科目名	電気回路 I	科目コード	31205
	Electric Circuits I	1400	31203

学科名・学年	電子制御工学科・3年		
担当教員	梅田 幹雄(電子制御工学科)		
区分・単位数	履修単位科目・必履修・2 単位		
開講時期·時間数	通年, 60 時間【内訳:講義 56, 演習 0, 実験 0, その他 4】		
教科書	柴田尚志, 電気回路 I, コロナ社		
補助教材	配布プリント		
公共 事	高橋寛, わかりやすい電気基礎, コロナ社		
参考書	早川義晴 他, 電気回路(1) 直流・交流回路編, コロナ社		

【A. 科目の概要と関連性】

電気回路は電磁界現象を電圧、電流の立場で学ぶ教科である。まず、直流回路の諸計算法を学ぶ。 次いで、電圧や電流が時間的に変化する交流回路において、抵抗・コイル・コンデンサの各素子に おける電圧・電流の関係をよく理解し、フェーザや複素数を用いて定常問題の解析方法を学ぶ。

○関連する科目:電気電子基礎(前年度履修), 電気回路 II A (次年度履修)

【B.「科目の到達目標」と「学習・教育到達目標」との対応】

この科目は長岡高専の教育目標の(D)と主体的に関わる.

この科目の到達目標と、各到達目標と長岡高専の学習・教育到達目標との関連を以下の表に示す.

科目の到達目標	評価の重み	学習・教育到達 目標との関連
①抵抗・コイル・コンデンサの作用を理解する	30%	(d1)
②フェーザ及び複素数を使った計算方法を理解する	30%	(d1)
③交流回路に関する諸定理を理解する	40%	(d1)

【C. 履修上の注意】

2年次に学習した電気電子基礎の内容を再度確認しておくこと、また、三角関数・複素数・微分・ 積分等を使うので、それらについても確認しておくこと、

【D. 評価方法】

次に示す項目・割合で達成目標に対する理解の程度を評価する. 50 点以上を合格とする.

- 定期試験(90%) 【内訳:前期中間20,前期末20,後期中間20,後期末30】
- その他の試験(0%)
- レポート (0%)
- その他(10%) 【内訳:練習問題や課題等】

【E. 授業計画・内容】

● 前期

回	内容	備考
1	ガイダンス,電気回路概説	
2	基本回路素子における電圧と電流の関係	
3	基本回路素子の直列・並列接続	
4	直流回路	
5	正弦波交流	
6	基本回路素子における正弦波交流電圧と電流の関係	
7	前期中間試験	試験時間:50分
8	試験解説・瞬時値を用いる直列並列回路の計算	
9	インピーダンスとアドミッタンス	
10	直列・並列回路	
11	フェーザを用いる計算	
12	複素数を用いる計算(1)	
13	複素数を用いる計算(2)	
14	交流回路の電力	
_	前期末試験	試験時間:50分
15	試験解説と発展授業	

● 後期

回	内容	備考
1	合成インピーダンス・合成アドミッタンス	
2	キルヒホッフの法則	
3	重ね合わせの理	
4	回路理論における諸定理(1)	
5	回路理論における諸定理(2)	
6	交流ブリッジ	
7	後期中間試験	試験時間:50分
8	試験解説・回路網方程式	
9	基本回路の周波数特性	
10	直列共振回路・並列共振回路(1)	
11	直列共振回路・並列共振回路(2)	
12	フェーザ軌跡	
13	相互誘導回路(1)	
14	相互誘導回路(2)	
	後期末試験	試験時間:50分
15	試験解説と発展授業	