中村奨 NAKAMURA, Susumu

キーワート

レーザー/微細加工

分野等

レーザー応用工学研究室

email

snaka[at]nagaoka-ct.ac.jp

※ [at] を @ に変えてください

研究分野

多くの人々がその存在に気が付かないほど、レーザーは日常生活の中に入り込んでいます。どの家庭でも CD プレーヤーに内蔵するレーザーを持ち、金物店では様々なレーザー水準器が販売されており、全てではないにしても多くのコンピュータ、プリンタ、コピー機にはレーザーの技術が用いられています。本研究室では 1.06µm の赤外レーザー光から 355nm の紫外レーザー光までを取り扱っており、電子材料の精密微細加工を中心に研究を進めています。

特別設備

コンティニュアム社製パルス YAG (4 波長対応) ナノ秒レーザー	1台
スペクトラフィジックス社製 YLF (349nm) ナノ秒レーザー	1台
スペクトラフィジックス社製ファイバー (1060nm) ナノ秒レーザー	1台
アドバンスドオプトウェーブ社製 YAG (355nm) ナノ秒レーザー	1台
アドバンスドオプトウェーブ社製 YVO4 (532nm) ナノ秒レーザー	1台
フォトニクスインダストリー社製 YVO4 (532nm) ピコ秒レーザー	1台
キーエンス社製デジタルマイクロスコープ	1 台
朝日光学機製作所製デジタルマイクロスコープ	2台

企業との連携実績

図 2 はパルス紫外レーザー光によって厚さ 0.5mm のマシナブルセラミックスに貫通孔をあけた結果です。

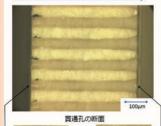
一般にレーザー光によってあけられる貫通孔は、レーザー光入射面側の直径が大きくて出射面側の直径が小さなテーパー状となるのが普通です。これに対して当研究室で開発した技術を使用すると、レーザー光入射面側の直径と出射面側の直径が等しいストレートの貫通孔、さらには出射面側の直径が大きな逆テーパーの貫通孔をあけることも可能です。この技術は「貫通孔形成方法、及び、貫通孔形成加工品」として特許を取得しました(特許番号 5432547 号)。

【中村連絡先】

Tel: 0258-34-9238

職名

教授


学位

工学博士

図 1 ダブルパルスレーザーによ る微細加工

レーザービーム進行方向

0

入射面側孔形状

図 2 マシナフルセラミックスへの ストレートな貫通孔あけ