論文

村上羽黒神社の紛失算額

涌田 和芳 1・外川 一仁 2

1 一般教育科－数学 （Liberal Arts-Mathematics, Nagaoka National College of Technology）
2 電子制御工学科 （Department of Electronic Control Engineering, Nagaoka National College of Technology）

THE SANGAKU LOST FROM THE HAGURO SHRINE IN MURAKAMI

Kazuyoshi WAKUTA 1 and Kazuhito TOGAWA 2

Abstract

A mathematical tablet called sangaku was dedicated to the Haguro Jinjya—the Shinto shrine in Murakami in 1791. Although the sangaku was lost, fortunately it was recorded in a book “Shinpeki Sanpou”—the collection of sangaku problems. The sangaku is a historical work that shows the wasan—the traditional Japanese mathematics in the Edo period of Japan. Then, we try to restore the sangaku through the drawing by computer. Also, we present the solution in the Edo period to the sangaku problem.

Key Words : wasan, sangaku, restoration by computer, solution

1. はじめに

江戸時代の数学—和算の独特な風習である算額の奉揚が始まってから、100年以上経った寛政元（1789年）年に、『神壁算法』が刊行された。これは、和算家藤田貞貞・嘉言父子が、主に門人たちが神社仏閣に掲げた算額について集録したものである。寛政8（1796年）年には集録数を増やし『増刻神壁算法』が刊行された。更に、文化4（1807年）年には『続神壁算法』が刊行された。

寛政8年の『増刻神壁算法』の中に、「所懸于越後州村上羽黒山者一事」とあり、村上羽黒町の羽黒神社に奉揚された算額が掲載されている。羽黒神社は、江戸時代には羽黒山大権現として呼ばれていた。算額の奉揚者は、村上藩の和算家丸山因平良玄の門人の中見喜作正直であり、寛政3（1791年）年に掲げたものである。残念ながら、この算額は現在失われてしまった。算額は当時の和算の様子を知ることができる貴重な資料であるので、その復元を試み、『増刻神壁算法』に記載された算額の説明文と図から、コンピュータを用いて算額の復元図を作成した。算額の問いは、容術という図形の問題1題のみであるが、この算額の問題については、新庄藩の和算家松永直英（？〜1850年）の著した『神壁算法解』や、また、名古屋藩の和算家吉田為幸（1819年〜1892年）の著した『神壁算法解』などに、和算家の解法が残されている。本稿では、松永直英の解法を紹介する。

この算額は、最上流の創始者会友安明の著した『越後国諸堂社諸流奉額集』にも掲載されている。和算の2大流派である関流と最上流の間に論争のあることが知られている。この算額もその論争に巻き込まれ、上掲书において、会田は、実際に解けたかどうか怪しいと付記で述べている。

深川英俊・ダン・ソクロフスキー著『日本の数学—何題解けますか？（上）』にも、この算額と吉田為幸の解が紹介されている。また、この算額の問題からは、大変美しい結果が導かれる。本稿では、松永直英の解法を紹介するが、その計算には敬服する。

和算については、明治以後、科学史の立場から研究が行われ、その成果は海外にも紹介され反響を呼
2. 算額復元図

3. 額文の解説

3. 1 額文の書下し文

額文の書下し文を一案として書き、その現代語訳を示す。和算の用語については説明をしないが、現代語訳と比較すれば、その意味が分かる。

今、図の如く円の内に斜線を隔て四円を容する有り、その中の鱗(か)にまた円を容る。すなわち、四円に切す。南円径二寸、東円径三寸、西円径四寸、北円径幾何かと問ふ。

答に曰く、北円径一十二寸。

3. 2 現代語訳

図のようや、円の中に斜線を隔て四円がある。その中の「ひび」にまた円があり、4 円に接している。南円の直径を 2 寸、東円の直径を 3 寸、西円の直径を 4 寸とする。北円の直径はいくらか。

答、北円の直径は 12 寸である。

解、東円の直径に西円の直径を乗じたものを極と
いい。これを南円の直径で割り、東西円の直径の和
より引く。その余りで極を割り、北円の直径を得る。
答は題意に合う。

3. 3 奥付について
算額奉諸者である鶴見喜作正直については、村上
人の人である以上のかたは分かっていない。その師の
丸山因平良玄（1757年〜1816年）は、村上藩士であり、
関流の著名な和算家藤田貞貞の高弟であった**。

4. 術の解説

享和3（1803年）年に、新庄藩の和算家松永直英（？
〜1850年）により著された『神壁算法解』の本が
残されており、そこに示されている解法を紹介する。
ただし、後半の内円に関する部分は、原文では結果
のみしか書かれていないが、補った。表記は現代数
学に従う。

\[
\frac{x}{2} = OE, \quad \frac{s}{2} = PE \\
\frac{t_1}{2} = PE_1, \quad \frac{t_2}{2} = PE_2 \\
\frac{t_3}{2} = PE_3, \quad \frac{t_4}{2} = PE_4
\]

と置く。
最初に， \(\Delta PO_1E_1 \sim \Delta PO_3E_3 \) より **

\[
\eta_1 : t_1 = r_3 : t_3 \quad \text{したがって} \quad \eta_3 = r_3 t_1 \tag{1}
\]

同様に， \(\Delta PO_2E_2 \sim \Delta PO_4E_4 \) より

\[
r_2 : t_2 = r_4 : t_4 \quad \text{したがって} \quad r_2 t_4 = r_4 t_2 \tag{2}
\]

また， \(\Delta PO_1E_1 \sim \Delta O_2PE_2 \) より

\[
\eta_1 : t_1 = r_2 : t_2 \quad \text{したがって} \quad \eta_2 = r_1 t_2 \tag{3}
\]

同様に， \(\Delta PO_3E_3 \sim \Delta O_4PE_4 \) より

\[
\eta_1 : t_1 = r_4 : t_4 \quad \text{したがって} \quad \eta_4 = r_1 t_4 \tag{4}
\]

次に， \(\Delta O_2F_2 \) に三平方の定理を適用して **

\[
(\eta_1 - x)^2 + (t_1 - s)^2 = (r - \eta_1)^2
\]

したがって

\[
x^2 - 2rt_1 + (s^2 - 2st_1 + t_1^2 - r^2 + 2\eta_1 r) = 0 \tag{5}
\]

同様に， \(\Delta O_2F_2 \) について

\[
r : \text{円 } O \text{ の直径}, \quad \eta : \text{円 } O_1 \text{ の直径}
\]

\[
r_2 : \text{円 } O_2 \text{ の直径}, \quad r_3 : \text{円 } O_3 \text{ の直径}
\]

\[
r_4 : \text{円 } O_4 \text{ の直径}
\]
(r_2 + x)^2 + (t_2 - s)^2 = (r - r_2)^2

したがって

\[x^2 + 2r_2x + (s^2 - 2st_2 + t_2^2 - r^2 + 2r_2r) = 0 \] (6)

\[r_1 x^2 + \eta s^2 + r_1^2\eta - r^2 + \frac{4\eta^2 r}{\eta + r_1} = 0 \] (9)

同様に，ΔOO_rF_1について

(\eta + r_3)^2 + (t_3 - s)^2 = (r - r_3)^2

したがって

\[x^2 + 2r_3x + (s^2 + 2st_3 + t_3^2 - r^2 + 2r_3r) = 0 \] (8)

以上のことから，(5)にr_3，(7)にηを置き換えて加えると

\[(\eta + r_3) x^2 + (\eta + r_3) s^2 + 2s (\eta r_3 - r_3 t_3) + (\eta t_3^2 + r_3^2) - (r + r_3) r^2 + 4\eta r_3 r = 0 \]

ここで，(1)より

\[r_1 \eta - r_1 t_3 = 0 \]

\[r_1^2 + r_3^2 = \frac{r_1^2 t_3^2}{\eta} + r_3^2 \]

\[= r_3^2 \cdot \frac{\eta + r_3}{\eta} \]

これらで上式を置き換えて，η + r_3で割りηを掛けると

\[\text{これを第1式と名づける。} \]

また，(8)にr_3，(9)にr_2を置き換えて加えると

\[(r_2 + r_4) x^2 + (r_2 + r_4) s^2 + 2s (r_2 t_4 - r_2 t_4) + (r_2 t_4^2 + r_2^2) - (r_2 + r_4) r^2 + 4r_2 r_4 r = 0 \]

ここでは，(2)および(3)，(4)より

\[r_2^2 - r_2 t_2 = 0 \]

\[r_2^2 + r_2 t_2^2 = r_2 \cdot \frac{r_2^2}{t_2} + r_4 \cdot \frac{r_4^2}{t_2} = \frac{\eta^2 r_2 r_4}{t_2} (r_2 + r_4) \]

これらで上式を置き換えて，r_2 + r_4で割りt_2を掛けると

\[t_2^2 x^2 + t_2^2 s^2 + r_2^2 r_4 r - t_2^2 r^2 + \frac{4r_2 r_4 t_2^2}{r_2 + r_4} = 0 \] (10)

これを第2式と名づける。

第1式にt_1^2，第2式にηを置き換えて第2式より第1式を引くと

\[t_1^2 x^2 + t_1^2 s^2 + r_2^2 r_4 r - t_1^2 r^2 + \frac{4r_2 r_4 t_1^2}{r_2 + r_4} = 0 \] (11)

これをΔ式と名づける。

次に，図-3において，内円の中心をO'，その直
径をr'とし、図-2と同様に各垂線を定義する。そして

\[\frac{x}{2} = O'E, \quad \frac{s}{2} = PE \]

と置く。

図-3

$\Delta O'O_3F_1$に三平方の定理を適用して

\[(r_l - x)^2 + (t_1 - s)^2 = (r_l + r_l)^2 \]

したがって

\[x^2 - 2r_l x + [s^2 - 2st_1 + t_1^2 - (r')^2 - 2r_l r'] = 0 \quad (12) \]

同様に、$\Delta O'O_4F_4$について

\[(r_4 - x)^2 + (t_4 + s)^2 = (r_4 + r_4)^2 \]

したがって

\[x^2 - 2r_4 x + [s^2 + 2st_4 + t_4^2 - (r')^2 - 2r_4 r'] = 0 \quad (15) \]

第1式と同様に、(12), (14)より

\[r_l x^2 + r_l s^2 + r_l t_1^2 - r_l (r')^2 - \frac{4r_l^2 r_l (r')}{r_l + r_l} = 0 \quad (16) \]

これを第3式と名づける。

また、第2式と同様に、(13), (15)より

\[t_1^2 x^2 + t_1^2 s^2 + t_1^2 r_2 r_4 - t_1^2 (r')^2 - \frac{4r_2 r_4 r_2 r_4}{r_2 + r_4} = 0 \quad (17) \]

これを第4式と名づける。

A式と同様に、第3式と第4式より

\[-r_3 t_1^4 - \left(\frac{4r_2 r_4 r_2 r_4}{r_2 + r_4} - \frac{4r_2^2 r_4^2 r_4}{r_2 + r_3} \right) t_1^2 + r_3^3 r_2 r_4 = 0 \quad (18) \]

これをB式と名づける。

最後に、A式よりB式を引きと

- 23 -
\[
\left(\frac{4n^2r_2(r+r')}{r_2 + r_4} - \frac{4n^2r_3(r+r')}{r_3 + r_4}\right) n_1^2 = 0
\]
(19)

したがって

\[
(n_1 + r_3)r_2r_4 - (r_2 + r_4)n_1r_3 = 0
\]
(20)

故に

\[
n_1 = \frac{r_2r_4}{(r_2 + r_4) - \frac{r_3r_4}{r_3}}
\]
(21)

これが、術で述べてある式である。\(r_2 = 4 \), \(r_3 = 2 \), \(r_4 = 3 \)を代入して、\(n_1 = 12 \)を得る。

(補足)
(20)式より

\[
\frac{1}{n_1} + \frac{1}{r_3} = \frac{1}{r_2} + \frac{1}{r_4}
\]
(22)

という美しい結果が得られる。

注
*1 相似正数を用いて説明したが、和算では、一般に、相似という概念は表に出さず、直接、(2)のような比例関係を述べる（以下同様である）。
*2 三平方の定理を、勾股弦の理としてよく知られていた。

参考文献
1) 藤田貞寛：増刻神壁算法，寛政 8(1796)年，東北大学和算資料データベース蔵。
2) 藤田貞寛：続神壁算法，文化 4(1807)年，東北大学和算資料データベース蔵。
3) 松永直美：神壁算法解，享和 3(1803)年，東北大学和算資料データベース蔵。
4) 吉田為幸：神壁算法解（成立年不詳），日本学士院蔵。
5) 会田安明：越後国諸堂社諸流奉願集（成立年不詳），山形大学附属図書館蔵（佐久間文庫）。
6) 平山譲：和算の歴史－その本質と発展，ちくま文庫，2007年。
7) 深川英俊，ダン・ソコロフスキー：日本の数学－何