compare the processes and volume growth;
3. reduction to Sturm’s theorem.
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Weighted graphs and metric graphs

Sketch of an analytic proof

Construction of a metric graph X:
1. an orientation: 7: E — {1, —1}, satisfying
7((x,y)) = =7 ((y, x)) for all (x,y) € E,
E, o= 3({1))
2. positive weights: ((e) = d(x,y), p(e) = w(x, y)d(x,y)
fore=(x,y) € Ey;
3. marked intervals {/(e)}eck,, where I(e) = [0, ((e)] x {e}.
Natural gluing:

T |_| I(e) > X.

ecEy
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Weighted graphs and metric graphs

Quotient metric: d, through T;
Push-forward measure: fi = 7, (®ece, p(e)m(e));
Dirichlet form:

N (e)
Fu) = 3 ple) [ Wlio Pam(e),
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Weighted graphs and metric graphs

Simplification: suffices to consider the case
pu(x) =3, w(x, y)d?*(x, y) for each x € V.
Strategy:

volume growth (&) for the weighted graph
= volume growth ($) for the metric graph
= stochastic completeness of the metric graph

= stochastic completeness of the weighted graph



Weighted graphs and metric graphs

Let {0,} C .Z be a sequence of functions satisfying

0<u,<1, lmib,=1 |jiae.

n—o0

such that N
lim &(i,,7) =0

n—oo

holds for any ¥ € .% N LY(X, f1).
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Weighted graphs and metric graphs

Define u, = @i,|y. For each w € Z N LYV, i), define w on X
by linear interpolation. Formally,

E(unw)= Y wlx,y) (ua(x) = un(y)) (wlx) = w(y))

e=(x,y)EEL

= Y by [ a@w(od
e=(x,y)€E} I(e)

= & (i, W) — 0.

Checking that everything works rigorously only involves some
elementary and fun calculations.

24 /34



Weighted graphs and metric graphs

Claim 1: The sequence {u,} C .Z.
By the recent result of H.-Keller-Masamune-Wojciechowski on
essential self-adjointnees:

F :ﬁmax

= {u: 32 P (0ux)
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Weighted graphs and metric graphs

For each &1 € .Z with u = 1|y,

£(,0) = 5 303 wlx,y) (u() — u(y))’

xeV yeV
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Weighted graphs and metric graphs

To show that u, € L?(V, p):

te[o,/]

<sup ya(t)y> §coth(l)/0 (TP(t) + (¥'(1))?) dt.
coth (d(x,y))

HLdKe pr—» (X y)d( y)‘|N| (e) ”Mﬂ2

Here

£(e)
I 8lice) o= Pe) / (22(1) + (@())?) dt.
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Weighted graphs and metric graphs

S Rux) = Y wlxy)di(xy) (3(x) + (y))

xeV e=(x,y)€E}

<2 Z d(x, y) coth (d(x,y)) | @ [[}yr2(:e))
e=(x,y)E€EL

S Cé’:}l(a7 D))

where C = 2sup, g ¢ t coth(t) > 0.
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Weighted graphs and metric graphs

Claim 2: For each x € V, lim,_ u,(x) = 1.

Fix x € V and let E, C E, be the set of marked intervals with
a vertex being x.

Choose some y. € (0, /(e)) for each e € E, such that

lim,_ oo Z'/n(ye) =1

Define ¥: on Uecg, /(€) by ¥(y) = m(d(x,ye) —d(x,y))+
for y € I(e) and extend it by 0 outside.

The function v is compactly supported, Lipschitz and thus
velNX,i)N.Z.
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Weighted graphs and metric graphs

Then we have that

0= lim &(i,, ¥) :n|i_>ﬁ;ozw(e)€(e)/ i ()7'(¢)dt

n—oo

eEEx I(e)
1
= lim w(e)l(e Un(x) — Un(ye
Jim. 32 M) g5 0ne) — )
whence lim,_ o up(x) = lim,_ o Up(x) = 1.
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Weighted graphs and metric graphs

Claim 3: The function w € LY(X, i) N.%.

Let {w,} C C.(V) be a sequence converging to w in the &
norm. Let W, be the extension of w, by linear interpolation in
the same way as w.

For each e = (x,y) € E;, we have

uJ(X,y)d(X?y)/ (#'(£))* dt = w(x, y) (w(x) = w(y))*.

I(e)
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Weighted graphs and metric graphs

And
w(x, y)d(x, w2 (t)d
(x,y)d( Y)/Ie) (t)dt

w(x, y)d?(x,y) (W?(x) + w(x)w(y) + w?(y))

w(x,y)d?*(x,y) (w?(x) + w?(y)) ,

I\Jll—‘wll—‘

<
whence & (W, W) < & (w, w).

The same estimate
E(W — Wy, W — W) < E1(w — w,, w — w,) holds for each n.
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Weighted graphs and metric graphs

To show that w € L'(X, i), we need another elementary
calculation for each e = (x,y) € E,:

wOx)d(xy) [ ()l = Jley)d () (wCo)| + W),

I(e)

by properties of linear functions. It follows that
I aom= 3 11w v
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Thank you for your attention!
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