科目名	遺伝子工学	科目コード	A2170
	Genetic Engineering		

学科名・学年	物質工学専攻・1年(プログラム3年)		
担当教員	赤澤 真一(物質工学科)		
区分・単位数	選択・2 単位		
開講時期·時間数	前期,30時間【内訳:講義30,演習0,実験0,その他0】		
教科書	Molecular Biology of the Cell 5th edition(細胞の分子生物学)を推奨.		
補助教材	プリント		
4.4	医歯薬系学生のためのビジュアル生化学・分子生物学、日本医事新報社、分子		
参考書	生物学イラストレイテッド、羊土社等.		

【A. 科目の概要と関連性】

分子生物学をすでに履修済みという観点で講義を行うが、基礎として重要であるので前半は分子生物学の復習を一気に行う。後半は遺伝子工学の基本や応用を例をあげながら解説する。範囲が多岐にわたるため、講義は基本的にパワーポイントで行いポイントを主に解説していく。従って、講義でポイントを押さえ、自学で詳細を理解するのを基本とする。本講義を学ぶことにより、分子生物学・遺伝子工学の基礎を理解する。

○関連する科目: 基礎生物工学(2年次履修),生物化学II(4年次履修),分子生物学(4年次履修)

【B.「科目の到達目標」と「学習・教育到達目標」との対応】

この科目は長岡高専の教育目標の(D)と主体的に関わる.

この科目の到達目標と、成績評価上の重み付け、各到達目標と長岡高専の学習・教育到達目標と の関連を以下の表に示す。

到達目標	評価の重み	学習·教育目
到连口 <u>惊</u>		標との関連
①分子生物学の基礎を理解する.	50%	(d1)
②遺伝子工学の基礎を身に付ける	50%	(d1)

【C. 履修上の注意】

生化学・分子生物学の基本を理解している前提での講義となるため、良く復習しておくこと、また小テストも適宜行う。Molecular Biology of the Cell 5th edition(細胞の分子生物学 第 5 版)を多用するので購入することを強くお勧めする。

【D. 評価方法】

次に示す項目・割合で達成目標に対する理解の程度を評価する。60点以上を合格とする。

- 定期試験(75%)【内訳:前期中間35%,前期末40%】
- その他の試験(10%)
- プレゼン (15%)
- その他(0%)

【E. 授業計画・内容】

● 前期

	内容	課題
1	分子生物学の骨格とその構成要素	課題レポート
2	DNA の複製・修復・組換え-1-	課題レポート
3	DNA の複製・修復・組換え-2-	課題レポート
4	ゲノム情報の読み取り DNA からタンパク質へ-1-	課題レポート
5	ゲノム情報の読み取り DNA からタンパク質へ-2-	課題レポート
6	遺伝子発現の調節-1-	課題レポート
7	遺伝子発現の調節-2-	課題レポート
8	遺伝子発現の調節-3-	課題レポート
9	前期中間試験	試験時間:80分
10	タンパク質・DNA・RNA の操作	課題レポート
11	TA クローニング,RT-PCR 等 PCR 技術,オリゴキャッピング法等 cDNA クローニング技術	プレゼン発表
12	サザン・ノーザン・ウェスタンブロッティング法の原理と用途、クローニングベクター・発現ベクター等の詳細	プレゼン発表
13	遺伝子導入法	プレゼン発表
14	バイオテクノロジー概論-細胞融合, クローン動物, ES・iPS 細胞, バイオリファイナリー, ゲノム機能科学等-	課題レポート
_	前期末試験	試験時間:80分
15	試験解説と発展授業	