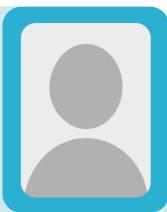
村上能規 MURAKAMI, Yoshinori

活性種 / 反応機構 / 光化学 / 微細気泡


分野等

物理化学、反応工学

email

murakami_mb[at]nagaoka-ct.ac.jp

※ [at] を @ に変えてください

職名

教授

学位

博士(工学)



光触媒の応用事例

微細気泡の特徴

Laser ablation in solution Organic Nd·YAG Magnetic stirrer 2 hours 1 hours SnO₂

レーザアブレーションによる材料合成

研究分野

1. 新規光触媒開発および光触媒反応機構の研究

光触媒は、光エネルギーを化学エネルギーに変換できることから、 様々な分野で注目、実用化もされています。現在、本研究室では、光 触媒の反応機構に関する基礎研究に加え、過酸化水素製造および重 金属除去が可能な光触媒の開発と評価に関する研究も始めました。

2. ファインバブルと超音波の相互作用に関する研究

微細気泡をファインバブルと呼びます。その中で、マイクロバブルは 気泡径が 50 μ m 以下で水中に長く存在できる不思議な気泡です。 本研究室では、このマイクロバブルと超音波を当てることで起こる現象 に関する研究に加え、ナノメートルで長時間存在するといわれているウ ルトラファインバブルに関する研究も始めました。

3. レーザ、プラズマプロセスによる低環境負荷新規材料開発

レーザ、プラズマは通常の熱を使った方法では不可能な高エネルギー 状態を実現することが出来ます。そこで、レーザ集光、水中でのプラズ マ発生等での新規材料合成、また、低環境負荷の新規反応プロセス の構築を目標として研究を続けています。

興味のあること・技術 PR

各種分光法を用いた活性酸素の検出

量子化学計算による反応機構検討

レーザを用いた材料プロセス設計

レーザを用いたナノ微粒子検出

微細気泡に関連する基礎研究

特別設備

紫外可視分光光度計

フーリエ変換赤外分光光度計

蛍光光度計

超音波発振器

各種レーザ

水中プラズマ発生器

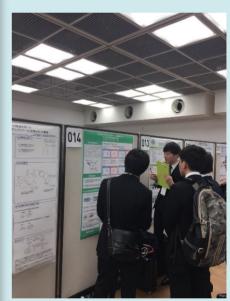
オゾン発生器

企業との連携実績

企業との連携の実績はありますが、公表は事情により不可

学生の主な就職先

シンターランド(専攻科)


クラレ
シード (専攻科)
信越化学
第一工業製薬
東洋インキ (専攻科)
日東電工 (専攻科)
森永乳業
フジ機工
リケン
第一三共バイオテック
関東電化工業

レーザー発振器

微細気泡発生装置

国内学会での専攻科生の発表