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Chapter 1

Introduction

The Gärtner-Ellis theorem is a useful theorem for the proof of the large deviation

principle. To employ the Gärtner-Ellis theorem, we need to prove the existence

and the differentiability of logarithmic moment generating functions. For the exis-

tence of the logarithmic moment generating function of an additive functional with

bounded variation, it is enough to show the Lp-independence of growth bounds of

the associated Feynman-Kac semigroup. We thus consider the Lp-independence of

growth bounds of Feynman-Kac semigroups. Our main objective is to extend re-

sults in [39], [42] and [45] to more general Feynman-Kac semigroups by applying the

Donsker-Varadhan type large deviation theorem.

Let X be a locally compact separable metric space and m a positive Radon

measure on X with full support. Let M = (Xt,Px) be a conservative m-symmetric

Hunt process on X and make some assumptions on M (Assumptions (I)–(IV) in

Section 2.1). We denote by (N(x, dy), Ht) the Lévy system of M (see (2.3) below).

Let µ be a signed smooth Radon measure on X in the class K∞ (Definition 2.1) and

F a symmetric function on X × X in the class J∞ (Definition 2.2). We define an

additive functional At(µ+ F ) by

At(µ+ F ) = At(µ) + At(F ) = At(µ) +
∑

0<s≤t

F (Xs−, Xs).

Here, At(µ) is the continuous additive functional with the Revuz correspondence to

µ (see (2.2) below). The second term At(F ) is the pure-jump additive functional

which varies when the Hunt process Xt jumps on the support of F . The additive

functional At(µ+F ) is quite general. In fact, it is known from a result due to Motoo

that if an additive functional is purely discontinuous and quasi-left-continuous, then
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it is of form At(F ) (Watanabe [47]). We formally define a Schrödinger type operator

by

Hµ+Ff = Lf + µf + µHFf, µHFf =

(∫
X

(
eF (x,y) − 1

)
f(y)N(x, dy)

)
µH(dx),

where L is the generator of M and µH is the measure in the Revuz correspondence

to the positive continuous additive functional Ht. We see that the semigroup pµ+F
t

generated by Hµ+F , pµ+F
t = exp(tHµ+F ), is expressed by the generalized Feynman-

Kac semigroup,

pµ+F
t f(x) = Ex [exp(At(µ+ F ))f(Xt)] .

We define the Lp-growth bound of {pµ+F
t }t>0 by

λp(µ+ F ) = − lim
t→∞

1

t
log ‖pµ+F

t ‖p,p 1 ≤ p ≤ ∞,

where ‖·‖p,p is the operator norm from Lp(X;m) to Lp(X;m). The Lp-independence

is defined by

λp(µ+ F ) = λ2(µ+ F ), 1 ≤ ∀p ≤ ∞.

Now we can state the main theorem in this thesis as follows:

Theorem 1.1. Suppose that a Hunt process M satisfies Assumptions (I)–(IV) and

that for a measure µ and a function F belong to the class K∞ and the class J∞

respectively. Then, λp(µ+ F ) is independent of p if and only if λ2(µ+ F ) ≤ 0.

Theorem 1.1 says that the Lp-independence is completely determined by the

L2-growth bound.

Takeda [39] proved this theorem for Feynman-Kac semigroups with local poten-

tial At(µ). We in [42] extended it to non-local Schrödinger operators whose principal

part is the fractional Laplacian, (1/2)(−∆)α/2, and we in [45] further extended it

to more general operators whose principal parts are generators of symmetric Hunt

processes. In those papers, the transience of M was assumed; however, in this thesis,

we deal with recurrent Hunt processes as well as transient ones.

Simon [33] first proved the Lp-independence for classical Schrödinger operators

(1/2)∆−V on Rd. Sturm [35, 36] extended it to Schrödinger operators on Rieman-

nian manifolds. For the proof of the Lp-independence, they used the heat kernel
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estimates of Schrödinger operators. Our method in this thesis is completely differ-

ent from their methods in [33], [35] and [36]. The approach in this thesis is similar

to that in [39], [42] and [45]; we will use arguments in Donsker-Varadhan’s large de-

viation theory. Donsker and Varadhan [16, 18] proved the large deviation principle

for the occupation time. Kim [26] extended the lower bound estimate to symmetric

Markov processes with Feynman-Kac functionals exp(At(µ + F )) (Theorem 3.10).

However, he proved the upper bound estimate only for each compact set of the

space of probability measures. Hence we apply his theorem to an extended Markov

process. More precisely, we consider the Markov process on the one-point compact-

ification X∞ by making the adjoined point ∞ a trap, and use Kim’s upper bound

estimate for this extended Markov process. As a result, the rate function, say Īµ+F ,

is different from the original one. Indeed, Īµ+F is a function on the space of proba-

bility measures on X∞ not on X. For the proof of the main theorem, it is necessary

to prove that the infimum of the extended I-function is equal to the infimum of

the original one. To this end, we show that Īµ+F (δ∞) = 0, that is, the contribu-

tion of adjoined point ∞ is null. For the proof of this fact, some properties of the

Feynman-Kac semigroup {pµ+F
t }t>0 are necessary. In particular, the invariance of

Cu(X), pµ+F
t (Cu(X)) ⊂ Cu(X), is crucial, where Cu(X) is the space of uniformly

continuous bounded functions on X such that limx→∞ f(x) exists. In addition, we

use the fact that the Feynman-Kac semigroup {pµ+F
t }t>0 possesses the doubly Feller

property , that is, the strong Feller property, pµ+F
t (Bb(X)) ⊂ Cb(X), and the in-

variance of C∞, pµ+F
t (C∞(X)) ⊂ C∞(X). Here C∞(X) is the space of continuous

functions on X vanishing at infinity. Chung in [13] introduced the notion of the

doubly Feller property and proved the stability of this property under transforms by

multiplicative functionals. Applying his result, we show the doubly Feller property

of {pµ+F
t }t>0. For the proof of the invariance of Cu(X), we find several properties

equivalent to the invariance of C∞(X) (Proposition 2.1). It should be emphasized

that Proposition 2.1 is an extension of a relevant results due to Azencott [4], where

he treated diffusion processes. Moreover, the method for showing the properties of

Feynman-Kac semigroups is more general than that in [42]. Indeed, we in [42] used

the heat kernel estimate for the symmetric Lévy processes on Rd, due to Bass and

Levin [6]; if the Lévy measure of symmetric Lévy process process is equivalent to
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that of the symmetric α-stable process, then the Lévy process has a continuous heat

kernel equivalent to the heat kernel of the symmetric α-stable process. This method

is not applicable for general Hunt processes treated in this thesis because we do not

know the heat kernel estimates of them.

In order to illustrate the power of our main theorem, we will consider, in Chapter

5, some examples of symmetric Markov processes: one-dimensional diffusion proc-

esses, time changed diffusion processes, symmetric α-stable processes, Brownian

motions on hyperbolic spaces and “α-stable processes” on hyperbolic spaces.

For one-dimensional diffusion processes on an interval of R, Takeda [41] proved

that if no boundaries of the interval are natural, then the Lp-independence of λp(µ)

holds and that if one of the boundaries of the interval is natural, then λp(µ) is

independent of p if and only if λ2(µ) ≤ 0. In addition, Ogura, Tomisaki and Kaneko

[25] obtained a necessary and sufficient condition for λ2(0) > 0. Combining these

results, we have a necessary and sufficient condition for the Lp-independence in

terms of speed measures and scale functions. We next consider the diffusion process

with the generator (1/2)|x|α∆. This process is also probabilistically constructed by

time change transform. Employing the result for one-dimensional diffusion processes

above, we show that the Lp-independence of this process holds if and only if α 6= 2.

For the α-stable process on Rd, we proved that for any µ ∈ K∞ and any F ∈ J∞,

the Feynman-Kac semigroup {pµ+F
t }t>0 has Lp-independent growth bounds.

Let ∆ be the Laplace-Beltrami operator on the hyperbolic space. It is well-

known that the spectral bounds of Laplace-Beltrami operator on the hyperbolic

space is equal to (d− 1)2/8 (e.g. Davies [14]). Thus the growth bounds of the

Brownian semigroup is Lp-dependent if d ≥ 2. However, applying Lemma C.4, we

construct a positive measure µ ∈ K∞ such that the growth bounds of (1/2)∆ − µ

is Lp-independent. Owing to results in McGillivray [29] and Ôkura [30], we can

prove that Assumptions (I)–(IV) are preserved under a certain subordination. In

particular, the main theorem is applicable for the α-stable process generated by

the fractional Laplace-Beltrami operator (1/2)(−∆)α/2, because it is constructed by

the subordination of the Brownian motion. The L2-spectral bound of the α-stable

process is equal to (d− 1)α/21+α by the spectral theorem, and consequently the

Lp-independence does not hold. Nonetheless, we can construct a non-local potential
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F ∈ J∞ such that λ2(F ) ≤ 0 (Lemma 5.7 and Lemma 5.8). We thus conclude that

the growth bounds of −(1/2)(−∆)α/2 − µV F is Lp-independent, where µV is the

Riemannian volume.

As mentioned above the Lp-independence implies the existence of logarithmic

moment generating functions of additive functionals. For symmetric α-stable proc-

esses, the differentiability of moment generating function was proved in [44]. Com-

bining this result with the main theorem, we can derive the large deviation prin-

ciple of discontinuous additive functionals. In Appendix A, we make a comment

on this topic. We will in Appendix B give an application of the identification be-

tween I-functions and Schrödinger forms; we prove the existence of ground state

and establish the full large deviation principle for normalized symmetric Markov

processes. Theorem B.6 concerns large deviations from not invariant measures but

ground states of Schrödinger operators. In Appendix C, we make comments on time

change transform which are used to make some examples in Section 5.4.

We close the introduction with some words on notation. For a topological space

X, we use B(X) to denote the set of all Borel sets (or functions) on X. If C ⊂ B(X),

then Cb (resp. C+ ) denotes the set of bounded (resp. non-negative) functions in C.

For a set A ⊂ X, we denote by 1A the indicator function of A, by Ac the complement

of A and by Ao the interior of A. For functions f and g, notation “f ∼ g” means

that there exist constants c2 > c1 > 0 such that c1g ≤ f ≤ c2g. We use c, C, ..., etc

as positive constants which may be different at different occurrences.
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Chapter 2

Preliminaries and Notations

In this chapter, we first review the general theory of Dirichlet forms, symmetric

Hunt processes and Feynman-Kac semigroups.

2.1 Dirichlet Forms and Symmetric Hunt Proc-

esses

Let X be a locally compact separable metric space and X∞ the one-point compacti-

fication of X with adjoined point ∞. Let m be a positive Radon measure on X with

full support. Let M = (Ω,M,Mt, θt, Xt,Px, ζ) be an m-symmetric, Hunt process

on X. Here, {Mt} is the minimal (augmented) admissible filtration, θt, t ≥ 0 is the

shift operator satisfying Xs(θt) = Xs+t identically for s, t ≥ 0 and ζ is the lifetime

of M, ζ = inf{t > 0 : Xt = ∞}. Let us denote by {pt}t>0 the semigroup of M,

ptf(x) = Ex[f(Xt)].

Assumption 1. We impose the following conditions on the semigroup {pt}t>0 of

the Hunt process M:

(I) (Irreducibility) If a Borel set A is pt-invariant, that is, for any f ∈ L2(X;m)∩
Bb(X) and any t > 0, pt(1Af)(x) = 1A(x)ptf(x) m-a.e. x, then A satisfies

either m(A) = 0 or m(X \ A) = 0.

(II) (Conservativeness) pt1 = 1.

(III) (Strong Feller Property) pt(Bb(X)) ⊂ Cb(X).
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(IV) (Invariance of C∞(X)) pt(C∞(X)) ⊂ C∞(X). Here, C∞(X) is the space of

continuous functions on X vanishing at the infinity.

Remark 2.1. We see from Assumption (III) that the semigroup {pt}t>0 admits an

integral kernel {p(t, x, y)}t>0 with respect to the measure m.

Let {Gβ}β>0 be the resolvent kernel defined by

Gβ(x, y) =

∫ ∞

0

e−βtp(t, x, y)dt, β > 0.

If the Hunt process M is transient, then G0(x, y) <∞ x 6= y. In this case, we simply

write G(x, y) for G0(x, y) and call it the Green function.

By the right continuity of sample paths of M, {pt}t>0 can be extended to an

L2(X;m)-strongly continuous contraction semigroup, {Tt}t>0 ([20, Lemma 1.4.3]).

Then the Dirichlet form (E ,F) on L2(X;m) generated by M is defined by
F =

{
u ∈ L2(X;m) : lim

t→0

1

t
(u− Ttu, u)m <∞

}
,

E(u, v) = lim
t→0

1

t
(u− Ttu, v)m, u, v ∈ F ,

(2.1)

where (u, v)m =
∫

X
u(x)v(x)m(dx) is the inner product on L2(X;m). The Dirichlet

form (E ,F) is said to be regular if there exists a set C ⊂ F ∩ C0(X) such that C
is dense in F with respect to E1-norm and dense in C0(X) with respect to uniform

norm. Here, C0(X) is the space of continuous functions on X with compact support

and E1(u, u) = E(u, u) + (u, u)m.

We define the (1-)capacity Cap associated with the Dirichlet form (E ,F) as

follows: for an open set O ⊂ X,

Cap(O) = inf{E1(u, u) : u ∈ F , u ≥ 1, m-a.e. on O}

and for a Borel set A ⊂ X,

Cap(A) = inf{Cap(O) : O is open, O ⊃ A}.

Let A be a subset of X. A statement depending on x ∈ A is said to hold q.e. on

A if there exists a set N ⊂ A of zero capacity such that the statement is true for

every x ∈ A \ N . “q.e.” is an abbreviation of “quasi-everywhere”. A real valued
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function u defined q.e. on X is said to be quasi continuous if for any ε > 0 there

exists an open set G ⊂ X such that Cap(G) < ε and u|X\G is finite and continuous.

Here, u|X\G denotes the restriction of u to X \G. It follows from Assumption (IV)

that (E ,F) is regular (Barlow, Bass, Kumagai and Teplyaev [5, Lemma 2.8]). Thus

each function u in F admits a quasi-continuous version ũ, that is, u = ũ m-a.e.

In the sequel, we always assume that every function u ∈ F is represented by its

quasi-continuous version.

We call a Borel measure µ on X smooth if it satisfies the following conditions:

(i) Cap(A) = 0 implies µ(A) = 0 for all A ∈ B(X).

(ii) there exists an increasing sequence {Fn} of closed sets such that µ(Fn) < ∞
for all n and limn→∞ Cap(K \ Fn) = 0 for any compact set K.

Let us call a family of extended real valued function {At}t≥0 on Ω an additive

functional (AF in abbreviation) if the following conditions hold:

(i) At(·) is Mt-measurable for all t ≥ 0,

(ii) there exists a set Λ ∈ M∞ = σ (∪t≥0Mt) such that Px(Λ) = 1, for all x ∈ X,

θtΛ ⊂ Λ for all t > 0, and for each ω ∈ Λ, A·(ω) is a function satisfying:

A0 = 0, At(ω) < ∞ for t < ζ(ω), At(ω) = Aζ(ω) for t ≥ 0, and At+s(ω) =

At(ω) + As(θtω) for s, t ≥ 0.

If an AF {At}t≥0 is positive and continuous with respect to t for each ω ∈ Λ, the

AF is called a positive continuous additive functional (PCAF in abbreviation).

By [20, Theorem 5.1.4], there exists a one-to-one correspondence between smooth

measures and PCAFs as follows: for each smooth measure µ, there exists a unique

PCAF {At}t≥0 such that for any f ∈ B+(X) and γ-excessive function h (γ ≥ 0),

that is, e−γtpth ≤ h,

lim
t→0

1

t
Eh·m

[∫ t

0

f(Xs)dAs

]
=

∫
X

f(x)h(x)µ(dx). (2.2)

Here, Eh·m[f(Xt)] =
∫

X
Ex[f(Xt)]h(x)m(dx). The equation (2.2) is called the Revuz

correspondence. We denote by At(µ) the PCAF of the smooth measure µ. For a

signed smooth measure µ = µ+ − µ−, we define At(µ) = At(µ
+) − At(µ

−).
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Let N be a kernel on (X∞,B(X∞)) such that N(x, {x}) = 0 for any x ∈ X

and Ht a PCAF of M. The pair (N,Ht) is said to be the Lévy system of M if for

any non-negative (X∞ ×X∞)-measurable function F vanishing on the diagonal set

4 = {(x, x) : x ∈ X∞}, it holds that

Ex

[∑
0<s≤t

F (Xs−, Xs)

]
= Ex

[∫ t

0

∫
X∞

F (Xs, y)N(Xs, dy)dHs

]
, (2.3)

where Xt− = lims↑tXs. For the existence of the Lévy system, see Benveniste and

Jacod [7]. We remark that

At(F ) −
∫ t

0

∫
X∞

F (Xs, y)N(Xs, dy)dHs

is a martingale additive functional. Moreover, for any additive functional At(µ +

F ) = At(µ)+At(F ), there exists a unique continuous additive functional Ap
t (µ+F )

such that At(µ+F )−Ap
t (µ+F ) is a martingale (see Rogers and Williams [31, Chapter

VI]). We call Ap
t (µ+ F ) the dual predictable projection of At(µ+ F ). According to

(2.3), we see that

Ap
t (µ+ F ) = At(µ) +

∫ t

0

∫
X∞

F (Xs, y)N(Xs, y)dHs.

The regular Dirichlet form (E ,F) is expressed by

E(u, v) =E (c)(u, v)

+

∫
X×X\4

(u(x) − u(y))(v(x) − v(y))J(dx, dy) +

∫
X

u(x)v(x)k(dx)

(Beurling-Deny formula ([20, Theorem 3.2.1])). The first term E (c) is called local part

of (E ,F). E (c) is a symmetric Dirichlet form satisfying the strong local property , that

is, E (c)(u, v) = 0 for u, v ∈ F∩C0(X) such that u is constant on Supp[v]. In addition,

there exists uniquely a positive Radon measure µ〈u〉, u ∈ F , satisfying

E (c)(u, u) =
1

2
µ〈u〉(X).

If we introduce a bounded signed measure µ〈u,v〉, u, v ∈ F , by

µ〈u,v〉 =
1

2

(
µ〈u+v〉 − µ〈u〉 − µ〈v〉

)
,
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then,

E (c)(u, v) =
1

2
µ〈u,v〉(X).

The second term is called the jumping part of (E ,F). J is a symmetric positive

Radon measure on the product space X × X off the diagonal set 4 and called

jumping measure. Using the Lévy system of M, we have the following expression:

J(dx, dy) =
1

2
N(x, dy)µH(dx),

where µH is the Revuz measure of the PCAF {Ht}t≥0 of the Lévy system. The

last term is called the killing part . k is a Radon measure on X and called killing

measure. Moreover, it is expressed as

k(dx) = N(x,∞)µH(dx).

Remark 2.2. If the Hunt process M is conservative, then the Dirichlet form has no

killing part. Thus we may replace X∞ by X in the definition of Lévy system and

the corresponding Dirichlet form has following expression:

E(u, u) =
1

2
µ〈u〉(X) +

1

2

∫
X×X

(u(x) − u(y))2N(x, dy)µH(dx).

2.2 Generalized Feynman-Kac Semigroups

In this section, we introduce classes of local and non-local potentials (Definitions

2.1 and 2.2) which play a crucial role in this thesis. We also consider properties of

Feynman-Kac semigroups associated with these potentials.

Definition 2.1 (Kato measure and Green tight measure). Suppose that µ is a signed

smooth measure associated with the positive continuous additive functional At(µ).

(i) A smooth measure µ is said to be the Kato measure (in notation, µ ∈ K) if

lim
t→0

sup
x∈X

Ex[At(|µ|)] = 0.

(ii) A measure µ ∈ K is said to be the β-Green tight measure (in notation, µ ∈
K∞,β) if for any ε > 0 there exist a compact subset K and a positive constant

δ > 0 such that

sup
x∈X

∫
Kc

Gβ(x, y)|µ|(dy) ≤ ε,
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and for any Borel set B ⊂ K with |µ|(B) < δ,

sup
x∈X

∫
B

Gβ(x, y)|µ|(dy) < ε.

For a positive measure µ on X, denote

Gβµ(x) =

∫
X

Gβ(x, y)µ(dy).

We note that for any β > 0, K∞,β = K∞,1. Indeed, for a positive measure µ on X,

let µKc(·) = µ(Kc ∩ ·). Since by the resolvent equation

GβµKc = GγµKc + (γ − β)GβGγµKc , 0 < β < γ,

we have

‖GβµKc‖∞ ≤ ‖GγµKc‖∞ +
γ − β

β
‖GγµKc‖∞ =

γ

β
‖GγµKc‖∞.

We simply write K∞ for K∞,1 and call a measure in K∞ a Green tight measure.

Moreover, if the Hunt process is transient, a measure µ ∈ K∞,0 is called a Green

tight measure in the strict sense. We remark that K∞,0 ⊂ K∞ ⊂ K.

Definition 2.2 (Class J , J∞ and J∞,0). Let F be a bounded measurable function

on X × X vanishing on the diagonal set. We say that F belongs to the class J
(resp. J∞, J∞,0) if

µF (dx) =

(∫
X

F (x, y)N(x, dy)

)
µH(dx) ∈ K (resp. K∞,K∞,0).

In the remainder of this thesis, we assume that F is symmetric, F (x, y) = F (y, x).

We write µ + F ∈ K∞ + J∞ if µ ∈ K∞ and F ∈ J∞. For µ + F ∈ K∞ + J∞, we

define the symmetric Dirichlet form (EF ,F) by

EF (u, u) =E (c)(u, u)

+
1

2

∫
X×X

(u(x) − u(y))2eF (x,y)N(x, dy)µH(dx) +

∫
X

u(x)2k(dx).

We set

F1 = eF − 1.
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We easily see that the function F1 also belongs to the class J∞, and define another

bilinear form Eµ+F by

Eµ+F (u, u) = EF (u, u) −
(∫

X

u2dµ+

∫
X

u2dµF1

)
= E(u, u) −

(∫
X

u2dµ

+

∫
X×X

u(x)u(y)F1(x, y)N(x, dy)µH(dx)

)
, u ∈ F .

We see by Albeverio and Ma [2, Theorem 4.1] and [3, Proposition 3.3] that (Eµ+F ,F)

is a lower semi-bounded closed symmetric form. Denote by LF the self-adjoint

operator associated with (EF ,F) and Hµ+F the self-adjoint operator associated with

(Eµ+F ,F). Then LF and Hµ+F are formally written by

LFf = Lf +

(∫
X

(f(y) − f(x))F1(x, y)N(x, dy)

)
µH(dx)

and

Hµ+Ff = Lf + µHFf + µf = LFf + µHV
Ff + µf,

where

µHFf =

(∫
X

f(y)F1(x, y)N(x, dy)

)
µH(dx),

µHV
Ff =

(∫
X

F1(x, y)N(x, dy)

)
f(x)µH(dx).

Let {pµ+F
t }t>0 be the L2-semigroup generated by Hµ+F : pµ+F

t = exp(tHµ+F ). Then

the semigroup {pµ+F
t }t>0 is expressed by

pµ+F
t f(x) = Ex[exp(At(µ+ F ))f(Xt)],

where At(µ + F ) = At(µ) +
∑

0<s≤t F (Xs−, Xs). In fact, for µ + F ∈ K∞ + J∞,

define a local martingale Mt = At(µ + F1) − Ap
t (µ + F1) where Ap

t (µ + F1) is the

dual predictable projection of At(µ+ F1),

Ap
t (µ+ F1) = At(µ) +

∫ t

0

(∫
X

F1(Xs, y)N(Xs, dy)

)
dHs.

12



Then the Doléans-Dade exponential MF
t of Mt, a unique solution of the stochastic

differential equation Zt = 1 +
∫ t

0
Zs−dMs, is given by

MF
t =

∏
0<s≤t

(1 + ∆Ms) exp(−∆Ms), ∆Ms = Ms −Ms−

(cf. He, Wang and Yan [23, Theorem 9.39]). Noting that

∆Ms− = As(F1) − As−(F1) = F1(Xs−, Xs),

we have

MF
t = exp(At(F1) − Ap

t (F ) + At(F ) − At(F1))

= exp(At(F ) − Ap
t (F1)).

(2.4)

The semigroup

T F
t f(x) = Ex

[
MF

t f(Xt)
]

is identical to the one generated by (EF ,F) (Chen and Song [12, Theorem 4.8]). Let

(Xt,PM
x ) be the transformed process of M by MF

t : PM
x (dω) = MF

t · Px(dω). We

then see from (2.4) that the transformed semigroup by the non-local Feynman-Kac

functional exp(At(µ + F )) is identical to the transformed semigroup of PM
x by the

local Feynman-Kac functional exp(At(µ) + Ap
t (F1)):

pµ+F
t f(x) = Ex[exp(At(µ+ F ))f(Xt)]

= Ex[exp(At(F ) − Ap
t (F1) + Ap

t (F1) + At(µ))f(Xt)]

= EM
x [exp(At(µ) + Ap

t (F1))f(Xt)].

(2.5)

The next proposition is an extension of Proposition 3.1 in Azencott [4]. We state

the proposition in a complete way, while we only use a part of the statement.

Proposition 2.1. Let M be a Hunt process that possesses Assumptions (I) and (III).

Then the following statements are equivalent:

(A) M possesses Assumption (IV), that is, for t > 0 and f ∈ C∞(X),

lim
x→∞

ptf(x) = 0.

(B) For β > 0 and f ∈ C∞(X),

lim
x→∞

Gβf(x) = 0.

13



(C) For t > 0 and a compact set K,

lim
x→∞

Px(σK ≤ t) = 0.

(D) For β > 0 and a compact set K,

lim
x→∞

Ex[e
−βσK ] = 0.

Proof. (A) ⇒ (B): Let f be a strictly positive function in C∞(X). By Assumptions

(I) and (IV), Gβf is a strictly positive continuous function in C∞(X).

(B) ⇒ (C): Put c = infx∈K Gβf(x) > 0. Since for β > 0,

Px[σK ≤ t] ≤ eβtEx

[
e−βσk

]
≤ eβt

c
Ex

[
e−βσKGβf(XσK

)
]

and

Ex

[
e−βσKGβf(XσK

)
]

= Ex

[
e−βσK EXσK

[∫ ∞

0

e−βtf(Xt)dt

]]
≤ Ex

[∫ ∞

σK

e−βtf(Xt)dt

]
≤ Gβf(x),

we have the implication.

(C)⇒(A): Let f be a non-negative function in C∞(X). By Assumption (III), we

have only to show that limx→∞ ptf(x) = 0. For any ε > 0, there exists a compact

set K such that f(x) < ε for all x /∈ K. Then f(Xt) < ‖f‖∞1{σK≤t} + ε1{σK>t} ≤
‖f‖∞1{σK≤t} + ε. Thus,

ptf(x) = Ex[f(Xt)] < ‖f‖∞Px(σK ≤ t) + ε.

(C) ⇒ (D): By the property (C), for any β > 0 and compact set K,

lim
x→∞

Ex[e
−βσK ] = lim

x→∞
Ex[e

−βσK ;σK ≤ t] + lim
x→∞

Ex[e
−βσK ; σK > t]

≤ lim
x→∞

Px(σK ≤ t) + e−βt lim
x→∞

Px(σK > t)

≤ e−βt.

By letting t→ ∞, we have the desired claim.

(D) ⇒ (C): This implication from that

Ex[e
−βσK ] ≥ Ex[e

−βσK1{σK≤t}] ≥ e−βtPx(σK ≤ t).

14



We will show some properties of the generalized Feynman-Kac semigroup {pµ+F
t }t>0,

µ + F ∈ K∞ + J∞. Let A be a Borel set and σA the first hitting time of A,

σA = inf{t > 0 : Xt ∈ A}. To know properties of the generalized Feynman-Kac

semigroup {pµ+F
t }t>0, we need next two important theorems.

Theorem 2.2 (Chung [13, Theorem 2]). Suppose that the Markov semigroup {pt}t>0

possesses doubly Feller property (Assumptions (III) and (IV)). Assume that At(µ+

F ) satisfies the following conditions:

(a) For some t > 0,

sup
x∈X

sup
0≤s≤t

Ex[exp(At(µ+ F ))] <∞;

(b) for each t > 0, there exists a number α > 1 such that

sup
x∈X

Ex[exp(αAt(µ+ F ))] <∞;

(c) for each compact subset K ⊂ X, we have

lim
t→0

sup
x∈K

Ex[| exp(At(µ+ F )) − 1|] = 0.

Then, pµ+F
t (C∞(X)) ⊂ C∞(X) and pµ+F

t (Bb(X)) ⊂ Cb(X).

Theorem 2.3 (Generalized Khas’minskii’s Lemma [48, Lemma 2.1 (a)]). Let µ+F ∈
K∞ + J∞. If supx∈X Ex[At(µ+ F )] = λ < 1, then for all x ∈ X,

Ex

[
eAt(µ)

∏
0<s≤t

(1 + ∆As(F ))

]
≤ 1

1 − λ
, ∆As(F ) = As(F ) − As−(F ).

The following theorem is crucial to study the rate function defend in Chapter 3.

Theorem 2.4. Let µ+ F ∈ K∞ + J∞. Then the following assertions hold.

(i) There exist constants c and κ(µ+ F ) such that

‖pµ+F
t ‖p,p ≤ ceκ(µ+F )t, 1 ≤ ∀p ≤ ∞, t > 0.

Here, ‖ · ‖p,p means the operator norm from Lp(X;m) to Lp(X;m);

(ii) {pµ+F
t }t>0 is a strongly continuous symmetric semigroup on L2(X;m) and the

closed form corresponding to {pµ+F
t }t>0 is identical to (Eµ+F ,F);
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(iii) pµ+F
t (Bb(X)) ⊂ Cb(X);

(iv) pµ+F
t (C∞(X)) ⊂ C∞(X);

(v) pµ+F
t (Cu(X)) ⊂ Cu(X) and limx→∞ pµ+F

t f(x) = limx→∞ f(x), where Cu(X) is

the space of uniformly continuous bounded functions on X such that limx→∞ f(x)

exists.

Proof. The statements (i) and (ii) follow from results in Albeverio, Blanchard and

Ma [1, Theorem 4.1]. The statements (iii) and (iv), that is, the strong Feller property

and the invariance of C∞(X) of pµ+F
t follow from Theorem 2.2. In fact, since

Ex [At(µ+ F )] = Ex

[
At(µ) +

∫ t

0

(∫
X

F (Xs, y)N(Xs, dy)

)
dHs

]
,

limt→0 supx∈X Ex [At(|µ| + |F |)] = 0 by the definitions of K∞, J∞. We have

Ex [exp(At(µ+ F ))] = Ex

[
exp

(
At(µ) +

∑
0<s≤t

F (Xs−, Xs)

)]

= Ex

[
exp(At(µ))

∏
0<s≤t

exp(1 + F1(Xs−, Xs))

]
.

(2.6)

Furthermore, the Stieltjes exponential of At(µ+ F1) is equal to

exp(At(µ))
∏

0<s≤t

exp(1 + F1(Xs−, Xs))

(cf. Sharpe [32, Section 71] and Ying [48]). Theorem 2.3 says that the right hand side

of (2.6) is less than or equal to (1− supx∈X Ex[At(µ+ F1)])
−1. Thus, the functional

exp(At(µ+F )) satisfies conditions (a)-(c) in Theorem 2.2. Hence we show (iii) and

(iv).

(v): Since f(x)−f(∞) ∈ C∞(X) and pµ+F
t f(x) = pµ+F

t (f(x)−f(∞))+f(∞)pµ+F
t 1(x),

it is enough to prove that

lim
x→∞

pµ+F
t 1(x) = lim

x→∞
Ex [exp(At(µ+ F ))] = 1.

For a non-negative µ ∈ K∞ a non-negative F ∈ J∞ and B ∈ B(X), let µB(dx) =

1B(x)µ(dx), FB(x, y) = 1B(x)F (x, y), and At((µ + F )B) = At(µB) + At(FB). We
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then have for a compact set K ⊂ X,

Ex [exp(At((µ+ F )K))] = Ex [exp(At((µ+ F )K));σ′
K > t]

+ Ex [exp(At((µ+ F )K));σ′
K ≤ t]

= Px(σ
′
K > t) + Ex [exp(At((µ+ F )K));σ′

K ≤ t] .

Here, σ′
K = inf{t > 0 : Xt− ∈ K}. By Theorem A.2.3 in [20] and Proposition 2.1,

limx→∞ Px(σ
′
K > t) ≥ limx→∞ Px(σK > t) = 1. Since

Ex[exp(At((µ+ F )K));σ′
K ≤ t] ≤ Ex[exp(At(2(µ+ F )K))]1/2Px(σ

′
K ≤ t)1/2,

we see

lim
x→∞

Ex [exp(At((µ+ F )K))] = 1.

Moreover, using Theorem 2.3 again, we have

sup
x∈X

Ex[exp(At((µ+ F )Kc))] = sup
x∈X

Ex

[
expAt(µKc)

∏
0<s≤t

(1 + As(F1,Kc))

]

≤ 1

1 − supx∈X Ex[At((µ+ F1)Kc)]
.

By the definition of K∞ and J∞, for any ε > 0 there exists a compact set K such

that

sup
x∈X

Ex [At((µ+ F1)Kc)] ≤ et sup
x∈X

∫
Kc

G1(x, y)(µ+ µF1)(dy)

≤ ε.

We then have

lim
x→∞

sup
x∈X

Ex[exp(At(µ+ F ))]

≤ lim
x→∞

(
Ex[exp(2At((µ+ F )K))]1/2 · Ex[exp(2At((µ+ F )Kc))]1/2

)
≤ lim

x→∞

(
Ex[exp(At((2µ+ 2F )K))]1/2 · Ex[exp(At((2µ+ 2F )Kc))]1/2

)
≤ 1.

On the other hand,

lim inf
x→∞

Ex[exp(At(µ+ F ))] ≥ lim inf
x→∞

Ex[exp(−At((µ+ F )−)]

≥
{

lim sup
x→∞

Ex[exp(At((µ+ F )−)]

}−1

≥ 1.
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Therefore, we can conclude that for any µ+ F ∈ K∞ + J∞,

lim
x→∞

Ex [exp(At(µ+ F ))] = 1.
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Chapter 3

Donsker-Varadhan Type Large
Deviation Principle

In this chapter, we consider the asymptotic properties for generalized Feynman-Kac

semigroups. Although, we only use the upper bound estimate (Theorem 3.11) to

prove the main theorem, we give a proof of the lower bound estimate (Theorem

3.10) for completeness.

Let {Rµ+F
α }α>κ(µ+F ) be the resolvent of the generalized Schrödinger operator

Hµ+F , that is, for f ∈ Bb(X),

Rµ+F
α f(x) =

∫ ∞

0

e−αtpµ+F
t f(x)dt

= Ex

[∫ ∞

0

exp(−αt+ At(µ+ F ))f(Xt)dt

]
.

Here, κ(µ+ F ) is the constant in Theorem 2.4 (i). Set

D2
+(Hµ+F ) = {φ = Rµ+F

α g : α > κ(µ+ F ), g ∈ L2(X;m) ∩ Cb(X), with g ≥ 0}.

For φ = Rµ+F
α g ∈ D2

+(Hµ+F ), let

Hµ+Fφ = αφ− g.

Let P(X) be the set of probability measures on X equipped with the weak topology.

We define the I-function Iµ+F on P(X) by

Iµ+F (ν) = − inf
φ∈D2

+(Hµ+F )

∫
X

Hµ+Fφ

φ
dν.

It is known in Takeda [37, Proposition 4.3] that

IEµ+F (ν) = Iµ+F (ν) for ν ∈ P(X)
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(see also Proposition B.3).

For φ ∈ D2
+(Hµ+F ), let

Hφ
t =

φ(Xt)

φ(X0)
exp

(
−
∫ t

0

Hµ+Fφ

φ
(Xs)ds

)
and put

Mφ
t = exp(At(µ) + At(F ))φ(Xt) − φ(X0)

−
∫ t

0

exp(As(µ) + As(F ))Hµ+Fφ(Xs)ds.

Then Mφ
t is a martingale with respect to Px. Indeed, Ex[M

φ
s ] = 0 and by the Markov

property,

Ex[M
φ
s+t | Ms] = Mφ

s + exp(At(µ) + At(F ))EXs [M
φ
t ]

= Mφ
s .

Consequently, φ(Xt) − φ(X0) is a semi-martingale:

φ(Xt) − φ(X0) = M
[φ]
t +N

[φ]
t ,

where M
[φ]
t and N

[φ]
t are the martingale part and the bounded variation part of

φ(Xt) − φ(X0) respectively.

Lemma 3.1 ([26, Lemma 3.1]). Mφ
t can be written as

Mφ
t =

∫ t

0

eAs−(µ+F )dM [φ]
s +

∫ t

0

eAs−(µ+F )dZs(φ, F1),

where

Zt(φ, F1) =
∑

0<s≤t

φ(Xs)F1(Xs−, Xs) −
∫ t

0

∫
X

φ(y)F1(Xs, y)N(Xs, dy)dHs.

Proof. We apply Itô’s formula ([23, Theorem 9.35]) to the semi-martingale φ(Xt),

eAt(µ+F ) and the function G(x, y) = xy. Since

deAt(µ+F ) = eAt(µ+F )dAt(µ) + eAt−(µ+F )dAt(F1),
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we have

eAt(µ+F )φ(Xt) − φ(X0) = G(eAt(µ+F ), φ(Xt)) −G(eA0(µ+F ), φ(X0))

=

∫ t

0

eAs−(µ+F )dφ(Xs) +

∫ t

0

φ(Xs−)deAt(µ+F )

=

∫ t

0

eAs−(µ+F )dM [φ]
s +

∫ t

0

eAs−(µ+F )dN [φ]
s

+

∫ t

0

φ(Xs)e
As(µ+F )dAs(µ)

+

∫ t

0

φ(Xs)e
As−(µ+F )dAs(F1).

(3.1)

Put At(φ, F1) =
∑

0<s≤t φ(Xs)F1(Xs−, Xs). Then the dual predictable projection

Ap
t (φ, F1) of At(φ, F1) is

Ap
t (φ, F1) =

∫ t

0

∫
X

N(Xs, dy)φ(y)F1(Xs, y)dHs,

and Zt(φ, F1) = At(φ, F1) − Ap
t (φ, F1) is a martingale with respect to Px, x ∈ X.

Then the last term of the right hand side of (3.1) equals∫ t

0

φ(Xs)e
As−(µ+F )dAs(F1) =

∫ t

0

eAs−(µ+F )dAs(φ, F1)

=

∫ t

0

eAs−(µ+F )dZs(φ, F1) +

∫ t

0

eAs−(µ+F )

∫
X

N(Xs, dy)φ(y)F1(Xs, y)dHs.

Define the local martingale Nφ
t by

Nφ
t =

∫ t

0

1

φ(Xs−)
dM [φ]

s ,

and the multiplicative functional Lφ
t by

Lφ
t = eAt(µ+F ) φ(Xt)

φ(X0)
exp

(
−
∫ t

0

Hµ+Fφ

φ
(Xs)ds

)
.

Theorem 3.2. Lφ
t satisfies

Lφ
t = 1 +

∫ t

0

Lφ
s−dN

φ
s ,

that is, Lφ
t is identical to the Doléans-Dade exponential of Nφ

t .
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Proof. See [20, Section 6.3].

Lemma 3.3. It holds that

Ex

[
eAt(µ+F ) φ(Xt)

φ(X0)
exp

(
−
∫ t

0

Hµ+Fφ

φ
(Xs)ds

)]
≤ 1.

Proof. Lφ
t is a supermartingale multiplicative functional. Indeed, let Kn = {x ∈ X :

φ(x) ≥ 1/n}. We have

d

(
eAt(µ+F )φ(Xs) exp

(
−
∫ t

0

Hµ+Fφ

φ
(Xu)du

))
= exp

(
−
∫ t

0

Hµ+Fφ

φ
(Xu)du

)(
d(eAt(µ+F )φ(Xs)) − eAt(µ+F )Hµ+Fφ(Xs)ds

)
.

For n ∈ N,

Lφ
t∧τn

− 1 =

∫ t∧τn

0

1

φ(X0)
exp

(
−
∫ s

0

Hµ+Fφ

φ
(Xu)du

)
dMφ

s , Px-a.e., x ∈ X,

where τn = inf{t > 0 : Xt /∈ Ko
n}. Using Fatou’s lemma and the fact that Lφ

t∧τn
is a

martingale,

Ex[L
φ
t ] ≤ lim inf

n→∞
Ex[L

φ
t∧τn

] = 1.

We denote by Mφ = (Ω, Xt,Pφ
x) the transformed process of M by Lφ

t :

Pφ
x(dω) = Lφ

t (ω) · Px(dω)

and by {pφ
t }t>0 the semigroup of Mφ.

Lemma 3.4. Mφ is a φ2m-symmetric right process on X.

Proof. Since Mφ is a right process (see [32, Theorem 62.19]), we have only to show

the symmetry of Mφ. Let rt be a reversal operator on Ω, that is,

rt(ω)(s) =

{
ω((t− s)−) if 0 ≤ s ≤ t,

ω(0) if s > t.

Note that Mφ is reversible under Pφ
m-a.e. ω. Indeed, for any Mt-measurable function

f ,

Em[f(rt(·))] = Em[f(·)].
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We have At(µ + F )(rtω) = At(µ + F )(ω), Pm-a.e. because of the fact that F is

symmetric on X ×X and Theorem 5.1.1 in [20]. Thus we have for f, g ∈ B(X),

(pφ
t f, g)φ2m

=

(
E·

[
e(At(µ+F )) φ(Xt)

φ(X0)
exp

(
−
∫ t

0

Hµ+Fφ

φ
(Xs)ds

)
f(Xt)

]
, g

)
φ2m

= Em

[
eAt(µ+F )φ(Xt)φ(X0)f(X0)g(Xt) exp

(
−
∫ t

0

Hµ+Fφ

φ
(Xs)ds

)]
= (f, pφ

t g)φ2m.

Hence the proof is complete.

Denote by (Eφ,Fφ) the Dirichlet form on L2(X;φ2m) associated with Mφ.

Proposition 3.5 ([11, Theorem 2.6]). Suppose that µ+F ∈ K∞+J∞, then F ⊂ Fφ

and for u ∈ F ,

Eφ(u, u) =
1

2

∫
X

φ2dµ〈u〉

+
1

2

∫
X×X\4

(u(x) − u(y))2φ(x)φ(y)N(x, dy)µH(dx).

Proposition 3.6 ([26, Proposition 3.2]). Let φ ∈ D2
+(Hµ+F ). Then, 1 ∈ Fφ and

Eφ(1, 1) = 0.

Proposition 3.7. Suppose that m(X) <∞. Let (E ,F) be the Dirichlet form asso-

ciated with an m-symmetric right process M on X. If 1 ∈ F and E(1, 1) = 0, then

the following assertions are equivalent:

(i) The semigroup {pt}t>0 is irreducible (see Assumption (I)).

(ii) If f ∈ F and E(f, f) = 0, then f is constant m-a.e.

(iii) If f ∈ L2(X;m) and ptf = f for all t > 0, then f is constant m-a.e.

Proof. (i) ⇒ (ii): We first note that if f ∈ F and E(f, f) = 0, then f is pt-invariant.

Indeed, by the Cauchy-Schwarz inequality for the non-negative definite symmetric

form E , we have E(f, g) = 0 and hence Eα(f, g) = α(f, g)m for any g ∈ F and

α > 0. Since Eα(Gαf, g) = (f, g)m, we have αGαf = f . This implies ptf = f for

all t > 0. By the hypothesis, for any λ ∈ R, f − λ ∈ F and E(f − λ, f − λ) = 0.
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Let ϕ+(t) = t ∨ 0, t ∈ R, then ϕ+ is a normal contraction function. Thus fλ =

ϕ+ ◦ (f − λ) ∈ F and E(fλ, fλ) ≤ E(f, f) = 0. We have that fλ is pt-invariant. We

put Bλ = {x ∈ E : fλ(x) = 0}, then pt(1Bc
λ
fλ) = pt(fλ) = 0 m-a.e. on Bλ. Then

Bλ is a pt-invariant set. Indeed, by the Markov property of pt, pt(1Bc
λ
1{fλ≥1/n}) = 0

m-a.e. on Bλ. Letting n → ∞, we have 1Bλ
pt(1Bc

λ
) = 0, i.e. 1Bλ

pt(1Bc
λ
f) = 0 for

all f ∈ L2(X;m). Assumption (I) says that m(Bλ) = 0 or m(Bc
λ) = 0. We define

λ0 = sup{λ : m(Bλ) = 0}, then we have that m(Bλ) 6= 0 for any λ > λ0. This

implies m(Bc
λ) = 0. That is, m({f > λ0}) = 0. On the other hand, for any λ < λ0,

m(Bλ = 0) = 0 i.e. m({f < λ0}) = 0. Hence we have f = λ0 m-a.e.

(ii) ⇒ (iii): Let f be a pt-invariant function in L2(X;m). By the definition of

the Dirichlet form (see (2.1)), we have f ∈ F and E(f, f) = 0.

(iii) ⇒ (i): Note that 1 ∈ F ⊂ L2(X;m). Since E(1, 1) = 0,

0 = E(u, u) = sup
t>0

1

t
(1 − pt1, 1)m.

We then have pt1 = 1. Hence for any pt-invariant set A ∈ B(X), pt1A = 1Apt1 = 1A.

Thus m(A) = 0 or m(Ac) = 0.

Theorem 3.8 ([26, Lemma 3.1]). Assume the hypotheses in Theorem 3.7. Then, one

of the assertions in Theorem 3.7 is true if and only if M is ergodic, that is, if Λ ∈ M0

is θt-invariant, (θt)
−1(Λ) = Λ, then Px(Λ) = 0 for all x ∈ X or Px(Ω \ Λ) = 0 for

all x ∈ X, where M0 = σ{Xt : 0 ≤ t <∞} for all x ∈ X.

Theorem 3.9. The transformed process Mφ is ergodic.

Proof. Let Λ be a θt-invariant set. On account of positivity of Lφ
t , (Eφ,Fφ) is

irreducible. Therefore, it follows from Propositions 3.6 and 3.7 that Pφ
φ2m(Λ) = 0

or Pφ
φ2m(Ω \ Λ) = 0. Remark 2.1 implies that Mφ also admits a transition density.

Hence we have Pφ
x(Λ) = 0 or Pφ

x(Ω \ Λ) = 0.

Let Lt be the occupation distribution, that is,

Lt(A) =
1

t

∫ t

0

1A(Xs)ds, t > 0, A ∈ B(X). (3.2)

Then Lt ∈ P(X).
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Define the function IEµ+F on P(X)by

IEµ+F (ν) =

{
Eµ+F (

√
f,

√
f) if ν = f · dm,

∞ otherwise.

We now prove the lower bound estimate.

Theorem 3.10 ([26, Theorem 4.1]). For each open set G ⊂ P(X),

lim inf
t→∞

1

t
log Ex [exp(At(µ+ F ));Lt ∈ G] ≥ − inf

ν∈G
Iµ+F (ν). (3.3)

Proof. Let G be an open subset of P(X) and φ = Rµ+F
α f a positive function in

L2(X;m) ∩ Cb(X) with φ2dm ∈ G. Then it holds that

Ex [exp(At(µ+ F )) ;Lt ∈ G]

= Ex

[
eAt(µ+F )Hφ

t

(
Hφ

t

)−1

;Lt ∈ G

]
= Ex

[
Lφ

t

(
Hφ

t

)−1

;Lt ∈ G

]
= Eφ

x

[(
Hφ

t

)−1

;Lt ∈ G

]
≥ exp

(
t

(∫
X

φHµ+Fφdm− ε

))
Eφ

x

[
φ(X0)

φ(Xt)
;S(t, ε)

]
≥ exp

(
t

(∫
X

φHµ+Fφdm− ε

))
φ(x)

‖φ‖∞
Pφ

x(S(t, ε)),

where

S(t,ε)

=

{
ω ∈ Ω :

∣∣∣∣∫
X

Hµ+Fφ

φ
(x)Lt(ω, dx) −

∫
X

φHµ+Fφdm

∣∣∣∣ < ε, Lt(ω) ∈ G

}
.

Let

Ω1 =

{
ω ∈ Ω : lim

t→∞

1

t

∫ t

0

Hµ+Fφ

φ
(Xs(ω))ds =

∫
X

φHµ+Fφdm

}
,

Ω2 =
{
ω ∈ Ω : Lt(ω) weakly converges to φ2dm as t→ ∞

}
.

We then have Pφ
x(Ωi) = 1, φ2m-a.e. from the invariance of Ωi (i = 1, 2) and Theorem

3.9. Therefore limt→∞ Pφ
x(S(t, ε)) = 1 for all x ∈ X. Consequently, we get

lim inf
t→∞

1

t
log Ex [exp(At(µ+ F ));Lt ∈ G] ≥

∫
X

φHµ+Fφdm− ε.

Since {φ = Rµ+F
α g : g ∈ L2(X;m) ∩ Cb(X), α > κ(µ + F )} is a dense subset of F

with respect to the norm Eµ+F
1 , the proof is complete.
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We now prove the upper bound estimate by the same argument as in [17] and

[37]. Let

D++(Hµ+F ) = {φ = Rµ+F
α g : α > κ(µ+ F ), g ∈ Cu(X) with g ≥ ∃ε > 0}.

Theorem 3.11 (Kim [26, Remark 4.1]). For each compact set K ⊂ P(X),

lim sup
t→∞

1

t
log Ex [exp(At(µ+ F ));Lt ∈ K] ≤ − inf

ν∈K
IEµ+F (ν).

Proof. Take φ ∈ D++(Hµ+F ). Then, by Lemma 3.3,

Ex

[
eAt(µ+F )

(
φ(Xt)

φ(X0)

)
exp

(
−
∫ t

0

Hµ+Fφ

φ
(Xs)ds

)]
≤ 1,

we have

Ex

[
eAt(µ+F ) exp

(
−
∫ t

0

Hµ+Fφ

φ
(Xs)ds

)]
≤ φ(x)

infx∈X φ(x)
.

Hence for any Borel set C ⊂ P(X),

lim sup
t→∞

1

t
log Ex [exp(At(µ+ F ));Lt ∈ C] ≤ inf

φ∈D++(Hµ+F )
sup
ν∈C

∫
X

Hµ+Fφ

φ
dν. (3.4)

Let K be a compact set of P(X) and put

l = sup
ν∈K

inf
φ∈D++(Hµ+F )

∫
X

Hµ+Fφ

φ
dν.

Then for any ν ∈ K and any δ > 0 there exists a function φν ∈ D++(Hµ+F ) such

that ∫
X

Hµ+Fφν

φν

dν ≤ l + δ.

Since the function Hµ+Fφν/φν is bounded and continuous on X, there exists a

neighborhood N(ν) of ν such that for λ ∈ N(ν),∫
X

Hµ+Fφν

φν

dλ ≤ l + 2δ.

The set {N(ν) : ν ∈ K} is an open covering of the compact set K. Hence there

exists νi ∈ K, i = 1, . . . , k with K ⊂ ∪k
i=1N(νi), and for any 1 ≤ i ≤ k,

sup
ν∈N(νi)

∫
X

Hµ+Fφνi

φνi

dν ≤ l + 2δ.
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Moreover,

max
1≤i≤k

inf
φ∈D++(Hµ+F )

sup
ν∈N(νi)

∫
X

Hµ+Fφνi

φνi

dν ≤ l + 2δ.

Using (3.4), we have

lim sup
t→∞

1

t
log Ex [exp(At(µ+ F ));Lt ∈ K]

≤ max
1≤i≤k

lim sup
t→∞

1

t
log Ex[exp(At(µ+ F ));Lt ∈ Ni]

≤ max
1≤i≤k

inf
φ∈D++(Hµ+F )

sup
ν∈Ni

∫
X

Hµ+Fφ

φ
dν

≤ l + 2δ.
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Chapter 4

Lp-independence of Growth
Bounds

In this chapter, we prove the main theorem (Theorem 4.5). Let M be a Hunt process

satisfying Assumptions (I)–(IV). First, we extended of the Hunt process M and the

I-function.

We define the transition density p̄t(x, dy) on (X∞,B(X∞)): for E ∈ B(X∞),

p̄t(x,E) =

{
pt(x,E \ {∞}), x ∈ X,

δ∞(E), x = ∞.

Let M̄ be the Markov process on X∞ with transition probability p̄t(x, dy), that is,

an extension of M with ∞ being a trap. Furthermore, for µ + F ∈ K∞ + J∞, we

denote the semigroup {p̄µ+F
t }t>0 and the resolvent {R̄µ+F

α }α>κ(µ+F ) of M̄ by

p̄F
t f(x) = Ēx[exp(At(µ+ F ))f(Xt)],

R̄µ+F
α f(x) =

∫ ∞

0

e−αtp̄µ+F
t f(x)dt, f ∈ Bb(X∞).

Here, κ(µ+F ) is the constant in Theorem 2.4 (i). Then R̄µ+F
α f(x) = Rµ+F

α f(x) for

x ∈ X and R̄µ+F
α f(∞) = f(∞)/α. Set

D++(H̄µ+F ) = {φ = R̄µ+F
α g : α > κ(µ+ F ), g ∈ C(X∞) with g > 0}.

We see that for φ = R̄µ+F
α g ∈ D++(H̄µ+F ), limx→∞ φ(x) = g(∞)/α by Theorem 2.4

(v).

Let us define the function Īµ+F on P(X∞), the set of probability measures on

X∞, by

Īµ+F (ν) = − inf
φ∈D++(H̄µ+F )

∫
X∞

H̄µ+Fφ

φ
dν, ν ∈ P(X∞),
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where H̄µ+Fφ = αR̄µ+F
α g − g for φ = R̄µ+F

α g ∈ D++(H̄µ+F ). We then have

Īµ+F (δ∞) = 0, (4.1)

because H̄µ+Fφ(∞) = αφ(∞)− g(∞) = g(∞)− g(∞) = 0 for any φ ∈ D++(H̄µ+F ).

Note that P(X∞) \ {δ∞} and (0, 1] × P(X) are in one-to-one correspondence

through the map:

ν ∈ P(X∞) \ {δ∞} 7→ (ν(X), ν̂(·) = ν(·)/ν(X)) ∈ (0, 1] × P(X). (4.2)

Lemma 4.1. For ν ∈ P(X∞) \ {δ∞},

Īµ+F (ν) = Iµ+F (ν) = ν(X) · IEµ+F (ν̂).

Proof. For φ = R̄µ+F
α g ∈ D++(H̄µ+F ), H̄µ+Fφ(∞) = 0 and H̄µ+Fφ(x) = Hµ+Fφ(x)

for x ∈ X. Hence for ν ∈ P(X∞),

Īµ+F (ν) = − inf
φ∈D++(H̄µ+F )

∫
X∞

H̄µ+Fφ

φ
dν

= − inf
φ∈D++(Hµ+F )

∫
X

Hµ+Fφ

φ
dν

= − inf
φ∈D++(Hµ+F )

ν(X)

∫
X

Hµ+Fφ

φ
dν̂

= ν(X) · IEµ+F (ν̂).

We have the next equality through the one-to-one map (4.2).

inf
ν∈P(X∞)\{δ∞}

Īµ+F (ν) = inf
0<θ≤1,ν∈P(X)

(θIEµ+F (ν))

Moreover, Īµ+F (δ∞) = 0 by Lemma 4.1. Hence we have the next corollary.

Corollary 4.2.

inf
ν∈P(X∞)

Īµ+F (ν) = inf
0≤θ≤1,ν∈P(X)

(θIEµ+F (ν)) = inf
0≤θ≤1

(θ inf
ν∈P(X)

IEµ+F (ν)). (4.3)

Let us denote by ‖pµ+F
t ‖p,p the operator norm of pµ+F

t from Lp(X;m) to Lp(X;m),

and define

λp(µ+ F ) = − lim
t→∞

1

t
log ‖pµ+F

t ‖p,p, 1 ≤ p ≤ ∞.

We then have:
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Corollary 4.3. For µ+ F ∈ K∞ + J∞,

λ∞(µ+ F ) ≥ inf
0≤θ≤1

(
θ inf

ν∈P(X)
IEµ+F (ν)

)
= inf

0≤θ≤1
(θλ2(µ+ F )). (4.4)

Proof. By the positivity of pµ+F
t ,

sup
x∈X

Ex [exp(At(µ+ F ))] = sup
x∈X

pµ+F
t 1(x) = ‖pµ+F

t ‖∞,∞.

We thus see that

lim
t→∞

1

t
log sup

x∈X
Ex [exp(At(µ+ F ))] = −λ∞(µ+ F ).

Hence we have the first inequality in (4.4) by Theorem 3.11 and the equation (4.3).

By the spectral theorem, λ2(µ + F ) is identical to the bottom of the spectrum

of −Hµ+F and by the variational formula for the bottom of spectrum

λ2(µ+ F ) = inf
ν∈P(X)

IEµ+F (ν).

Therefore we have the second equality in (4.4).

If λ2(µ+ F ) ≤ 0, then inf0≤θ≤1(θλ2(µ+ F )) = λ2(µ+ F ). Hence we have:

Corollary 4.4. If λ2(µ+ F ) ≤ 0, then

λ∞(µ+ F ) ≥ λ2(µ+ F ).

The inequality, λ2(µ + F ) ≥ λ∞(µ + F ), generally holds. Indeed, by Schwarz’s

inequality,

pµ+F
t f(x) = Ex[exp(At(µ+ F ))f(Xt)]

≤ (Ex[exp(At(µ+ F ))f 2(Xt)])
1/2 · (Ex[exp(At(µ+ F ))])1/2.

Hence we see

‖pµ+F
t f‖2

2 ≤ ‖pµ+F
t (f2)‖1 sup

x∈X
Ex[exp(At(µ+ F ))]

≤ ‖f‖2
2 sup

x∈X
‖pµ+F

t ‖2
∞,∞.

The last inequality follows from the fact that, by the symmetry and the positivity

of pµ+F
t ,

‖pµ+F
t (f 2)‖1 =

∫
X

f(x)2(pµ+F
t 1(x))m(dx) ≤ ‖f‖2

2 · ‖p
µ+F
t ‖2

∞,∞.
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We then have ‖pµ+F
t ‖2,2 ≤ ‖pµ+F

t ‖∞,∞. Thus,

‖pµ+F
t ‖2,2 ≤ ‖pµ+F

t ‖p,p ≤ ‖pµ+F
t ‖∞,∞, 1 ≤ ∀p ≤ ∞,

by the Riesz-Thorin interpolation theorem. Therefore, we can conclude that

λ2(µ+ F ) ≤ 0 =⇒ λp(µ+ F ) = λ2(µ+ F ), 1 ≤ ∀p ≤ ∞.

We would like to remark that the inequality λ2(µ+F ) ≥ λ∞(µ+F ) follows from

Theorem 3.10.

We now state the main theorem.

Theorem 4.5. Let µ+F ∈ K∞+J∞. Then λ2(µ+F ) = λp(µ+F ) for all 1 ≤ p ≤ ∞
if and only if λ2(µ+ F ) ≤ 0. In particular, if λ2(µ+ F ) > 0, then λ∞(µ+ F ) = 0.

Proof. We have already proved the “if” part. To prove that “only if” part, suppose

that λ2(µ+ F ) > 0. Then

λ∞(µ+ F ) ≥ inf
0≤θ≤1

θ inf
ν∈P(X)

IEµ+F (ν) = inf
0≤θ≤1

θ(λ2(µ+ F )) = 0

by Corollary 4.3. Then it is enough to prove λ∞(µ + F ) ≤ 0. By Theorem 2.4 (v),

limx→∞ pµ+F
t 1(x) = 1, which implies that ‖pµ+F

t ‖∞,∞ ≥ 1. Hence,

−λ∞(µ+ F ) = lim
t→∞

1

t
log ‖pµ+F

t ‖∞,∞ ≥ 0.

Corollary 4.6. Suppose that the Hunt process M is transient. If λ2(0) = 0, then

the growth bound of the Feynman-Kac semigroup {pµ+F
t }t>0 is Lp-independent for

any µ+ F ∈ K∞,0 + J∞,0.

Proof. The boundedness of F implies that there exists a constant C ′ such that

EF (u, u) ≤ C ′E(u, u) for all u ∈ F . Consequently, we have

Eµ+F (u, u) = EF (u, u) −
(∫

X

u2dµF1 +

∫
X

u2dµ

)
≤ C ′E(u, u) −

(∫
X

u2dµF1 +

∫
X

u2dµ

)
.
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Hence to show that λ2(µ + F ) ≤ 0, it is enough to prove that λ2(µ) ≤ 0 for any

µ ∈ K∞,0. To this end, we have only to prove that for any positive µ ∈ K∞,0,

λ2(µ) = inf

{
E(u, u) +

∫
X

u2dµ : u ∈ F , ‖u‖2 = 1

}
= 0.

We see from [34, Theorem 3.1], for any u ∈ F such that ‖u‖2 = 1,∫
X

u2dµ ≤ ‖Gµ‖∞E(u, u),

and thus

λ2(µ) ≤
(
E(u, u) +

∫
X

u2dµ

)
≤ (1 + ‖Gµ‖∞) E(u, u).

Take a minimizing sequence {un} of F , i.e., ‖un‖2 = 1 and limn→∞ E(un, un) =

λ2(0) = 0, we have the desired claim.

For a compact set K ⊂ X, define the subspace FKc of F by

FKc = {u ∈ F : u = 0 q.e. on K} .

Then, identifying the space L2
Kc(X;m) = {u ∈ L2(X;m) : u = 0 m-a.e. on K}

with L2(Kc;m), we see that (E ,FKc) is regarded as a regular Dirichlet form on

L2(Kc;m). The Dirichlet form (E ,FKc) is said to be the part of the Dirichlet form

(E ,F) on the open set Kc. Denote by LK the self-adjoint operator associated with

(E ,FKc).

Remark 4.1. Let σ(LK) be the spectrum of LK . Assume that for any compact set

K,

inf σ(LK) = 0. (4.5)

Then, Corollary 4.6 holds without the transience condition. Indeed, we have for

µ ∈ K∞,

λ2(µ) = inf

{
E(u, u) +

∫
X

u2dµ : u ∈ F , ‖u‖2 = 1

}
≤ inf

{
E(u, u) +

∫
X

u2dµ : u ∈ FKc , ‖u‖2 = 1

}
,

we have from the assumption, the right hand side equals

inf

{∫
X

u2dµKc : u ∈ FKc , ‖u‖2 = 1

}
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(µKc(·) = µ(Kc ∩ ·)). Since
∫

X
u2dµKc ≤ ‖G1µKc‖∞ · E1(u, u), the right hand side

tends to zero as K ↑ X. We see that the assumption (4.5) is fulfilled for spatially

homogeneous symmetric Lévy processes.

Let us consider a spatially homogeneous symmetric Lévy process with Lévy

measure J . The Lévy measure J is said to be exponentially localized if there exists

a positive constant δ such that∫
|x|>1

eδ|x|J(dx) <∞. (4.6)

For example, the Lévy measure of the relativistic Schrödinger process, the symmetric

Lévy process generated by
√
−∆ +m2−m, m > 0, satisfies (4.6) (Carmona, Master

and Simon [8]). Assuming that J is exponentially localized we can prove in the

same way as in [37] that if µ + F belongs to the class K + J , then λp(µ + F ) is

independent of p. The Lévy measure of the symmetric α-stable process on Rd is(
K(d, α)/|x|d+α

)
dx, and is not exponentially localized. This is the reason why we

need to restrict the class of potentials to K∞ + J∞.
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Chapter 5

Examples

In this chapter, to illustrate the power of our main theorem, we apply Theorem 4.5 to

some examples of symmetric Hunt processes; for one-dimensional diffusion processes

we can obtain a necessary and sufficient condition for the Lp-independence. It is

known that the bottom of L2-spectrum of the Brownian motion (or “the α-stable

process”) on hyperbolic space is strictly positive, and thus the growth bound depend

on p; however, by adding a suitable potential to the Laplace-Beltrami operator, we

can construct a Feynman-Kac semigroup satisfying the Lp-independence.

5.1 One-Dimensional Diffusion Processes

Let s(x) be a strictly increasing continuous function on (r0, r1) and m(x) a strictly

increasing right-continuous function m(x) on (r0, r1). We define

D+
s f(x) = lim

h↓0

f(x+ h) − f(x)

s(x+ h) − s(x)
, Dmf(x) = lim

h→0

f(x+ h) − f(x)

m(x+ h) −m(x)
,

provided the limits exist. We consider the Lp-independence of one-dimensional dif-

fusion processes. Let I = (r0, r1), −∞ ≤ r0 < c < r1 ≤ ∞, be an interval in R
generated by DmD

+
s .

Definition 5.1 (Feller’s boundary classification (Itô and McKean [24, p.108] or

Mandl [28, pp.24-25])). Let

ρ(x) =

∫ x

c

(∫ y

c

dm(z)

)
ds(y), σ(x) =

∫ x

c

(∫ y

c

ds(z)

)
dm(y).

We call
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(i) ri a regular boundary if ρ <∞, σ <∞,

(ii) ri an exit boundary if ρ <∞, σ = ∞,

(iii) ri an entrance boundary if ρ = ∞, σ <∞,

(iv) ri a natural boundary if ρ = ∞, σ = ∞.

As a typical example, let us consider a one-dimensional differential operator

A = a(x)
d2

dx2
+ b(x)

d

dx

on I. Here, a(x) and b(x) are strictly positive continuous functions on I and a(x) is

strictly positive on I. We set

B(x) =

∫ x

c

b(y)a(y)−1dy,

dm(x) = a(x)−1eB(x)dx, ds(x) = e−B(x)dx,

d

dm(x)
= Dm,

d

ds(x)
= Ds.

Then the operator A is expressed by

A = a(x)e−B(x) d

dx

(
eB(x) d

dx

)
= DmDs.

The Dirichlet form on L2(I;m) generated by M is written as

E(u, v) = −
∫ r1

r0

DmD
+
s u · vdm =

∫ r1

r0

D+
s u(x) ·D+

s v(x)ds(x).

We denote by M = (Px, Xt) be the minimal diffusion process generated by DmD
+
s .

Theorem 5.1 (Takeda [41, Theorem 5.1]). Let µ ∈ K∞. If no boundaries are

natural, then λp(µ) is independent of p. If one of the boundaries is natural, the

diffusion process satisfies Assumptions (I)–(IV), that is, λp(µ) is independent of p

if and only if λ2(µ) ≤ 0.

We consider the diffusion process on I generated by DmD
+
s . We define an in-

creasing right-continuous function m̃(x) by m̃(x) = m(s−1(x)) and hereafter write

m for m̃ and s(x) for x.
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For a fixed c ∈ [r0, r1], define

A0(m; c) = sup
x∈(r0,c)

(x− r0)m((x, c]),

A1(m; c) = sup
x∈(c,r1)

(r1 − x)m((c, x]).

Theorem 5.2 (Kaneko, Ogura and Tomisaki [25, Theorem 2]). λ2(0) > 0 if and

only if A0(m; c) <∞ and A1(m; c) <∞.

On account of Theorem 4.5, Theorem 5.1 and Theorem 5.2, we have the following

theorem:

Theorem 5.3. Let M be a diffusion process on an interval I = (r0, r1). Then the

growth bounds of the Markov semigroup is Lp-independent if and only if one of the

following conditions is fulfilled:

(i) no boundaries are natural,

(ii) if ri is natural, then Ai(m; c) = ∞.

5.2 Time Changed Diffusion Processes

Applying the results in the previous section, we prove the Lp-independence for multi-

dimensional diffusion processes.

For α ≥ 0, we define the function

ρα(x) =

1, |x| < 1,
1

|x|α
, |x| ≥ 1.

Let M be a diffusion process on Rd (d ≥ 3) with the corresponding Dirichlet form

(E ,F) on L2(Rd; ραdx) defined by
E(u, v) =

1

2

∫
Rd

(∇u · ∇v)dx,

F = C∞
0 (Rd)

(E(·,·)+‖·‖
L2(Rd;ραdx))

1/2

.

Let (Bt,Px) be the d-dimensional Brownian motion and define

Aα
t =

∫ t

0

ρα(Bs)ds.

Then the diffusion process M is the time changed process of the Brownian motion

by the PCAF Aα
t .
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Theorem 5.4. The Lp-independence of growth bounds of the Markov semigroup of

M holds if and only if α 6= 2.

This theorem tells us that for Markov semigroups, the Lp-independence holds

quite generally. Making use of the rotation invariance of ρα, we may consider the

one-dimensional diffusion process M1 on [0,∞) generated by

dm(r) =

{
1, (0 ≤ r < 1),

rd−α−1dr, (1 ≤ r),
ds(r) =

{
1, (0 ≤ r < 1),

r1−ddr, (1 ≤ r).
(5.1)

Thus, the corresponding Dirichlet form on L2([0,∞);m) is

E(u, v) =

∫ ∞

0

du

ds

dv

ds
ds (5.2)

Theorem 5.5. Let M1 be the diffusion process on [0,∞) generated by DmD
+
s defined

as above. Then we have:

(i) 0 is a regular boundary.

(ii) If d < α, then ∞ is a regular boundary.

(iii) If 2 < α ≤ d, then ∞ is an exit boundary.

(iv) If α ≤ 2, then ∞ is a natural boundary.

Proof. (i): ρ(0) <∞ and σ(0) <∞ follow from the definitions of m and s.

(ii)–(iv): Because of

ρ(x) =

∫ x

1

(∫ y

1

dm(z)

)
ds(y) ∼

∫ x

1

(y1−α − y1−d)dy, as x→ ∞,

hence we have ρ(∞) <∞ if and only if α > 2 and d > 2. On the other hand,

σ(x) =

∫ x

1

(∫ y

1

ds(z

)
dm(y) ∼

∫ x

1

(y1−α − yd−α−1)dy, as x→ ∞,

we thus have σ(∞) <∞ if and only if α > 2 and α > d. Consequently, we have the

desired claim.

Theorem 5.5 says that no boundaries are natural if α > 2. Moreover, Theorem

5.1 says that if α > 2, then the Lp-independence holds and that if α ≤ 2, then M
satisfies Assumptions (I)–(IV). By the same way as in the proof of Example 5.6 in

[37], L2-spectral bounds of the Markov semigroup of M is equal to zero if and only

if α < 2. Thus we have the assertion of Theorem 5.4.
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5.3 α-Stable Processes on Euclidean Spaces

Let M = (Xt,Px) be the symmetric α-stable process on Rd (0 < α < 2), the pure

jump process generated by 1
2
(−∆)α/2. Let (E (α),F (α)) be the symmetric Dirichlet

form generated by M = (Xt,Px):
E (α)(u, v) =

K(d, α)

2

∫∫
Rd×Rd\4

(u(x) − u(y))(v(x) − v(y))

|x− y|d+α
dxdy,

F (α) =

{
u ∈ L2(Rd) :

∫∫
Rd×Rd\4

(u(x) − u(y))2

|x− y|d+α
dxdy <∞

}
,

where

K(d, α) =
αΓ(d+α

2
)

21−απd/2Γ(1 − α
2
)
.

Theorem 5.6. Let µ+ F ∈ K∞ + J∞. Then

λp(µ+ F ) = λ2(µ+ F ), 1 ≤ ∀p ≤ ∞.

Proof. Noting that the α-stable process satisfies Assumptions (I)–(IV). Thus, on

account of Remark 4.1, we have this theorem.

5.4 Brownian Motions and “α-Stable Processes”

on Hyperbolic Spaces

In this section, we consider Brownian motions and “α-stable processes” on hyper-

bolic spaces generated by subordination procedure (Section C.2).

Let Hd be the hyperbolic space of dimension d (d ≥ 2) with volume element v,

that is, {
Hd = {x = (y, z) : y ∈ Rd−1 and 0 < z <∞},

v(dx) = z−d−2dydz.

The Laplace-Beltrami operator ∆ is given by

∆ = z2

(
∆y +

∂2

∂z2

)
− (d− 2)z

∂

∂z
,

where ∆y denotes the Euclidean Laplacian on Rd−1. Let M be the Brownian motion

on Hd with the Dirichlet form (E ,F):

E(u, u) =
1

2

∫
Hd

(∇u,∇u)dv =

∫ ∞

0

λd(Eλu, u), u ∈ F , (5.3)
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where F is the closure of C∞
0 (Hd) with respect to the norm, E1(·, ·)1/2 = (E(·, ·) +

(·, ·))1/2. Then, we can apply Theorem 4.5 to the Brownian motion. Indeed, we

see from Example 3.3 in Grigor’yan [21], it is transient and satisfies Assumption

(II). Assumptions (I), (III) and (IV) are also fulfilled (see [14]). In fact, an explicit

expression of the corresponding transition density p(t, x, y) is known (Grigor’yan

and Noguchi [22, Theorem 1.1]): if d = 2m+ 1, then

p(t, x, y) =
(−1)m

2mπm

1

(4πt)1/2

(
1

sinh r

∂

∂r

)m

e−m2t−ρ2/4t,

and if d = 2m+ 2, then

p(t, x, y) =
(−1)m+5/2

2m+3/2πm
t−3/2e−(2m+1)2t/4

(
1

sinh r

∂

∂r

)m

×
∫ ∞

r

se−s2/4t

(cosh s− cosh r)1/2
ds,

where r = |x− y|. We can check Assumptions (I), (III) and (IV) directly using this

expression.

We further construct examples of Feynman-Kac semigroups with the Lp-inde-

pendence.

Example 5.1. Let M be the Brownian motion on Hd whose Dirichlet form is defined

in (5.3). It is known in [14, p.177] that

λ2(0) = inf

{
E(u, u) : u ∈ F ,

∫
u2dv = 1

}
=

1

2

(
(d− 1)

2

)2

> 0 (5.4)

On the other hand, λ∞(0) = 0 because of the conservativeness of the Brownian

motion. Hence the Lp-independence does not hold. Let µ be in K∞ such that µ ≥ 0

and µ 6≡ 0. Lemma C.4 yields that

inf

{
Eθµ(u, u) : u ∈ F ,

∫
Hd

u2dv = 1

}
< 0

for sufficiently large θ. We can conclude that the Lp-independence holds for large θ.

Next two lemmas are used to show that it is possible to make λ2(F ) less than

or equal to zero by adding a non-local potential F . It is not trivial. Indeed, λ2(θF )

does not always become small even if we take a large θ, because θ appear in two

terms of the corresponding Schrödinger form:

EθF (u, u) =
1

2

∫
Hd×Hd

(u(x) − u(y))2eθF (x,y)N(x, dy)µH(dx) −
∫

Hd

u(x)2dµθF1 .

If θ becomes larger, then the first term becomes larger.

39



Lemma 5.7. If

inf

{
E(u, u) : u ∈ F ,

∫
X×X

u(x)u(y)F1(x, y)N(x, dy)µH(dx) = 1

}
< 1,

then

inf
{
EF (u, u) : u ∈ F , ‖u‖2 = 1

}
< 0.

Proof. Take a function φ in F satisfying E(φ, φ) < 1 and∫
X×X

φ(x)φ(y)F1(x, y)N(x, dy)µH(dx) = 1.

Let ψ = φ/‖φ‖2. Then we have

EF (ψ, ψ) = E(ψ, ψ) −
∫

X×X

ψ(x)ψ(y)F1(x, y)N(x, dy)µH(dx)

=
1

‖φ‖2
2

(
E(φ, φ) −

∫
X×X

φ(x)φ(y)F1(x, y)N(x, dy)µH(dx)

)
< 0.

Lemma 5.8. Let F ∈ J∞ with F ≥ 0 and F 6≡ 0, and define F θ
1 = eθF − 1. Then

there exists u ∈ F such that

E(u, u) < 1 and

∫
X×X

u(x)u(y)F θ
1 (x, y)N(x, dy)µH(dx) = 1 (5.5)

for a sufficiently large θ.

Proof. Take a non-negative function v in F such that∫
v(x)v(y)F1(x, y)N(x, dy)µH(dx) = 1.

Let

k(θ) =

∫
v(x)v(y)F1(x, y)N(x, dy)µH(dx)∫
v(x)v(y)F θ

1 (x, y)N(x, dy)µH(dx)

=
1∫

v(x)v(y)F θ
1 (x, y)N(x, dy)µH(dx)

.

Obviously, k(θ) → 0 as θ → ∞. Thus the function u defined by u =
√
k(θ)v satisfies

(5.5) for a sufficiently large θ.
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Example 5.2. Let M(α) be a Hunt process defined by the arguments in Section C.2.

Proposition C.5 enable us to we can apply Theorem 4.5 to M(α). We see from (5.4)

and (C.1),

inf

{
E (α)(u, u) : u ∈ F (α),

∫
u2dv = 1

}
=

1

2

(
(d− 1)

2

)α

.

Hence the Lp-independence does not hold. Let F be in J∞ such that F ≥ 0 and

F 6≡ 0. Lemmas 5.7 and 5.8 yield that

inf

{
E (α),θF (u, u) : u ∈ F (α),

∫
Hd

u2dv = 1

}
< 0

for sufficiently large θ. We can conclude that λp(θF ) is independent of p for large θ.
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Appendix A

Large Deviation Principles for
Discontinuous Additive
Functionals

The symmetric α-stable process is a typical example of pure-jump processes. In this

chapter, we study further some properties of the process . In the first section, we

give an alternative proof of Theorem 2.4 by using these properties. As stated in

Introduction, large deviations for additive functionals motivate us to show the Lp-

independence of growth bounds of Feynman-Kac semigroups. In the second section,

we study large deviations for purely discontinuous additive functionals of symmetric

α-stable processes.

A.1 An Alternative Proof of Theorem 2.4

We give an alternative proof of Theorem 2.4 for symmetric α-stable processes. We

will use the heat kernel estimates of α-stable processes due to Bass and Levin [6]

and Komatsu [27]. This method enables us to reduce general non-local potentials

to local potentials.

Let M = (Xt,Px) (0 < α < 2) be the symmetric α-stable process on Rd with

the Dirichlet form (E (α),F (α)). We recall that the Doléans-Dade exponential MF
t of

Mt = At(F1) − Ap
t (F1) is expressed by

MF
t = exp(At(F1) − Ap

t (F1) + At(F ) − At(F1))

= exp(At(F ) − Ap
t (F1)).
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We define the semigroup T F
t f(x) = Ex[M

F
t f(Xt)]. The corresponding symmetric

Dirichlet form E (α)
F is defined as follows:

E (α)
F (u, u) =

K(d, α)

2

∫
X×X\4

(u(x) − u(y))2

|x− y|d+α
eF (x,y)dxdy

Note that the jumping measure eF (x,y)N(x, y) of (E (α)
F ,F (α)) is equivalent with that

of (E (α),F (α)) because of the boundedness of F . We then see from [6] and [27] that

T F
t has a continuous integral kernel T F (t, x, y) ∈ C([0,∞) × Rd × Rd) with

C1

(
1

td/α
∧ t

|x− y|

)
≤ T F (t, x, y) ≤ C2

(
1

td/α
∧ t

|x− y|

)
. (A.1)

Theorem A.1. Let F ∈ J∞. Then the semigroup {T F
t }t>0 satisfies Assumptions

(I)–(IV).

Proof. The estimate (A.1) imply the invariance of C∞(Rd) and the irreducibility. We

show the conservativeness of {T F
t }t>0. Let {δm}∞m=1 be a sequence of non-negative

functions such that δm ∈ C∞
0 (Rd),

∫
δmdx = 1 and Supp[δm] ⊂ (−m−1,m−1)d for

all m ≥ 1. We set

km(x, y) =

∫∫
Rd×Rd

eF (ξ,η)δm(x− ξ)δm(y − η)dξdη

and define

Em(u, u) =
K(d, α)

2

∫∫
Rd×Rd\4

(u(x) − u(y))2km(x, y)

|x− y|d+α
dxdy, u ∈ F .

Let us denote by Tm(t, x, y) the continuous integral kernel of the Dirichlet form

(Em,F). Then, noting that

inf
x,y
eF (x,y) ≤ km(x, y) ≤ sup

x,y
eF (x,y) for all m,

we have from (A.1) that

C1

(
1

td/α
∧ t

|x− y|

)
≤ Tm(t, x, y) ≤ C2

(
1

td/α
∧ t

|x− y|

)
.

Moreover, we see from [27] that {Tm(t, x, y)}m is equi-continuous on any compact

subset of (0,∞) × Rd × Rd. By the Ascoli-Arzelà theorem, choosing a subsequence

if necessary, we may suppose that {Tm(t, x, y)}m converges to a function T F (t, x, y)
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locally uniformly on (0,∞)×Rd×Rd. Note that
∫

Rd Tm(t, x, y)dy = 1 for any t > 0,

x ∈ Rd and m ≥ 1. Then we have 1 = limm→∞
∫
Tm(t, x, y)dy =

∫
T F (t, x, y)dy

because for any ε > 0, t > 0 and x ∈ Rd there exists R > 0 such that

sup
m

∫
{|y|>R}

Tm(t, x, y)dy < ε

by Theorem 3 in [27]. We can show the strong Feller property of {T F
t }t>0 by exactly

the same way as that in Davies [14, Corollary 5.2.7]. In fact, for each f ∈ Bb(Rd)

and any x0 ∈ Rd,

lim inf
x→x0

∫
Rd

T F (t, x, y)(‖f‖∞ ± f(y))dy ≥ ‖f‖∞ ±
∫

Rd

T F (t, x0, y)f(y)dy

by Fatou’s lemma and the conservativeness of {T F
t }t>0. Hence T F

t f is bounded lower

and upper semicontinuous.

The following theorem is the main part of Theorem 2.4.

Theorem A.2 ([39, Theorem 2.1]). Suppose that a Hunt process satisfies Assump-

tions (I)–(IV) and a signed measure µ belongs to K∞. Then the Feynman-Kac

semigroup {pµ
t }t>0 satisfies all properties in Theorem 2.4.

We now turn to the alternative proof of Theorem 2.4.

An Alternative Proof of Theorem 2.4. Theorem A.1 says that the semigroup {T F
t }t>0

satisfies Assumptions (I)–(IV). Using the inequality (A.1), the resolvent of the

Dirichlet form (E (α)
F ,F (α)) is also equivalent to one of the original Dirichlet form

(E (α),F (α)). Hence the class K∞ (resp. K∞,0) of (E (α)
F ,F (α)) is the same of the orig-

inal Dirichlet form. Hence, µ+ µF1 belongs to K∞ of (E (α)
F ,F (α)) and Theorem A.2

is applicable for µ+ µF1 and (EF ,F).

A.2 A Large Deviation Principle for Discontinu-

ous Additive Functionals

The Lp-independence implies the existence of the logarithmic moment generating

function of At(µ + F ). Hence for the application of the Gärtner-Ellis theorem,

it is necessary to show the differentiability of the logarithmic moment generating
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function. For symmetric α-stable processes, we know in [44] that the logarithmic

moment generating function is differentiable. As a result, we can establish the large

deviation principle of At(F ). In this section, we explain this topic.

We define a new class A∞ of non-local potentials F .

Definition A.1. A function F ∈ J∞ is said to be in the class A∞, if for any ε > 0

there exist a Borel set K of finite µ|F |-measure and a constant δ > 0 such that for

any measurable set B ⊂ K with µ|F |(B) < δ,

sup
(x,w)∈Rd×Rd\4

∫∫
((K\B)×(K\B))c

G(x, y)G(z, w)

G(x,w)
|F (y, z)|N(x, y)dzdy ≤ ε.

Let F be a positive symmetric bounded function on Rd × Rd \ 4 in A∞. We

recall the symmetric closed form (EθF ,F (α)) by

EθF (u, v) = E (α)(u, v) −
∫∫

Rd×Rd\4
u(x)v(y)

(
eθF (x,y) − 1

)
N(x, y)dxdy, θ ∈ R,

where

N(x, y) =
K(d, α)

|x− y|d+α
.

Then its associated self-adjoint operator HθF is formally written by

HθFf(x) =
1

2
(−∆)α/2f(x) −

∫
Rd

f(y)
(
eθF (x,y) − 1

)
N(x, y)dy.

We define the function C(θ) by

−C(θ) = λ2(θF ) = inf

{
EθF (u, u) : u ∈ F (α),

∫
Rd

u2dx = 1

}
,

and let I(λ) be the Fenchel-Legendre transform of C(θ):

I(λ) = sup
θ∈R

{λθ − C(θ)}, λ ∈ R.

Then, the function C(θ) is a convex, non-negative and differentiable function on R.

This implies that its Fenchel-Legendre transform I is convex and good (e.g. [15,

Lemma 2.3.9]); for every l > 0, the level set {λ ∈ R : I(λ) ≤ l} is compact. Now

the main theorem in this chapter is as follows:

Theorem A.3. Assume that d ≤ 2α. Then for a positive function F ∈ A+
∞, At(F )/t

obeys the large deviation principle with rate function I(λ) :
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(i) For each closed set K ∈ R,

lim sup
t→∞

1

t
log Px

(
At(F )

t
∈ K

)
≤ − inf

λ∈K
I(λ).

(ii) For each open set G ⊂ R,

lim inf
t→∞

1

t
log Px

(
At(F )

t
∈ G

)
≥ − inf

λ∈G
I(λ).

To apply the Gärtner-Ellis theorem, we will show first that the limit

lim
t→∞

1

t
log Ex [exp(θAt(F ))] , θ ∈ R (A.2)

exists ([15, Assumption 2.3.2]). We call the limit the logarithmic moment generating

function of At(F ). For the proof of the existence of the limit (A.2), we use Theorem

5.6; if the function F belongs to the class J∞, it follows from Theorem 3.10 that

lim inf
t→∞

1

t
log Ex [exp(θAt(F ))] ≥ −λ2(θF ).

Moreover, we see from the Lp-independence that

lim sup
t→∞

1

t
log Ex [exp(θAt(F ))] ≤ lim sup

t→∞

1

t
log sup

x∈Rd

Ex [exp(θAt(F ))]

= −λ∞(θF ) = −λ2(θF ) = C(θ).

We thus see that −λ2(θF ) is the logarithmic moment generating function of

Feynman-Kac functional At(F ). In [40], Takeda used an ergodic theorem due to

Fukushima [19] to prove the existence of the limit (A.2).

The existence of the logarithmic moment generating function leads us to the

upper bound (i) in Theorem A.3. To prove the lower bound (ii) in Theorem A.3

by using the Gärtner-Ellis theorem, we need to show that the function C(θ) is

essentially smooth in the sense of [15, Definition 2.3.5]. With regard to this property,

the following theorem holds.

Theorem A.4 ([44, Theorem 7.2]). Let F be in A+
∞. Then if d ≤ 2α, the spectral

function C(θ) is differentiable on R.

For the proof of the differentiability, we follow the arguments in [43]; we need the

criticality theory for Schrödinger operators with non-local potential. The condition,

d ≤ 2α, comes from the null criticality of the Schrödinger operator Hθ0F , where

θ0 = inf{θ > 0 : C(θ) > 0}.
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More precisely, we will prove that the operator Hθ0F is critical, that is, Hθ0F does not

admit the minimal positive Green function but admits a positive continuous Hθ0F -

harmonic function (this function is called a ground state and uniquely determined

up to constant multiplication). We note that if d ≤ α, then the symmetric α-stable

process is recurrent. On account of the recurrence, we can show that θ0 equals 0

and the ground state is the positive constant function. In addition, we will prove

that if d ≤ 2α, then Hθ0F is null critical, that is, the ground state does not belong

to L2(Rd). In fact, denoting by h the ground state, for α < d there exist positive

constants c, C such that

c

|x|d−α
≤ h(x) ≤ C

|x|d−α
, |x| > 1.

The criticality of Schrödinger type operators is studied by many people (M.

Murata, Y. Pinchover, R. Pinsky,...). In particular, Z.-Q. Chen [10] considered

the subcriticality of Schrödinger operators with non-local potential and obtained a

necessary and sufficient condition for the subcriticality: For a positive F in A∞, the

operator HF is subcritical if and only if

inf

{
1

2

∫∫
Rd×Rd\4

(u(x) − u(y))2eF (x,y)N(x, y)dxdy :∫
Rd×Rd\4

u2(x)
(
eF (x,y) − 1

)
N(x, y)dxdy = 1

}
> 1.

(A.3)

In [44], an another necessary and sufficient condition for the subcriticality as follows

was established:

inf

{
E (α)(u, u) :

∫∫
Rd×Rd\4

u(x)u(y)
(
eF (x,y) − 1

)
N(x, y)dxdy = 1

}
> 1. (A.4)

We can check the condition (A.4) more easily than Chen’s one, because the minimiz-

ing form does not depend on the function F . However we can study the properties

of the minimizing function in (A.3) more easily than that in (A.4). In fact, we

know that the minimizing function in (A.3) is characterized as the ground state of

an irreducible time changed Markov generator, and thus it is strictly positive and

continuous. On the other hand, we have not known the meaning of the minimizing

function in (A.4). We thus use these two conditions for proof of the null criticality

of Hθ0F .
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As remarked in [15, Section 2.3], the Gärtner-Ellis theorem is restrictive for the

proof of the large deviation principle. In fact, the Gärtner-Ellis theorem is not

applicable to the case d > 2α because the function C(θ) is not differentiable at

θ = θ0 (Remark A.1), while we believe that the large deviation itself holds even for

d > 2α.

Example A.1. Let K be a subset of Rd with finite Lebesgue measure. Then it

is known in [10, Example 2.1] that the function F belongs to A∞. In particular,

for compact sets K1, K2 with K1 ∩K2 = ∅, the function F (x, y) = 1K1(x)1K2(y) +

1K2(x)1K1(y) is in A∞.

The corresponding additive functional is

At(F ) =
∑

0<s≤t

F (Xs−, Xs) = ]{s : 0 < s ≤ t,Xs− ∈ Ki, Xs ∈ Kj, i 6= j},

that is, the additive functional denotes the number that the α-stable process jumps

between K1 and K2 up to t.

Remark A.1. For classical Schrödinger operators, the non-differentiability of spectral

function was considered in [33]. The argument in [33, Theorem 2.1] can be adapted

to prove that if d > 2α, then C(θ) is not differentiable. Indeed, the ground state h

belongs to L2(dx), that is, 0 is an eigenvalue of Hθ0F . We normalize the function h

as ‖h‖2 = 1. Let

BF (u, u) =

∫∫
Rd×Rd\4

u(x)u(y)F (x, y)N(x, y)dxdy.

Since for θ > θ0,

−C(θ) ≤ E (α)(h, h) − B(θF )1(h, h)

and

E (α)(h, h) = B(θ0F )1(h, h),

we have

C(θ) ≥ B(θF )1(h, h) − B(θ0F )1(h, h) ≥ (θ − θ0)BF (h, h).

Hence we see that

lim inf
θ↓θ0

C(θ)

θ − θ0

= BF (h, h) > 0.
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Appendix B

A Large Deviation Principle for
Normalized Markov Processes

Varadhan [46] gave an abstract formulation for the large deviation principle. The-

orem 3.10 and Theorem 3.11 are slightly different form the lower estimate and the

upper estimate in his formulation; at least, the rate function IEµ+F is not positive.

Moreover, the Hunt process is not supposed to be conservative, consequently has

no invariant measure. Hence these theorem does not say the large deviation from

invariant measure. In this chapter, we show that under Assumptions (I), (III) and

(V), we can fit these theorem to Varadhan’s formulation by considering normal-

ized Markov processes. According to this modification, our theorem says the large

deviation from the ground state of the generalized Schrödinger operator.

Let M = (Ω, Xt,Px, ζ) be an m-symmetric Markov process on a locally compact

separable metric space X. Note that M is allowed to be explosive.

Assumption 2. (V) For any ε > 0, there exists a compact set K such that

sup
x∈X

R11Kc(x) ≤ ε.

We make Assumptions (I), (III) and (V). Let µ ∈ K∞ and F ∈ J∞. Let At(µ+F )

be the additive functional defined in Chapter 2. We define the function IEµ+F on

P(X) in the same way as in Chapter 3:

IEµ+F (ν) =

{
Eµ+F (

√
f,

√
f) if ν = f ·m,

√
f ∈ F ,

∞ otherwise.

Let us define κ(µ+ F ) by

κ(µ+ F ) = lim
t→∞

1

t
log ‖pµ+F

t ‖∞,∞.
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We see from Theorem 2.4 that κ(µ + F ) is finite. If α > κ(µ + F ) and f ∈ Bb(X),

we define the resolvent Rµ+F
α by

Rµ+F
α f(x) = Ex

[∫ ∞

0

e−αt+At(µ+F )f(Xt)dt; t < ζ

]
.

We set

D+(Hµ+F ) =
{
Rµ+F

α f : α > κ(µ+ F ), f ∈ L2(X;m) ∩ Cb(X), f ≥ 0 and f 6≡ 0
}
.

Each function φ = Rµ+F
α f ∈ D+(Hµ+F ) is strictly positive because Px(σO < ζ) > 0

for any x ∈ X by Assumption (I). Here O is a non-empty open set {x ∈ X : f(x) >

0}. We define the generator Hµ+F by

Hµ+Fu = αu− f, u = Rµ+F
α f ∈ D+(Hµ),

and the function I on P(X) by

I(ν) = − inf
φ∈D+(Hµ+F )

ε>0

∫
X

Hµ+Fφ

φ+ εh
dν. (B.1)

Here, h(x) is the gauge function, that is, h(x) = Ex[e
Aζ(µ+F )].

The gauge function h(x) satisfies 0 < c ≤ h(x) ≤ C < ∞. Indeed, for µ ∈ K∞

and F ∈ J∞, by Proposition 2.2 in [9] and the definition of J∞, supx∈X Ex(Aζ(|µ|+
|F |)) <∞. By Jensen’s inequality,

inf
x∈X

Ex(exp(Aζ(µ+ F ))) > 0.

On the other hand, By the Gauge Theorem (see [9, Theorem 2.13]), the gauge

function h(x) is either bounded on X or identically ∞ on X. However, if h(x) ≡ ∞,

then we may replace the Markov process M by the 1-subprocess M(1) = (Ω, Xt,P(1)
x )

of M, that is, M(1) be the Hunt process transformed by e−t: P(1)
x (dω) = e−tPx(dω).

We need add a positive constant ε because the Markov process is not supposed

to be conservative.

Denote by B+
b (X) the set of non-negative bounded Borel functions on X. Let us

define the function Iα on P(X) by

Iα(ν) = − inf
u∈B+

b
(X)

ε>0

∫
X

log

(
αRµ+F

α u+ εh

u+ εh

)
dν.
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Lemma B.1. It holds that

Iα(ν) ≤ I(ν)

α
, ν ∈ P(X).

Proof. For u = Rµ+F
α f ∈ D+(Hµ+F ) and ε > 0, set

φ(α) = −
∫

X

log

(
αRµ+F

α u+ εh

u+ εh

)
dν.

Then, noting that
d

dα

(
Rµ+F

α u
)

= −
(
Rµ+F

α

)2
u, we have

dφ

dα
(α) = −

∫
X

Rµ+F
α u− α

(
Rµ+F

α

)2
u

αRµ+F
α u+ εh

dν =

∫
X

Hµ+F
(
Rµ+F

α

)2
u

αRµ+F
α u+ εh

dν.

Since(
α
(
Rµ+F

α

)2
u−Rµ+F

α u
)(

α2
(
Rµ+F

α

)2
u+ εh

)
−
(
α
(
Rµ+F

α

)2
u−Rµ+F

α u
) (
αRµ+F

α u+ εh
)

equals α
(
α
(
Rµ+F

α

)2
u−Rµ+F

α u
)2

≥ 0, we have

α
(
Rµ+F

α

)2
u−Rµ+F

α u

αRµ+F
α u+ εh

≥
α
(
Rµ+F

α

)2
u−Rµ+F

α u

α2
(
Rµ+F

α

)2

u+ εh
,

and thus ∫
X

Hµ+F
(
Rµ+F

α

)2
u

αRµ+F
α u+ εh

dν ≥
∫

X

Hµ+F
(
Rµ+F

α

)2
u

α2
(
Rµ+F

α

)2

u+ εh
dν

= − 1

α2

−
∫

X

Hµ+F
(
Rµ+F

α

)2
u(

Rµ+F
α

)2

u+ εh
α2

dν


≥ − 1

α2
I(ν).

Therefore

φ(∞) − φ(α) =

∫
X

log

(
αRµ+F

α u+ εh

u+ εh

)
dν ≥ −I(ν)

α
,

which implies

− inf
u∈D+(Hµ+F )

ε>0

∫
X

log

(
αRµ+F

α u+ εh

u+ εh

)
dν ≤ I(ν)

α
.
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Since ‖βRµ+F
β f‖∞ ≤ C‖f‖∞, β > 0, and βRµ+F

β f(x) → f(x) as β → ∞,∫
X

log

(
αRµ+F

α (βRµ+F
β f) + εh

βRµ+F
β f + εh

)
dν

β→∞−→
∫

X

log

(
αRµ+F

α f + εh

f + εh

)
dν. (B.2)

Define the measure να by

να(A) =

∫
X

αRµ+F
α (x,A)dν(x), A ∈ B(X).

Given v ∈ B+
b (X), take a sequence {gn}∞n=1 ⊂ C+

b (X) ∩ L2(X;m) such that∫
X

|v − gn|d(να + ν) → 0 as n→ ∞.

We then have∫
X

|αRµ+F
α v − αRµ+F

α gn|dν ≤
∫

X

αRµ+F
α (|v − gn|)dν =

∫
X

|v − gn|dνα → 0

as n→ ∞, and so∫
X

log

(
αRµ+F

α gn + εh

gn + εh

)
dν

n→∞−→
∫

X

log

(
αRµ+F

α v + εh

v + εh

)
dν. (B.3)

Hence, combining (B.2) and (B.3)

inf
u∈D+(Hµ+F )

∫
X

log

(
αRµ+F

α u+ εh

u+ εh

)
dν = inf

u∈B+
b

∫
X

log

(
αRµ+F

α u+ εh

u+ εh

)
dν,

which implies the lemma.

Lemma B.2. If I(ν) <∞, then ν is absolutely continuous with respect to m.

Proof. By the similar argument in the proof of [16, Lemma 4.1], we obtain this

lemma. Indeed, for a > 0 and A ∈ B(X), set u(x) = a1A(x) + 1 ∈ B+
b (X). Then∫

X

log

(
αRµ+F

α u+ εh

u+ εh

)
dν =

∫
X

log

(
aαRµ+F

α (x,A) + αRµ+F
α (x,X) + εh

a1A(x) + 1 + εh

)
dν.

Define the measure να as in the proof of Lemma B.1. Put

cα =

∫
X

αRµ+F
α (x,X)dν(x)(= να(X)).

We see from Lemma B.1 and Jensen’s inequality that

log (aνα(A) + cα + εh) ≥ ν(A) log(a+ 1 + εh) + ν(Ac) log(1 + εh) − I(ν)/α,
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and by letting ε→ 0

log (aνα(A) + cα) ≥ ν(A) log(a+ 1) − I(ν)/α.

Since log x ≤ x− 1 for x > 0, we have

aνα(A) + cα − 1 ≥ ν(A) log(a+ 1) − I(ν)/α,

and so

να(A) − ν(A) ≥ −I(ν)/α+ ν(A)(log(a+ 1) − a) + 1 − cα
a

.

Noting that log(a+ 1) − a < 0, we have

να(A) − ν(A) ≥ −I(ν)/α+ (log(a+ 1) − a) + 1 − cα
a

for all A ∈ B(X) and

ν(A) − να(A) = 1 − cα + (να(Ac) − ν(Ac))

≥ −I(ν)/α+ (log(a+ 1) − a) + (1 − cα)(a+ 1)

a

for all A ∈ B(X). Therefore we can conclude that

sup
A∈B(X)

|ν(A) − να(A)| ≤ a− log(a+ 1) + I(ν)/α+ (1 − cα)(a+ 1)

a
.

Note that cα → 1 as α→ ∞. Then since

lim sup
α→∞

sup
A∈B(X)

|ν(A) − να(A)| ≤ a− log(a+ 1)

a

and the right hand side converges to 0 as a→ 0, the lemma follows.

Proposition B.3. It holds that for ν ∈ P(X),

I(ν) = IEµ+F (ν).

Proof. We follow the argument of the proof of [16, Theorem 5]. Suppose that I(ν) =

` <∞. By Lemma B.2, ν is absolutely continuous with respect to m. Let us denote

by f its density and let fn =
√
f ∧ n. Since log(1 − x) ≤ −x for −∞ < x < 1 and

−∞ <
fn − αRµ+F

α fn

fn + εh
< 1,∫

X

log

(
αRµ+F

α fn + εh

fn + εh

)
fdm =

∫
X

log

(
1 − fn − αRµ+F

α fn

fn + εh

)
fdm

≤ −
∫

X

fn − αRµ+F
α fn

fn + εh
fdm,
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so ∫
X

fn − αRµ+F
α fn

fn + εh
fdm ≤ Iα(f ·m).

By letting n→ ∞ and ε→ 0, we have∫
X

√
f(
√
f − αRµ+F

α

√
f)dm ≤ Iα(f ·m) ≤ I(f ·m)

α
,

which implies that
√
f ∈ F and Eµ+F (

√
f,

√
f) ≤ I(f ·m).

Let φ ∈ D+(Hµ+F ) and define the semigroup P φ
t by

P φ
t f(x) = Ex

[
eAt(µ+F ) · (φ+ εh)(Xt)

(φ+ εh)(X0)
exp

(
−
∫ t

0

Hµ+Fφ

φ+ εh
(Xs)ds

)
f(Xt)

]
.

Then, P φ
t is (φ + εh)2m-symmetric and satisfies P φ

t 1 ≤ 1. Given ν = f · m ∈ F1

with
√
f ∈ F , set

Sφ
t

√
f(x) = Ex

[
eAt(µ+F ) · exp

(
−
∫ t

0

Hµ+Fφ

φ+ εh
(Xs)ds

)√
f(Xt)

]
Then ∫

X

(Sφ
t

√
f)2dm =

∫
X

(φ+ εh)2

(
P φ

t

( √
f

φ+ εh

))2

dm

≤
∫

X

(φ+ εh)2P φ
t

(( √
f

φ+ εh

)2
)
dm

≤
∫

X

(φ+ εh)2

( √
f

φ+ εh

)2

dm

=

∫
X

fdm.

Hence

0 ≤ lim
t→0

1

t
(
√
f − Sφ

t

√
f,
√
f)m = Eµ+F (

√
f,
√
f) +

∫
X

Hµ+Fφ

φ+ εh
fdm,

and thus Eµ+F (
√
f,

√
f) ≥ I(f ·m).

Put

λ2(µ+ F ) = inf
{
Eµ+F (u, u) : u ∈ F , ‖u‖2 = 1

}
,

and let {un} be a minimizing sequence of F , that is, ‖un‖2 = 1 and λ2(µ + F ) =

limn→∞ Eµ+F (un, un). Put µ′ = |µ| + |µF1 |. Since E(un, un) ≤ cEF (un, un) and∫
X

u2
ndµ

′ ≤ ‖Gαµ
′‖∞ (E(un, un) + α) ,
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we have

Eµ+F (un, un) ≥ EF (un, un) − ‖Gαµ
′‖∞ (E(un, un) + α)

≥ 1

c
E(un, un) − ‖Gαµ

′‖∞ (E(un, un) + α)

=

(
1 − c‖Gαµ

′‖
c

)
E(un, un) − α‖Gαµ

′‖∞

Choosing α so large that 1 − c‖Gαµ
′‖∞ > 0, we have

E(un, un) ≤ c

1 − c‖Gαµ′‖∞
(
Eµ+F (un, un) + α‖Gαµ

′‖∞
)
.

We thus see from Assumption (V) that for any ε > 0 there exists a compact set K

such that

sup
n

∫
Kc

u2
n · dm ≤ ‖R1IKc‖∞ ·

(
sup

n
E(un, un) + α

)
< ε,

that is, the subset {u2
nm} of P(X) is tight. Hence there exists a subsequence {u2

nk
m}

weakly converges to a probability measure ν. Since the function IEµ+F is lower semi-

continuous by Lemma B.2,

IEµ+F (ν) ≤ lim inf
k→∞

IEµ+F (u2
nk
m) = lim inf

k→∞
Eµ+F (unk

, unk
) <∞.

Therefore, Proposition B.3 says that ν = u2
0m, u0 ∈ F . The function u0 is the

ground state, λ2(µ+F ) = Eµ+F (u0, u0). The uniqueness of the ground state follows

from Assumption (I) (Irreducibility) (see [14, Proposition 1.4.3]). Therefore we have:

Proposition B.4. Under Assumptions (I), (III) and (V), there exists a unique

ground state u0 ∈ F of Hµ+F .

Define the probability measure Qx,t on P(X) by

Qx,t(B) =
Ex[e

At(µ+F );Lt ∈ B, t < ζ]

Ex[eAt(µ+F ); t < ζ]
, B ∈ B(P(X)). (B.4)

Here, Lt is the occupation distribution defined as in (3.2). Define the function J on

P(X) by

J(ν) = IEµ+F (ν) − λ2(µ+ F ). (B.5)

Lemma B.5. The function J satisfies:
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(i) 0 ≤ J(ν) ≤ ∞.

(ii) J is lower semicontinuous.

(iii) For each l <∞, the set {ν ∈ P(X) : J(ν) ≤ l} is compact.

(iv) J(u2
0 ·m) = 0 and J(ν) > 0 for ν 6= u2

0 ·m.

We see from Lemma B.5 that the function J satisfies those conditions for the

rate function which Varadhan imposed in his formulation. Then we have the next

theorem([41]):

Theorem B.6. Let M be a Hunt process satisfying Assumptions (I), (III) and (V).

Let µ be a measure in K∞ and F a function in J∞. Define by (B.4) a sequence

{Qx,t}t>0 of probability measures on P(X). Then the sequence {Qx,t}t>0 obeys the

large deviation principle with rate function J :

(i) For each open set G ⊂ P(X)

lim inf
t→∞

1

t
logQx,t (G) ≥ − inf

ν∈G
J(ν).

(ii) For each closed set K ⊂ P(X)

lim sup
t→∞

1

t
logQx,t (K) ≤ − inf

ν∈K
J(ν).

Corollary B.7. The measure Qx,t weakly converges to δu2
0·m as t→ ∞.

Proof. If a closed set K does not contain u2
0 ·m, then infx∈K J(x) > 0 by Lemma B.5

(iv). Hence Theorem B.6 (ii) says that limt→∞Qx,t(K) = 0 and limt→∞Qx,t(K
c) =

1. For a positive constant δ and a bounded continuous function f on the set of

P(X), define the closed set K ⊂ P(X) by K = {ν ∈ P(X) : |f(ν)−f(u2
0 ·m)| ≥ δ}.

Then we have∣∣∣∣∫
P(X)

f(ν)Qx,t(dν) − f(u2
0 ·m)

∣∣∣∣ ≤ ∫
P(X)

|f(ν) − f(u2
0 ·m)|Qx,t(dν)

=

∫
K

|f(ν) − f(u2
0 ·m)|Qx,t(dν) +

∫
Kc

|f(ν) − f(u2
0 ·m)|Qx,t(dν)

≤ δQx,t(K
c) + 2‖f‖∞Qx,t(K) −→ δ

as t→ ∞. Since δ is arbitrary, we can conclude the weak convergence.

On account of Corollary B.7, we realize that Theorem B.6 implies a large devi-

ation from the ground state.
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Appendix C

Time Change and Subordination

C.1 Time Changed Hunt Processes

In this section, we study some properties of time changed Hunt processes by PCAF.

Let (X,m), M and (E ,F) be as in the preceding chapter. Given a Dirichlet form

(E ,F) on L2(X;m), we denote by Fe the family of m-measurable functions u on X

such that |u| <∞ m-a.e. and there exists an E-Cauchy sequence {un} of functions

F such that limn→∞ un = u m-a.e. We call (Fe, E) the extended Dirichlet space of

(E ,F).

Lemma C.1 ([20, Lemma 1.5.5]). If a Dirichlet form (E ,F) on L2(X;m) is tran-

sient then its extended Dirichlet space Fe is Hilbert space with respect to inner prod-

uct E(·, ·).

Let us fix a positive Radon measure µ ∈ K and At(µ) the PCAF with Revuz

measure µ. We denote by Y the topological support of µ, i.e. Y is the smallest

closed set outside which µ vanishes. Let {τt}t≥0 be the right continuous inverse

function of At(µ), τt = inf{s > 0 : As(µ) > t}. We assume that support Y equals

the quasi-support Ỹ of µ, Ỹ = {x ∈ X : Px(τ0 = 0) = 1}.
We consider the following orthogonal decomposition of the Hilbert space (Fe, E):

Fe = Fe,X\Y ⊕HY

Fe,X\Y = {u ∈ Fe : u = 0 q.e. on Y },

and denote by HY the orthogonal projection from Fe to HY . It is known in [20,

Theorem 4.3.2] that HY u(x) = Ex[u(XσY
)] for any u ∈ Fe and x ∈ X.
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Define a symmetric form (Ě , F̌) on L2(Y ;µ) by{
F̌ = {φ ∈ L2(Y ;µ) : φ = u µ-a.e. on Y for some u ∈ Fe},

Ě(φ, φ) = E(HY u,HY u), φ ∈ F̌ , φ = u µ-a.e. on Y, u ∈ Fe.

Let us also define the time changed process M̌ = (X̌t,Px)x∈Y of M with respect to

the PCAF At(µ) by

X̌t = Xτt .

Then the time changed process M̌ is a strong Markov process on Y . In particular,

the transition function and the resolvent of M̌ is respectively given by

p̌tφ(x) = Ex[φ(Xτt)], x ∈ Y,

Řαφ(x) = Ex

[∫ ∞

0

e−αtφ(Xτt)dt

]
= Ex

[∫ ∞

0

e−αAt(µ)φ(Xt)dAt(µ)

]
.

Theorem C.2 ([20, Theorem 6.2.1]). Let M be a Hunt process associated with a

regular Dirichlet form (E ,F) on L2(X;m). Then the time changed process M̌ is

the Hunt process associated with the Dirichlet form (Ě , F̌). Furthermore, (Ě , F̌) is

regular.

For a measure µ ∈ K, define

λ(µ) = inf

{
E(u, u) : u ∈ F ,

∫
X

u(x)2µ(dx) = 1

}
.

On account of Lemma 3.1 in [38], we see that λ(µ) is the bottom of the spectrum

of the time changed process M̌.

Definition C.1. If a measure µ ∈ K satisfies

sup
x∈X

Ex[exp(A∞(µ))] <∞,

then µ is said to be gaugeable.

Theorem C.3 (Chen [9, Theorem 5.1]). Let µ be a positive measure in K∞,0. Then

µ is gaugeable if and only if λ(µ) > 1.

Lemma C.4. Let µ be a positive measure in K∞,0. Then λ(µ) ≤ 1 if and only if

λ2(µ) = inf {Eµ(u, u) : u ∈ F , ‖u‖2 = 1} ≤ 0.
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Proof. Suppose that λ(µ) ≤ 1. Then there exists a function φ ∈ F with E(φ, φ) ≤ 1

and
∫

X
φ(x)2µ(dx) = 1. Let ψ = φ/‖φ‖2, then we have

Eµ(ψ, ψ) = E(ψ, ψ) −
∫

X

ψ(x)2µ(dx)

=
1

‖φ‖2
2

(
E(φ, φ) −

∫
X

φ(x)2µ(dx)

)
≤ 0.

Suppose that λ2(µ) ≤ 0. Then there exists a function ϕ ∈ F with Eµ(ϕ, ϕ) ≤ 0 and

‖ϕ‖2 = 1. Let ψ1 = ϕ/(
∫
ϕ2dµ)1/2, then we have

E(ψ1, ψ1) = Eµ(ψ1, ψ1) +

∫
ψ1(x)

2µ(dx)

≤ 1.

C.2 Subordination

Let M = (Xt,Px) be an m-symmetric Hunt process on X satisfying Assumptions

(I)–(IV). Let (E ,F) be the Dirichlet form generated by M. In this section, we use

the spectral representation of the Dirichlet form:
F =

{
u ∈ L2(X;m) :

∫ ∞

0

λ(dEλu, u) <∞
}
,

E(u, v) =

∫ ∞

0

λ(dEλu, v) u, v ∈ F .

Let γα
t (s) (s > 0, 0 < α < 2) be a unique continuous function satisfying

e−taα/2

=

∫ ∞

0

e−asγ
(α)
t (s)ds, a, t > 0

(see Yosida [49, Chapter IX §11] for more details). Define

p
(α)
t f(x) =

∫ ∞

0

Ex[f(Xs)]γ
(α)
t (s)ds, t > 0.

Then {p(α)
t }t>0 is a strongly continuous sub-Markovian semigroup on L2(X;m). We

have the corresponding Dirichlet form is expressed by
E (α)(u, u) =

∫ ∞

0

λα/2d(Eλu, u), u ∈ F (α),

F (α) =

{
u ∈ L2(X;m) :

∫ ∞

0

λα/2d(Eλu, u) <∞
}
.

(C.1)
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Furthermore, there exists a Hunt process M(α) generated by (E (α),F (α)) ([29, The-

orem 3.2]).

Proposition C.5. If a Hunt process M satisfies Assumptions (I)–(IV), then so does

M(α).

Proof. (I): Take any p
(α)
t -invariant set A and a positive function f ∈ L2(X;m).

Then we have

1A(x)(p
(α)
t f(x)) = 1A(x)

∫ ∞

0

Ex[f(Xs)]γ
(α)
t (s)ds

=

∫ ∞

0

1A(x)Ex[f(Xs)]γ
(α)
t (s)ds

=

∫ ∞

0

1A(x)psf(x)γ
(α)
t (s)ds.

Furthermore,

p
(α)
t (1Af(x)) =

∫ ∞

0

ps(1Af(x))γ
(α)
t (s)ds.

Since γ
(α)
t (s) > 0, ps(1Af(x)) = 1Apsf(x) and thus m(A) = 0 or m(X \ A) = 0 by

the irreducibility of pt.

(II): It is obvious since pt = 1 and
∫∞

0
γ

(α)
t (s)ds = 1.

(III) and (IV): Noting that γ
(α)
t (s)ds is a bounded measure, we have (III) and (IV)

by the dominated convergence theorem.
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