Stochastic completeness of jump processes and random walks

Xueping Huang Universität Bielefeld

September 25, 2012

Outline

Introduction

Volume growth criteria

Weighted graphs and metric graphs

A cluster of related objects

• (X, d): a separable metric space such that all metric balls

$$B(x,r) = \{y \in X : d(x,y) \le r\}$$

are compact;

- μ : a Radon measure with full support on X;
- $(\mathscr{E}, \mathscr{F})$: a regular Dirichlet form (symmetric); e.g. $\mathscr{F} = H^1(\mathbb{R}^n)$, $\mathscr{E}(u, v) = \int_X (\nabla u \cdot \nabla v) dm$
- Δ: nonnegative definite generator;
- $(P_t)_{t>0}$: Markovian semigroup;
- $(\mathcal{X}_t)_{t>0}$: Hunt process.

Typical examples

Beurling-Deny: for $u \in \mathscr{F} \cap C_c(X)$

$$\mathscr{E}(u,u) = \mathscr{E}^{(c)}(u,u) + \int_{X \times X - diag} (u(x) - u(y))^2 J(dx, dy) + \int_X u(x)v(x)k(dx),$$

- Brownian motion on a manifold, diffusions on metric graphs, → strongly local Dirichlet forms;
- α -stable process on \mathbb{R}^n , random walks on weighted graphs, \rightarrow jump type process on metric spaces;
- jump-diffusion processes.

Stochastic (in)completeness

Various points of view

- 1. process: infinite lifetime almost surely;
- process: upper escape rate, "forefront";
- 3. semigroup or heat kernel: $P_t \mathbf{1} = \mathbf{1}$, $\int_X p_t(x, y) \mu(dy) = 1$;
- 4. heat equation: nonnegative bounded solutions to

$$\begin{cases} \frac{\partial}{\partial t} u(x,t) + \Delta u(x,t) = 0, \\ u(\cdot,0) \equiv 0; \end{cases}$$
 (1.1)

Various points of view (continued)

- 5. "generator": nonnegative bounded solutions to $\Delta u + \lambda u = 0$, or $\Delta u + \lambda u \leq 0$;
- 6. "generator" (weak Omori-Yau): $\Delta u \leq -\alpha$ on $\Omega_{\alpha} = \{x \in X : u(x) > \sup u \alpha\};$
- 7. Dirichlet form: $\exists \{u_n\} \subset \mathscr{F} \text{ with } 0 \leq u_n \leq 1$, $\lim_{n \to \infty} u_n = 1$, s.t. $\lim_{n \to \infty} \mathscr{E}(u_n, v) = 0$, $\forall v \in L^1 \cap \mathscr{F}$;
- large scale geometry: "very negative" curvature ⇒ stochastic incompleteness;
- large scale geometry: "not very large" volume growth
 ⇒ stochastic completeness.

Riemannian manifold case:

• Grigor'yan (through heat equation): geodesic metric d, Riemannian volume μ ,

$$\int^{\infty} \frac{r dr}{\ln \left(\mu \left(B_d(x_0, r)\right)\right)} = \infty, \qquad (\diamondsuit)$$

implies stochastic completeness;

• special case: $\mu(B_d(x_0, r)) \leq \exp(CR^2)$;

Riemannian manifold case (continued):

- Gaffney, Hsu, Karp-Li, Takeda, Davies, Pigola-Rigoli-Setti, Takegoshi through different approaches;
- Hsu and Qin: upper rate function,

$$t = \int^{\phi(t)} \frac{r dr}{\ln\left(\mu\left(B_d(x_0, r)\right)\right) + \ln\ln r};$$
 (4)

Volume growth for stochastic completeness (\diamondsuit) and escape rate (\clubsuit) : sharp for model manifolds.

Strongly local case (Sturm):

- "calculus" through energy measure: $d\Gamma(u,u) \approx |\nabla u|^2 d\mu$;
- intrinsic metric ρ to replace d:

$$\rho(x,y) = \sup\{u(x) - u(y) : u \in \mathscr{F}_{loc} \cap C(X), d\Gamma(u,u) \le d\mu\}.$$

- Assumption: $(X, \rho) \simeq (X, d)$;
- · stochastically complete if

$$\int^{\infty} \frac{r dr}{\ln\left(\mu\left(B_{\rho}(x_0, r)\right)\right)} = \infty, \tag{\$}$$

Key feature: $d\Gamma(\rho(x,\cdot),\rho(x,\cdot)) \leq d\mu$.

Jump process case

Adapted metrics (Masamune-Uemura):

$$\sup_{x\in X}\int_{X\setminus\{x\}}(1\wedge d^2(x,y))J(x,y)\mu(dy)=M<\infty. \tag{?}$$

Remark 2.1

related: Lévy process, Takeda, Frank-Lenz-Wingert

Example 2.2

 α -stable processes ($\alpha \in (0,2)$) on \mathbb{R}^n :

$$J(x,y) = \frac{c_{n,\alpha}}{|x-y|^{n+\alpha}},$$

Remark 2.3

 (\heartsuit) is an analogue to $|\nabla d(x,\cdot)| \leq 1$ in the manifold case.

Jump process case:

• Masamune-Uemura: for any $\varepsilon > 0$

$$e^{-\varepsilon d(x_0,x)} \in L^1(X,\mu),$$

Grigor'yan-H.-Masamune:

$$\liminf_{r\to\infty}\frac{\log\mu\left(B_d(x_0,r)\right)}{r\log r}<\frac{1}{2};$$

Jump process case:

Masamune-Uemura-Wang (jump-diffusion):

$$\liminf_{r\to\infty}\frac{\log\mu\left(B_d(x_0,r)\right)}{r\log r}<\infty;$$

 Shiozawa-Uemura, Shiozawa: more general coefficients, d not necessarily a metric but a reasonable "length".

Basic strategy for jump process:

- truncation and stability, c > 0 (jump size): $J'(x,y) = J(x,y)\mathbf{1}_{d(x,y) \le c}$.
- Davies' method: stochastic completeness ⇔

$$\lim_{n\to\infty}\langle f-P_tf,g_n\rangle=0$$

for any $f \in Lip_c(X)$, where $\{g_n\} \subset L^2 \cap L^\infty(X, \mu)$, $0 \le g_n \uparrow \mathbf{1}$.

Davies' method: estimate

$$\langle u_t - f, g_n \rangle^2 = \left(\int_0^t \mathcal{E}(u_s, g_n) ds \right)^2$$

Basic difficulty: lack of a chain rule due to non-locality.

Example 2.4

Let
$$\psi(x) = \exp(\alpha d(x, x_0))$$
,
$$|\psi(x) - \psi(y)| < \alpha d(x, y) \exp(\alpha c) \psi(x).$$

The function $1/\psi$ is expected to compensate the volume growth.

Open problem: volume growth criterion (\diamondsuit) and escape rate (\clubsuit) ?

Weighted graphs:

- (V, E): a simple graph;
- $\omega: V \times V \to [0,\infty)$ as jump kernel J(dx,dy)
 - 1. $\omega(x,y) = \omega(y,x)$ for all $x,y \in V$;
 - 2. $(x,y) \in E \Leftrightarrow \omega(x,y) > 0$;
- $\mu:V o(0,\infty)$ as a Radon measure.

Example 3.1

- 1. "normalized": $\omega = \mathbf{1}_E$, $\mu = \deg$;
- 2. "physical" (Weber, Wojciechowski): $\omega = \mathbf{1}_E$, $\mu \equiv 1$.

The graph metric d_0 :

$$d_0(x, y) = \inf\{n : \exists \text{ a path of length } n \text{ connecting } x, y\}.$$

The regular Dirichlet form:

$$\mathscr{E}(u,u) = \frac{1}{2} \sum_{x} \sum_{y} \omega(x,y) (u(x) - u(y))^{2}$$

with domain $\mathscr{F} = \overline{C_c(V)}^{\mathscr{E}_1}$.

The "formal Laplacian" (Keller-Lenz):

$$\Delta u(x) = \frac{1}{\mu(x)} \sum_{y \in V} \omega(x, y) (u(x) - u(y)).$$

The graph metric is in general not adapted:

$$\frac{1}{\mu(x)}\sum_{y\in V}\omega(x,y)d_0^2(x,y)=\frac{1}{\mu(x)}\sum_{y\in V}\omega(x,y)=\mathrm{Deg}(x).$$

Wojciechowski's example of anti-tree: stochastic incompleteness with $r^{3+\varepsilon}$ type volume growth

Definition 3.2

A metric d on a simple weighted graph (V, ω, μ) is called adapted with jump size $c_0 > 0$ if

- 1. $\frac{1}{\mu(x)} \sum_{y \in V} \omega(x, y) d^2(x, y) \leq 1$, for each $x \in V$;
- 2. $\omega(x, y) = 0$ for (x, y) with $d(x, y) > c_0$.

Example 3.3

Let
$$\sigma(x,y) = \min\{\frac{1}{\sqrt{\mathrm{Deg}(x)}}, \frac{1}{\sqrt{\mathrm{Deg}(x)}}, c_0\}$$
 for $x \sim y$. Define $d_{\sigma} = \inf\{\sum_{i=0}^{n-1} \sigma\left(x_i, x_{i+1}\right) : x_0 = x, x_n = y, x_i \sim x_{i+1}, \forall 0 \leq i \leq n-1\}$

Theorem 3.4 (Folz)

Let (V, ω, μ) be a simple weighted graph. Let d be an adapted metric such that all closed metric balls $B_d(x, r)$ are finite. If the volume growth with respect to d satisfies:

$$\int^{\infty} \frac{r dr}{\log \left(\mu \left(B_d(x_0, r)\right)\right)} = \infty, \qquad (\spadesuit)$$

for some reference point $x_0 \in V$, then the corresponding Dirichlet form $(\mathscr{E}, \mathscr{F})$ is stochastically complete. Folz's strategy:

- 1. construct a related metric graph with loops;
- 2. compare the processes and volume growth;
- 3. reduction to Sturm's theorem. Sturm

Sketch of an analytic proof

Construction of a metric graph X:

- 1. an orientation: $\tau: E \to \{1, -1\}$, satisfying $\tau((x, y)) = -\tau((y, x))$ for all $(x, y) \in E$, $E_+ := \tau^{-1}(\{1\})$;
- 2. positive weights: $\ell(e) = d(x, y)$, $p(e) = \omega(x, y)d(x, y)$ for $e = (x, y) \in E_+$;
- 3. marked intervals $\{I(e)\}_{e \in E_+}$, where $I(e) = [0, \ell(e)] \times \{e\}$.

Natural gluing:

$$\pi: \bigsqcup_{e\in E_{\perp}} I(e) \twoheadrightarrow X.$$

Quotient metric: d_{ℓ} through π ;

Push-forward measure: $\tilde{\mu} = \pi_* (\bigoplus_{e \in E_+} p(e) m(e));$

Dirichlet form:

$$\tilde{\mathscr{E}}(u,u) = \sum_{e \in E_+} p(e) \int_0^{\ell(e)} (u'|_{I(e)})^2 dm(e),$$

with domain: $\tilde{\mathscr{F}} = \overline{C_{\mathit{Lip},c}}^{\tilde{\mathscr{E}}_1}$.

Key facts: $d_{\ell} = \rho \geq d$

$$\tilde{\mu}\left(B_{\rho}^{X}(x_{0},r)\right) \leq \mu\left(B_{d}^{V}(x_{0},r)\right).$$

Simplification: suffices to consider the case $\mu(x) = \sum_{y} \omega(x, y) d^2(x, y)$ for each $x \in V$. Strategy:

volume growth (♠) for the weighted graph

- \Rightarrow volume growth (\$) for the metric graph
- \Rightarrow stochastic completeness of the metric graph
- $\stackrel{?}{\Rightarrow}$ stochastic completeness of the weighted graph

Let $\{\tilde{u}_n\}\subset \tilde{\mathscr{F}}$ be a sequence of functions satisfying

$$0 \leq ilde{\mathit{u}}_{\mathit{n}} \leq 1, \lim_{n o \infty} ilde{\mathit{u}}_{\mathit{n}} = 1 ~~ ilde{\mathit{\mu}} ext{-a.e.}$$

such that

$$\lim_{n\to\infty}\tilde{\mathscr{E}}\big(\tilde{u}_n,\tilde{v}\big)=0$$

holds for any $\tilde{v} \in \tilde{\mathscr{F}} \cap L^1(X, \tilde{\mu})$.

Define $u_n = \tilde{u}_n|_V$. For each $w \in \mathscr{F} \cap L^1(V, \mu)$, define \tilde{w} on X by linear interpolation. Formally,

$$\mathscr{E}(u_n, w) = \sum_{e=(x,y)\in E_+} \omega(x,y) (u_n(x) - u_n(y)) (w(x) - w(y))$$

$$= \sum_{e=(x,y)\in E_+} \omega(x,y) d(x,y) \int_{I(e)} \tilde{u}'_n(t) \tilde{w}'(t) dt$$

$$= \tilde{\mathscr{E}}(\tilde{u}_n, \tilde{w}) \to 0.$$

Checking that everything works rigorously only involves some elementary and fun calculations.

Claim 1: The sequence $\{u_n\} \subset \mathscr{F}$.

By the recent result of H.-Keller-Masamune-Wojciechowski on essential self-adjointnees:

$$\begin{split} \mathscr{F} &= \mathscr{F}_{\mathsf{max}} \\ &= \{ u : \sum_{x \in V} u^2(x) \mu(x) \\ &+ \frac{1}{2} \sum_{x \in V} \sum_{y \in V} \omega(x, y) \left(u(x) - u(y) \right)^2 < \infty \}. \end{split}$$

For each $\tilde{u} \in \tilde{\mathscr{F}}$ with $u = \tilde{u}|_{V}$,

$$\mathscr{E}(u,u) = \frac{1}{2} \sum_{x \in V} \sum_{y \in V} \omega(x,y) (u(x) - u(y))^{2}$$

$$= \sum_{e=(x,y) \in E_{+}} \omega(x,y) \left(\int_{0}^{l(e)} \tilde{u}'(t) dt \right)^{2}$$

$$\leq \sum_{e=(x,y) \in E_{+}} \omega(x,y) d(x,y) \left(\int_{0}^{l(e)} (\tilde{u}'(t))^{2} dt \right)$$

$$= \tilde{\mathscr{E}}(\tilde{u},\tilde{u}).$$

To show that $u_n \in L^2(V, \mu)$:

$$\left(\sup_{t\in[0,I]}|\tilde{u}(t)|\right)^2\leq \coth(I)\int_0^I\left(\tilde{u}^2(t)+(\tilde{u}'(t))^2\right)dt.$$

$$\| \tilde{u}|_{I(e)} \|_{\sup}^2 \le \frac{\coth(d(x,y))}{\omega(x,y)d(x,y)} \| \tilde{u}|_{I(e)} \|_{W^{1,2}(I(e))}^2.$$

Here

$$\| \tilde{u}|_{I(e)} \|_{W^{1,2}(I(e))}^2 := p(e) \int_0^{\ell(e)} \left(\tilde{u}^2(t) + (\tilde{u}'(t))^2 \right) dt.$$

$$\begin{split} \sum_{x \in V} u^{2}(x)\mu(x) &= \sum_{e=(x,y) \in E_{+}} \omega(x,y) d^{2}(x,y) \left(u^{2}(x) + u^{2}(y)\right) \\ &\leq 2 \sum_{e=(x,y) \in E_{+}} d(x,y) \coth\left(d(x,y)\right) \parallel \tilde{u} \parallel_{W^{1,2}(I(e))}^{2} \\ &\leq C \tilde{\mathcal{E}}_{1}(\tilde{u},\tilde{u}), \end{split}$$

where $C = 2 \sup_{t \in (0,c_0]} t \coth(t) > 0$.

Claim 2: For each $x \in V$, $\lim_{n\to\infty} u_n(x) = 1$.

Fix $x \in V$ and let $E_x \subset E_+$ be the set of marked intervals with a vertex being x.

Choose some $y_e \in (0, I(e))$ for each $e \in E_x$ such that $\lim_{n\to\infty} \tilde{u}_n(y_e) = 1$.

Define \tilde{v} : on $\bigcup_{e \in E_x} I(e)$ by $\tilde{v}(y) = \frac{1}{d(x,y_e)} (d(x,y_e) - d(x,y))_+$ for $y \in I(e)$ and extend it by 0 outside.

The function \tilde{v} is compactly supported, Lipschitz and thus $\tilde{v} \in L^1(X, \tilde{\mu}) \cap \tilde{\mathscr{F}}$.

Then we have that

$$\begin{split} 0 &= \lim_{n \to \infty} \tilde{\mathscr{E}}(\tilde{u}_n, \tilde{v}) = \lim_{n \to \infty} \sum_{e \in E_x} \omega(e) \ell(e) \int_{I(e)} \tilde{u}_n'(t) \tilde{v}'(t) dt \\ &= \lim_{n \to \infty} \sum_{e \in E_x} \omega(e) \ell(e) \frac{1}{d(x, y_e)} (\tilde{u}_n(x) - \tilde{u}_n(y_e)), \end{split}$$

whence
$$\lim_{n\to\infty} u_n(x) = \lim_{n\to\infty} \tilde{u}_n(x) = 1$$
.

Claim 3: The function $\tilde{w} \in L^1(X, \tilde{\mu}) \cap \tilde{\mathscr{F}}$.

Let $\{w_n\} \subset C_c(V)$ be a sequence converging to w in the \mathscr{E}_1 norm. Let \tilde{w}_n be the extension of w_n by linear interpolation in the same way as \tilde{w} .

For each $e = (x, y) \in E_+$, we have

$$\omega(x,y)d(x,y)\int_{I(e)} (\tilde{w}'(t))^2 dt = \omega(x,y)(w(x)-w(y))^2.$$

And

$$\omega(x,y)d(x,y) \int_{I(e)} \tilde{w}^{2}(t)dt$$

$$= \frac{1}{3}\omega(x,y)d^{2}(x,y) \left(w^{2}(x) + w(x)w(y) + w^{2}(y)\right)$$

$$\leq \frac{1}{2}\omega(x,y)d^{2}(x,y) \left(w^{2}(x) + w^{2}(y)\right),$$

whence $\tilde{\mathscr{E}}_1(\tilde{w}, \tilde{w}) \leq \mathscr{E}_1(w, w)$.

The same estimate

$$\tilde{\mathscr{E}}_1(\tilde{w}-\tilde{w}_n,\tilde{w}-\tilde{w}_n)\leq \mathscr{E}_1(w-w_n,w-w_n)$$
 holds for each n .

To show that $\tilde{w} \in L^1(X, \tilde{\mu})$, we need another elementary calculation for each $e = (x, y) \in E_+$:

$$\omega(x,y)d(x,y)\int_{I(e)} |\tilde{w}(t)|dt = \frac{1}{2}\omega(x,y)d^{2}(x,y)(|w(x)| + |w(y)|),$$

by properties of linear functions. It follows that $\| \ \tilde{w} \ \|_{L^1(X,\tilde{\mu})} = \frac{1}{2} \ \| \ w \ \|_{L^1(V,\mu)}.$

Thank you for your attention!