	シミュレーション工学	科目コード	A0220
	Numerical Simulation		

学科名・学年	各専攻共通・1 年(プログラム 3 年)	
担当教員	山岸 真幸 (機械工学科), 外川 一仁 (電子制御工学科)	
区分・単位数	必修・2単位	
開講時期·時間数	前期, 30 時間【内訳:講義 15, 演習 15, 実験 0, その他 0】	
教科書	配布テキスト	
補助教材	参考 Web ページを適時に紹介	
参考書		

【A. 科目の概要と関連性】

工学的な問題に対してコンピュータシミュレーションを行い、現象の観察と考察を行う. 具体的には、Excel による微分方程式解法プログラム作成、シミュレーションツール(Simulink)によるプログラム作成を題材に講義をする. これらのソフトを使いこなして、新たな課題を解けるようになることがねらい.

○ 関連する科目:数値解析法(M 前年度履修),制御工学 A (Ec 前々年度履修),化学システム制御(Mb 前年度履修),情報処理(Ci 前年度履修),土木解析学(Ci 次年度履修)

【B.「科目の到達目標」と「学習・教育到達目標」との対応】

この科目は長岡高専の教育目標の(C)と主体的に関わる.

この科目の到達目標と、成績評価上の重み付け、各到達目標と長岡高専の学習・教育到達目標と の関連を以下の表に示す。

科目の到達目標	評価の重み	学習・教育到達 目標との関連
①現象の支配方程式の離散化と境界条件について理解し、差分近似によ		(C1), (D2)
る解法を演習を解くことで習得する.	40%	(01), (D2)
②ヴィジュアル設計ツール Simulink を使用し実習課題をシミュレート		(C1) (D2)
するプログラムを作成する.	40%	(C1), (D2)
③データの可視化についていくつかの方法を理解・修得する.	20%	(C1), (D2)

【C. 履修上の注意】

色々な工学的な現象をシミュレーションにより確認することの有用性を理解し、興味を持つように努力してほしい。自らインターネット、書籍等によりどのような現象のシミュレーションが行われているかを調査してみるのも良い。この科目に関係ある新聞テレビなどの情報に関心を持つこと。

【D. 評価方法】

次に示す項目・割合で達成目標に対する理解の程度を評価する. 60 点以上を合格とする.

- 定期試験(20%)
- レポート (80%)

【E. 授業計画・内容】

● 前期

□	内容	課題
1	講義ガイダンス、シミュレーションの基礎	
2	EXCEL によるシミュレーションの基礎(1)	物理問題/数学モデルの課題
3	EXCEL によるシミュレーションの基礎(2)	ポテンシャル流の課題
4	定常伝熱問題	伝熱現象の課題
5	2次元非定常伝熱問題	伝熱現象の課題
6	非定常問題(1)	離散渦法の課題
7	非定常問題(2)	解析結果のアニメーション化
8	Simulink によるシミュレーションの概略	シミュレーション例の調査
9	Simulink を使った幾つかのシミュレーション作成(1)	微分方程式の数値解法
10	Simulink を使った幾つかのシミュレーション作成(2)	Simulink 操作に関する報告書
11	空気抵抗を受けるボール自由落下	課題プログラムの作成
12	投げ上げ放物運動における xy 軌跡の描画	課題プログラムの作成
13	バンジージャンプのモデリング	課題プログラムの作成
14	人工ダイナミクス、プログラムのディバック	課題レポートの作成
_	前期末試験	試験時間:80分
15	試験解説と発展授業	