科目名	ディジタル工学基礎	 科目コード	31120
	Fundamentals of Digital Engineering		

学科名・学年	電子制御工学科・2 年	
担当教員	佐藤拓史,上村健二(電子制御工学科)	
区分・単位数	履修単位科目・必履修・2 単位	
開講時期•時間数	通年, 60 時間【内訳:講義 40, 演習 12, 実験 0, その他 8】	
教科書	赤堀寛, 速水治夫, 基礎から学べる論理回路, 森北出版, 2005	
補助教材	適宜、プリントを配布	
参考書		

【A. 科目の概要と関連性】

いくつかの事象をもとに論理的な考察を行って結論を導くことを、我々は普通無意識に行っている。そのときには、前提条件をもとにして、広く通用する合理的な理論にしたがって結論を導こうとする。前提条件や論理を簡素で曖昧さのない方法で表すことができれば、コンピュータで自動化することができるだろう。こうしたコンピュータの内部では全ての情報が2種類の記号の組合せ(2値情報)として表現され、論理演算や算術演算などの処理が行われる。そのため、本講義ではディジタル技術の基礎となる論理回路について学び、シーケンス制御に応用していく。後期にはシーケンサを用いた実習を行い、理解を深める。

〇関連する科目:基礎情報処理(前年度履修), ディジタル論理回路(次年度履修)

【B.「科目の到達目標」と「学習・教育到達目標」との対応】

この科目は長岡高専の教育目標の(D)と主体的に関わる.

この科目の到達目標と、各到達目標と長岡高専の学習・教育到達目標との関連を以下の表に示す。

科目の到達目標	評価の重み	学習・教育到 達目標との 関連
① 値の表現方法について習得する	20%	(d1)
② 理演算について習得する	20%	(d1)
③ 準形について理解する	20%	(d1)
④ 合せ回路の設計法を理解する	20%	(d1)
⑤シーケンサの利用方法を習得する	20%	(d1), (e2)

【C. 履修上の注意】

本講義の内容は次年度以降の専門科目(ディジタル論理回路等)の基礎に位置付けられているので、十分な学習(復習)が必要である。https://www2.st.nagaoka-ct.ac.jp/~h-satoh/index.php?ディジタル工学基礎に本講義のサポートページを立ち上げてあるので参照のこと。

【D. 評価方法】

次に示す項目・割合で達成目標に対する理解の程度を評価する. 50 点以上を合格とする.

- 定期試験(70%)【内訳:前期中間17.5,前期末17.5,後期中間17.5,後期末17.5】
- 演習問題(25%)
- その他 (5%)

【E. 授業計画・内容】

● 前期

□	内容	備考
1	ガイダンス,論理回路概論,数値の表現 1	
2	数値の表現 2	
3	集合	
4	命題と命題関数,真理値表,基本的な論理演算	
5	論理ゲート,ブール代数(公理,定理)	
6	ブール代数の応用	
7	前期中間試験	試験時間:50分
8	試験解説と発展授業	
9	主加法標準形,主乗法標準形	
10	便利な論理ゲート,リード・マラー標準形 1	
11	リード・マラー標準形2,ベン図表,カルノ一図1	
12	カルノ一図2,論理式の簡単化	
13	ド・モルガンの定理 1	
14	ド・モルガンの定理 2 , 回路形式の変換	
_	前期末試験	試験時間:50分
15	試験解説と発展授業	

● 後期

回	内容	備考
1	シーケンサの利用方法 1	
2	シーケンサの利用方法 2	
3	シーケンサの利用方法3	
4	ラダ一図、コーディング	
5	簡単なシーケンサ回路 1	
6	簡単なシーケンサ回路2	
7	後期中間試験	試験時間:50 分
8	試験解説と発展授業	
9	組合せ論理回路	
10	組合せ回路の設計	
11	タイマー回路	
12	カウンタ回路	
13	課題演習 1	
14	課題演習 2	
_	後期末試験	試験時間:50 分
15	試験解説と発展授業	