	科目名	環境都市工学実験(2)	科目コード	51100
		Civil Engineering Experiments II		

学科名・学年	環境都市工学科・5年(プログラム2年)
担当教員	井林康、押木守、田中一浩(環境都市工学科)
区分・単位数	2 単位・必修
開講時期·時間数	前期,60時間【内訳:講義0,演習0,実験60,その他0】
教科書	実験指導書を配付
補助教材	
参考書	

【A. 科目の概要と関連性】

3 つのグループに分かれてそれぞれ以下の実験を行い、ローテーションしながらすべて の実験を実施する。

「グループ 1」汎用有限要素解析ソフトウェアを用いた簡単な構造解析を行い、応力やひずみの分布、変形形状などについて、様々な観点から比較と検討を行って、考察を加える.

「グループ 2」河川水を想定した模擬原水を作り模擬浄水処理する実験、本校水道水の残留塩素による水質評価実験を行う。

「グループ 3」都市下水の処理に広く普及している活性汚泥法を取り上げ、有機汚濁物質の分解に関連する諸現象をモデル実験として実施し、その現象を理解する。

○関連する科目:環境都市工学実験(1)(前年度履修),卒業研究(学科第5学年履修)

【B.「科目の到達目標」と「学習・教育到達目標」との対応】

この科目は長岡高専の教育目標の(D)と主体的に関わる.

この科目の到達目標と、成績評価上の重み付け、各到達目標と長岡高専の学習・教育到達目標と の関連を以下の表に示す

科目の到達目標	評価の重み	学習・教育到 達目標との 関連
①汎用有限要素解析ソフトウェアの使用方法を学び、構造問題の 解析方法を理解する	33%	d2
②浄水処理の原理を理解すること・浄水処理における塩素消毒の 役割を理解する	33%	d3
③下排水の生物処理法の原理について理解する	33%	d3

【C. 履修上の注意】

「グループ 1」 基本的な構造力学(静定・不静定・静定次数など)や構造の種類(トラス・アーチ・ラーメンなど)に関する知識が必要である。

「グループ 2」 衛生工学の浄水技術関連の知識が必要である。

「グループ 3」 衛生工学の下水処理に関連した知識が必要である。

【D. 評価方法】

次に示す項目・割合で達成目標に対する理解の程度を評価する. 60 点以上を合格とする.

- 定期試験(0%) 【内訳:後期中間0%,後期末0%】
- その他の試験(0%)
- レポート (100%)
- その他(0%)

【E. 授業計画・内容】

● 前期

週	内容	備考
1	実験説明と注意事項	
2	実験レポートの書き方	
3	汎用有限要素解析ソフトウェアの使用方法の学習	グループ1
4	各種例題を用いた使用方法の実践	グループ1
5	応用問題の解析(1)	グループ1
6	応用問題の解析(2)	グループ1
7	模擬浄水処理実験	グループ2
8	残留塩素による水質評価試験	グループ2
9	環境水中のイオン分析実験(1)	グループ2
10	環境水中のイオン分析実験(1)	グループ2
11	液層への酸素の溶解速度	グループ3
12	微生物相とその性状	グループ3
13	活性汚泥の酸素溶解速度	グループ3
14	水質シミュレーション(微分方程式の数値計算)	グループ3
15	実験の解説	