科目名	ものづくり技術実習Ⅱ	科目コード	21020
	Training of Manufacturing II		

学科名・学年	電気電子システム工学科・2年		
担当教員	電気教員全員(電気電子システム工学科)		
単位数・区分	3単位・必修		
開講時期·時間数	通年,90時間【内訳:講義0,演習0,実験90,その他0】		
教科書	実験テキストを配布する.		
補助教材			
参考書			

【A. 科目の概要と関連性】

電気電子工学を学ぶための総合的ガイダンスを行い、それを通して電気電子工学についての理解を深めるとともに、高専での学習の目標と方法などを把握する。また各テーマにおいて、工学の原点である「ものづくり」を体験することにより、実際の電気電子工学応用製品の「もの」や「しくみ」に触れる。特に、電子工作では教材を組み立てるばかりでなくそこに創意工夫を凝らすことにより、自主性、企画性、デザイン能力、柔軟で総合的な判断能力を養う。また、電子工作の成果報告会を開催し、プレゼンテーション技術を身につけるとともにコミュニケーション能力を養う。

【B. 到達目標と学習・教育到達目標との対応】

この科目の到達目標を以下の表に示す.

到達目標	評価の重み	学習・教育目 標との関連
①電気電子工学について理解する.		(d3)
②実際の応用製品の「もの」や「しくみ」を理解する.		(d3)
③自主性、企画性、デザイン能力、判断能力を修得する.		(d3)
④発表能力、コミュニケーション能力などを修得する.		(d3)

【C. 履修上の注意】

自分の身の回りで電気電子工学がどのように応用されているか注意深く観察すること. また, 電気電子工学に関するさまざまなトピックについて広く読書すること.

【D. 評価方法】

実験テーマごとに提出されたレポートに対して、実験に取り組む姿勢や態度および理解度で評価する(100%). 最終的には、これらの評価を基に学科内会議で評点を決定し、50 点以上で合格とする. なお実験実習であることから全てのテーマに対して出席は必須とし、遅刻、無断欠席、ならびにレポート提出の期限遅れに対しては、評価点を大幅に減点することとする.

【E. 授業計画·内容】

● 前期

週	内容	備考
1	電気基礎実験	2週間で1 テーマの班別実験
2	電気基礎実験	
3	電気量の測定	
4	電気量の測定	
5	オシロスコープの使い方と活用	
6	オシロスコープの使い方と活用	
7	発光ダイオードを用いた光通信	3週間で1 テーマの班別実験
8	発光ダイオードを用いた光通信	
9	発光ダイオードを用いた光通信	
10	LED調光回路	
11	LED調光回路	
12	LED調光回路	
13	マルチバイブレータ	
14	マルチバイブレータ	
15	マルチバイブレータ	

● 後期

週	内容	備考
1	組込み制御技術の基礎	
2	組込み制御技術の基礎	
3	組込み制御技術の基礎	
4	交流電圧・交流電流をつくる	
5	交流電圧・交流電流をつくる	
6	交流電圧・交流電流をつくる	
7	ゲルマニウムラジオの製作	
8	ゲルマニウムラジオの製作	
9	ゲルマニウムラジオの製作	
10	自由課題	
11	自由課題	
12	自由課題	
13	自由課題に関する発表準備	
14	自由課題発表会	
15	まとめ	