一科日名	物質工学実験(無機化学)	科目コード	41060
	Experiments in Material Engineering		

学科名・学年	物質工学科・3 年
担当教員	小出 学 (物質工学科)
区分・単位数	必修·2単位
開講時期·時間数	前期, 60 時間【内訳:講義 0, 演習 0, 実験 54, その他 6】
教科書	実験毎にテキスト配布
補助教材	
参考書	

【A. 科目の概要と関連性】

化学実験の基本的操作方法や得られたデータの解析法の習得を目指す。実験操作を通して、物質の取り扱い方や無機化合物の生成方法に関する知識を深める。

〇関連する科目:物質工学実験(分析)(2学年履修)、物質工学実験(物化)(4学年履修)

【B.「科目の到達目標」と「学習・教育到達目標」との対応】

この科目は長岡高専の教育目標の(D)と主体的に関わる.

この科目の到達目標と、成績評価上の重み付け、各到達目標と長岡高専の学習・教育到達目標と の関連を以下の表に示す。

科目の到達目標	評価の重み	学習・教育到達 目標との関連
① 実験操作のフローチャートを作成し、スムーズな実験を目指す。収率、純度の計算を理解する。	20%	(d3)
② 観察を通して、現象を化学反応式で表現する。実験方法、実験結果、 考察をレポートにまとめる。	20%	(d3)
③ 実験に使用する薬品・実験器具を理解し、溶液の調整法等を取得する。	20%	(d3)
④ 物性測定の基本的操作方法を理解する。	20%	(d3)
⑤ レポート作成法を習得する。	20%	(d4)

【C. 履修上の注意】

履予めフローチャートを作成し、使用する試薬の性質を調べておくこと。実験で扱う試薬や溶液 の化学量論関係について化学反応式に基づいて理解し、実験ノートに記載しておくこと。

【D. 評価方法】

次に示す項目・割合で達成目標に対する理解の程度を評価する. XX 点以上を合格とする.

- 定期試験(0%)【内訳:中間0,期末0】
- その他の試験(0%)
- レポート (100%)

● その他 (0%)

【E. 授業計画·内容】

● 前期

□	内容	備考
1	実験テキストの配布および説明、注意事項の確認	常に電卓を用意。
2	安全倫理と放射線教育	
3	測定値とその取扱いについて	
4	結晶模型による構造解析(1)	
5	結晶模型による構造解析(2)	
6	粉体粒子の充填	
7	実験器具配布	
8	亜鉛から硫酸亜鉛	
9	アルミニウムから水酸化アルミニウム	
10	ヨウ化カリウムの合成	
11	顔料の製造	
12	硫酸チタン溶液の呈色反応	
13	トリス(オキサラト)鉄(Ⅲ)酸カリウムの合成	
14	トリス(オキサラト)鉄(Ⅲ)酸カリウムの青写真への	
	応用	
15	器具返却、掃除	