Modelling a random rubber band

M. Hairer
University of Warwick
Sendai, 03.09.2015
Joint work with L. Zambotti, Y. Bruned (Paris VI)

Introduction

Rubber band constrained to lie on a Manifold: $u: S^{1} \rightarrow \mathcal{M}$.

Deterministic part of evolution: "length shortening" / heat flow. Suitable L^{2}-gradient flow for $\int g_{u}(\dot{u}, \dot{u}) d t$.

Local coordinates

In local coordinates, heat flow given by:

$$
\partial_{t} u^{\alpha}=\partial_{x}^{2} u^{\alpha}+\Gamma_{\beta \gamma}^{\alpha}(u) \partial_{x} u^{\beta} \partial_{x} u^{\gamma}=:(\Delta u)^{\alpha} .
$$

Nonlinearity given by Christoffel symbols of Levi-Civita connection Γ.

Introduced by Eells-Sampson to show that every smooth map $\mathcal{N} \rightarrow \mathcal{M}$ is homotopic to a harmonic map.

Makes sense for any torsion-free connection (not just Levi-Civita): equilibria satisfy $\nabla_{\partial_{x} u} \partial_{x} u=0$. Unit speed geodesics.

Local coordinates

In local coordinates, heat flow given by:

$$
\partial_{t} u^{\alpha}=\partial_{x}^{2} u^{\alpha}+\Gamma_{\beta \gamma}^{\alpha}(u) \partial_{x} u^{\beta} \partial_{x} u^{\gamma}=:(\Delta u)^{\alpha} .
$$

Nonlinearity given by Christoffel symbols of Levi-Civita connection Γ.

Introduced by Eells-Sampson to show that every smooth map $\mathcal{N} \rightarrow \mathcal{M}$ is homotopic to a harmonic map.

Makes sense for any torsion-free connection (not just Levi-Civita) equilibria satisfy $\nabla_{\partial_{x} u} \partial_{x} u=0$. Unit speed geodesics.

Local coordinates

In local coordinates, heat flow given by:

$$
\partial_{t} u^{\alpha}=\partial_{x}^{2} u^{\alpha}+\Gamma_{\beta \gamma}^{\alpha}(u) \partial_{x} u^{\beta} \partial_{x} u^{\gamma}=:(\Delta u)^{\alpha} .
$$

Nonlinearity given by Christoffel symbols of Levi-Civita connection Γ.

Introduced by Eells-Sampson to show that every smooth map $\mathcal{N} \rightarrow \mathcal{M}$ is homotopic to a harmonic map.

Makes sense for any torsion-free connection (not just Levi-Civita): equilibria satisfy $\nabla_{\partial_{x} u} \partial_{x} u=0$. Unit speed geodesics.

Adding noise

Consider a discrete version:

Add independent noises to each bead.

Basic question: how strong should the noise be to create an effect of order 1? Recall that noise of strength σ yields displacement $O(\sigma \sqrt{t})$.

First guess: relevant timescale $\mathcal{O}\left(\varepsilon^{2}\right)$, want displacement $\mathcal{O}(\varepsilon) \Rightarrow$ $\sigma \approx 1$.

Adding noise

Consider a discrete version:

Add independent noises to each bead.
Basic question: how strong should the noise be to create an effect of order 1? Recall that noise of strength σ yields displacement $\mathcal{O}(\sigma \sqrt{t})$

First guess: relevant timescale $\mathcal{O}\left(\varepsilon^{2}\right)$, want displacement $\mathcal{O}(\varepsilon) \Rightarrow$ $\sigma \approx 1$.

Adding noise

Consider a discrete version:

Add independent noises to each bead.
Basic question: how strong should the noise be to create an effect of order 1? Recall that noise of strength σ yields displacement $\mathcal{O}(\sigma \sqrt{t})$.

First guess relevant timescale $O\left(\varepsilon^{2}\right)$, want displacement $\mathcal{O}(\varepsilon) \Rightarrow$ $\sigma \approx 1$

Adding noise

Consider a discrete version:

Add independent noises to each bead.
Basic question: how strong should the noise be to create an effect of order 1? Recall that noise of strength σ yields displacement $\mathcal{O}(\sigma \sqrt{t})$.

First guess: relevant timescale $\mathcal{O}\left(\varepsilon^{2}\right)$, want displacement $\mathcal{O}(\varepsilon) \Rightarrow$ $\sigma \approx 1$.

A convergence result

Continuous version:

$$
\partial_{t} u_{\varepsilon}=\Delta u_{\varepsilon}+\sigma_{i}\left(u_{\varepsilon}\right) \xi_{i}^{(\varepsilon)}
$$

ξ_{i} centred Gaussian with $\mathbf{E} \xi_{i}^{(\varepsilon)}(t, x) \xi_{j}^{(\varepsilon)}(s, y)=\varepsilon^{-2} \delta_{i j} \varrho\left(\frac{t-s}{\varepsilon^{2}}, \frac{y-x}{\varepsilon}\right)$ for ϱ smooth compactly supported. (Factor ε^{-2} correct scaling for white noise in time.)

Theorem: As $\varepsilon \rightarrow 0, u_{\varepsilon} \rightarrow u$ where u solves

for some c depending on ϱ.

A convergence result

Continuous version:

$$
\partial_{t} u_{\varepsilon}=\Delta u_{\varepsilon}+\sigma_{i}\left(u_{\varepsilon}\right) \xi_{i}^{(\varepsilon)}
$$

ξ_{i} centred Gaussian with $\mathbf{E} \xi_{i}^{(\varepsilon)}(t, x) \xi_{j}^{(\varepsilon)}(s, y)=\varepsilon^{-2} \delta_{i j} \varrho\left(\frac{t-s}{\varepsilon^{2}}, \frac{y-x}{\varepsilon}\right)$ for ϱ smooth compactly supported. (Factor ε^{-2} correct scaling for white noise in time.)

Theorem: As $\varepsilon \rightarrow 0, u_{\varepsilon} \rightarrow u$ where u solves

$$
\partial_{t} u=\Delta u+c\left(\nabla_{\sigma_{i}} \sigma_{i}\right)(u),
$$

for some c depending on ϱ.

Limit is deterministic, not really what we wanted...

Stronger noise

To have any hope for finite limit with stronger noise, need $\nabla_{\sigma_{i}} \sigma_{i}=0$, or need to compensate this term.

> Geometric interpretation: If vectors σ_{i} span the whole tangent space at each point, then they define an (inverse) metric by

$$
g^{\alpha \beta}(u)=\sigma_{i}^{\alpha}(u) \sigma_{i}^{\beta}(u)
$$

Metric + connection \Rightarrow Laplace-Beltrami operator Δ.
 Stratonovich sense has generator Δ if and only if $\nabla_{\sigma_{i}} \sigma_{i}=0$.

Stronger noise

To have any hope for finite limit with stronger noise, need $\nabla_{\sigma_{i}} \sigma_{i}=0$, or need to compensate this term.

Geometric interpretation: If vectors σ_{i} span the whole tangent space at each point, then they define an (inverse) metric by

$$
g^{\alpha \beta}(u)=\sigma_{i}^{\alpha}(u) \sigma_{i}^{\beta}(u) .
$$

Metric + connection \Rightarrow Laplace-Beltrami operator Δ.

Fact: diffusion $\dot{x}=\sigma_{i}(x) \xi_{i}$ with i.i.d. white noises ξ_{i} interpreted in Stratonovich sense has generator Δ if and only if $\nabla_{\sigma_{i}} \sigma_{i}=0$.

Yields natural (nonlinear) centering condition, should allow to go from LLN to CLT

Stronger noise

To have any hope for finite limit with stronger noise, need $\nabla_{\sigma_{i}} \sigma_{i}=0$, or need to compensate this term.

Geometric interpretation: If vectors σ_{i} span the whole tangent space at each point, then they define an (inverse) metric by

$$
g^{\alpha \beta}(u)=\sigma_{i}^{\alpha}(u) \sigma_{i}^{\beta}(u) .
$$

Metric + connection \Rightarrow Laplace-Beltrami operator Δ.
Fact: diffusion $\dot{x}=\sigma_{i}(x) \xi_{i}$ with i.i.d. white noises ξ_{i} interpreted in Stratonovich sense has generator Δ if and only if $\nabla_{\sigma_{i}} \sigma_{i}=0$.

Yields natural (nonlinear) centering condition, should allow to go from LLN to CLT

Stronger noise

To have any hope for finite limit with stronger noise, need $\nabla_{\sigma_{i}} \sigma_{i}=0$, or need to compensate this term.

Geometric interpretation: If vectors σ_{i} span the whole tangent space at each point, then they define an (inverse) metric by

$$
g^{\alpha \beta}(u)=\sigma_{i}^{\alpha}(u) \sigma_{i}^{\beta}(u) .
$$

Metric + connection \Rightarrow Laplace-Beltrami operator Δ.
Fact: diffusion $\dot{x}=\sigma_{i}(x) \xi_{i}$ with i.i.d. white noises ξ_{i} interpreted in Stratonovich sense has generator Δ if and only if $\nabla_{\sigma_{i}} \sigma_{i}=0$.

Yields natural (nonlinear) centering condition, should allow to go from LLN to CLT.

How strong?

Recall discrete picture:

Random limit \Rightarrow expect solutions to behave like random walks \Rightarrow each "step" should be of size $\mathcal{O}(\sqrt{\varepsilon})$ to yield effect $\mathcal{O}(1)$ after $\mathcal{O}(1 / \varepsilon)$ steps.

How strong?

Recall discrete picture:

Random limit \Rightarrow expect solutions to behave like random walks \Rightarrow each "step" should be of size $\mathcal{O}(\sqrt{\varepsilon})$ to yield effect $\mathcal{O}(1)$ after $\mathcal{O}(1 / \varepsilon)$ steps.

Conclusion: want $\sigma \approx \varepsilon^{-1 / 2}$ to have displacement $\mathcal{O}(\sqrt{\varepsilon})$ over timescale $\mathcal{O}\left(\varepsilon^{2}\right) \Rightarrow$ want $\mathbf{E} \xi_{i}^{(\varepsilon)}(t, x) \xi_{i}^{(\varepsilon)}(s, y)=\varepsilon^{-3} \varrho\left(\frac{t-s}{\varepsilon^{2}}, \frac{y-x}{\varepsilon}\right)$. Yields space-time white noise in the limit.

Main result

Consider similarly to before

$$
\partial_{t} u_{\varepsilon}=\Delta u_{\varepsilon}+\sigma_{i}\left(u_{\varepsilon}\right) \xi_{i}^{(\varepsilon)}+h\left(u_{\varepsilon}\right)
$$

but now $\mathbf{E} \xi_{i}^{(\varepsilon)}(t, x) \xi_{i}^{(\varepsilon)}(s, y)=\varepsilon^{-3} \varrho\left(\frac{t-s}{\varepsilon^{2}}, \frac{y-x}{\varepsilon}\right)$ and $\nabla_{\sigma_{i}} \sigma_{i}=0$.
R curvature tensor built from Γ, set $\hat{h}^{\alpha}=R_{\beta \gamma \delta}^{\alpha} g^{\gamma \eta} \nabla_{\eta} g^{\delta \beta}$.

Theorem: There is a choice of vector field h depending on ϱ such that, as $\varepsilon \rightarrow 0, u_{\varepsilon} \rightarrow u$ for a limiting process u independent of ϱ Comes with intrinsic characterisation of limiting process, morally

Main result

Consider similarly to before

$$
\partial_{t} u_{\varepsilon}=\Delta u_{\varepsilon}+\sigma_{i}\left(u_{\varepsilon}\right) \xi_{i}^{(\varepsilon)}+h\left(u_{\varepsilon}\right)-\frac{\log \varepsilon}{4 \pi \sqrt{3}} \hat{h}\left(u_{\varepsilon}\right)
$$

but now $\mathbf{E} \xi_{i}^{(\varepsilon)}(t, x) \xi_{i}^{(\varepsilon)}(s, y)=\varepsilon^{-3} \varrho\left(\frac{t-s}{\varepsilon^{2}}, \frac{y-x}{\varepsilon}\right)$ and $\nabla_{\sigma_{i}} \sigma_{i}=0$. For R curvature tensor built from Γ, set $\hat{h}^{\alpha}=R_{\beta \gamma \delta}^{\alpha} g^{\gamma \eta} \nabla_{\eta} g^{\delta \beta}$.

Theorem: There is a choice of vector field h depending on ϱ such that, as $\varepsilon \rightarrow 0, u_{\varepsilon} \rightarrow u$ for a limiting process u independent of ϱ. Comes with intrinsic characterisation of limiting process, morally

$$
\partial_{t} u=\Delta u+\sigma_{i}(u) \xi_{i}
$$

A few existing results

1. Very large literature on SPDEs in flat space. Even there, approximation is highly non-trivial if martingale structure is destroyed (cf. H. \& Pardoux, '14).
2. Model of random string considered in (Funaki, '92), requires noise smooth in space.
3. Static case (i.e. make sense of the measure formally described
 Inoue \& Maeda '85, Andersson \& Driver '99. Different interpretations of " $D u$ " yield slightly different measures.
4. Paraproduct-based theory developed by Gubinelli, Imkeller \& Perkowski '14 does not seem to apply in this case.

A few existing results

1. Very large literature on SPDEs in flat space. Even there, approximation is highly non-trivial if martingale structure is destroyed (cf. H. \& Pardoux, '14).
2. Model of random string considered in (Funaki, '92), requires noise smooth in space.
3. Static case (i.e. make sense of the measure formally described
 Inoue \& Maeda '85, Andersson \& Driver '99. Different interpretations of " $D u$ " yield slightly different measures.
4. Paraproduct-based theory developed by Gubinelli, Imkeller \& Perkowski '14 does not seem to apply in this case.

A few existing results

1. Very large literature on SPDEs in flat space. Even there, approximation is highly non-trivial if martingale structure is destroyed (cf. H. \& Pardoux, '14).
2. Model of random string considered in (Funaki, '92), requires noise smooth in space.
3. Static case (i.e. make sense of the measure formally described by $\exp \left(-\int g_{u}(\dot{u}, \dot{u}) d t\right)$ " $D u$ ") quite well understood, see Inoue \& Maeda '85, Andersson \& Driver '99. Different interpretations of " $D u$ " yield slightly different measures.

Paraproduct-based theory developed by Gubinelli, Imkeller \& Perkowski '14 does not seem to apply in this case.

A few existing results

1. Very large literature on SPDEs in flat space. Even there, approximation is highly non-trivial if martingale structure is destroyed (cf. H. \& Pardoux, '14).
2. Model of random string considered in (Funaki, '92), requires noise smooth in space.
3. Static case (i.e. make sense of the measure formally described by $\exp \left(-\int g_{u}(\dot{u}, \dot{u}) d t\right)$ " $D u$ ") quite well understood, see Inoue \& Maeda '85, Andersson \& Driver '99. Different interpretations of " $D u$ " yield slightly different measures.
4. Paraproduct-based theory developed by Gubinelli, Imkeller \& Perkowski '14 does not seem to apply in this case.

Main idea

One can "guess" the local behaviour of solutions:

$$
\partial_{t} u^{\alpha}=\partial_{x}^{2} u^{\alpha}+\Gamma_{\beta \gamma}^{\alpha}(u) \bullet \partial_{x} u^{\beta} \bullet \partial_{x} u^{\gamma}+\sigma_{i}^{\alpha}(u) \bullet \xi_{i} .
$$

Near (x, t), one would expect

$$
u^{\alpha}(y, s) \approx u^{\alpha}(x, t)+\sigma_{i}^{\alpha}(u(x, t))\left(v_{i}(y, s)-v_{i}(x, t)\right)
$$

with v_{i} solving $\partial_{t} v_{i}=\partial_{x}^{2} v_{i}+\xi_{i}$.
Hope: Maybe defining the various products for v instead of u already yields enough information? Should be easier since v is explicit... Unfortunately not: Needs to go to higher order.

Main idea

One can "guess" the local behaviour of solutions:

$$
\partial_{t} u^{\alpha}=\partial_{x}^{2} u^{\alpha}+\Gamma_{\beta \gamma}^{\alpha}(u) \bullet \partial_{x} u^{\beta} \bullet \partial_{x} u^{\gamma}+\sigma_{i}^{\alpha}(u) \bullet \xi_{i} .
$$

Near (x, t), one would expect

$$
u^{\alpha}(y, s) \approx u^{\alpha}(x, t)+\sigma_{i}^{\alpha}(u(x, t))\left(v_{i}(y, s)-v_{i}(x, t)\right)
$$

with v_{i} solving $\partial_{t} v_{i}=\partial_{x}^{2} v_{i}+\xi_{i}$.
Hope: Maybe defining the various products for v instead of u already yields enough information? Should be easier since v is explicit...

Main idea

One can "guess" the local behaviour of solutions:

$$
\partial_{t} u^{\alpha}=\partial_{x}^{2} u^{\alpha}+\Gamma_{\beta \gamma}^{\alpha}(u) \bullet \partial_{x} u^{\beta} \bullet \partial_{x} u^{\gamma}+\sigma_{i}^{\alpha}(u) \bullet \xi_{i} .
$$

Near (x, t), one would expect

$$
u^{\alpha}(y, s) \approx u^{\alpha}(x, t)+\sigma_{i}^{\alpha}(u(x, t))\left(v_{i}(y, s)-v_{i}(x, t)\right)
$$

with v_{i} solving $\partial_{t} v_{i}=\partial_{x}^{2} v_{i}+\xi_{i}$.
Hope: Maybe defining the various products for v instead of u already yields enough information? Should be easier since v is explicit... Unfortunately not: Needs to go to higher order.

Higher order expansion

Graphical notations for symbols: \circ for noise, - for heat kernel, for derivative of heat kernel. For example $\left(\Pi_{z_{0}} \uparrow\right)(z)=v(z)-v\left(z_{0}\right)$. (! Suitable recentering required !) One has

Remark: Similar to expansions in Feynman diagrams. However, coefficients are not constant but depend on the solution itself.

Higher order expansion

Graphical notations for symbols: \circ for noise, - for heat kernel, for derivative of heat kernel. For example $\left(\Pi_{z_{0}} \uparrow\right)(z)=v(z)-v\left(z_{0}\right)$. (! Suitable recentering required !) One has

$$
U=u 1+\sigma ?
$$

Remark: Similar to expansions in Feynman diagrams. However, coefficients are not constant but depend on the solution itself.

Higher order expansion

Graphical notations for symbols: ofor noise, - for heat kernel, for derivative of heat kernel. For example $\left(\Pi_{z_{0}} \uparrow\right)(z)=v(z)-v\left(z_{0}\right)$. (! Suitable recentering required !) One has

$$
U=u 1+\sigma!+\sigma \partial \sigma \varrho^{\circ}+\Gamma \sigma^{2} \varphi
$$

Remark: Similar to expansions in Feynman diagrams. However, coefficients are not constant but depend on the solution itself.

Higher order expansion

Graphical notations for symbols: ofor noise, - for heat kernel, for derivative of heat kernel. For example $\left(\Pi_{z_{0}} \uparrow\right)(z)=v(z)-v\left(z_{0}\right)$. (! Suitable recentering required !) One has

$$
U=u 1+\sigma!+\sigma \partial \sigma \varrho^{\circ}+\Gamma \sigma^{2} \varphi+u^{\prime} X
$$

Remark: Similar to expansions in Feynman diagrams. However, coefficients are not constant but depend on the solution itself.

Higher order expansion

Graphical notations for symbols: \circ for noise, - for heat kernel, for derivative of heat kernel. For example $\left(\Pi_{z_{0}} \uparrow\right)(z)=v(z)-v\left(z_{0}\right)$. (! Suitable recentering required !) One has

$$
\begin{aligned}
U= & u 1+\sigma!+\sigma \partial \sigma Q^{\circ}+\Gamma \sigma^{2} \bigcirc+u^{\prime} X \\
& +2 \Gamma \sigma^{2} \partial \sigma Q^{\circ}+2 \Gamma^{2} \sigma^{3} \vartheta^{\circ}+\sigma^{3} \partial \Gamma ? \\
& +\frac{1}{2} \sigma^{2} \partial^{2} \sigma Q+\sigma(\partial \sigma)^{2} Q^{\circ}+\Gamma \sigma^{2} \partial \sigma \\
& +u^{\prime} \partial \sigma^{\otimes}+2 \Gamma \sigma u^{\prime} \varrho .
\end{aligned}
$$

Remark: Similar to expansions in Feynman diagrams. However, coefficients are not constant but depend on the solution itself.

Higher order expansion

Graphical notations for symbols: \circ for noise, - for heat kernel, for derivative of heat kernel. For example $\left(\Pi_{z_{0}} \uparrow\right)(z)=v(z)-v\left(z_{0}\right)$. (! Suitable recentering required !) One has

$$
\begin{aligned}
U= & u 1+\sigma!+\sigma \partial \sigma Q^{\circ}+\Gamma \sigma^{2} \varphi+u^{\prime} X \\
& +2 \Gamma \sigma^{2} \partial \sigma Q^{\circ}+2 \Gamma^{2} \sigma^{3} \vartheta^{\circ}+\sigma^{3} \partial \Gamma ? \\
& +\frac{1}{2} \sigma^{2} \partial^{2} \sigma ?+\sigma(\partial \sigma)^{2} Q^{\circ}+\Gamma \sigma^{2} \partial \sigma Q^{20} \\
& +u^{\prime} \partial \sigma^{\otimes}+2 \Gamma \sigma u^{\prime} ? .
\end{aligned}
$$

Remark: Similar to expansions in Feynman diagrams. However, coefficients are not constant but depend on the solution itself.

Steps

1. Given function U, when does there exist a unique function / distribution u described by $\Pi_{z} U(z)$ locally "near z " for every z ? Leads to analogues of Hölder / Sobolev / Besov spaces + "reconstruction theorem".
2. Reformulate required operations for U and obtain analogues to classical embedding theorems / Schauder estimates.
3. Derive fixed point problem for U. Solution map continuous function of "model" Π
4. Show that suitable "renormalised" ways of lifting $\xi^{(\varepsilon)}$ to model $\Pi^{(\varepsilon)}$ converge to limit and characterise limit. Derive "renormalised equation'

Steps

1. Given function U, when does there exist a unique function / distribution u described by $\Pi_{z} U(z)$ locally "near z " for every z ? Leads to analogues of Hölder / Sobolev / Besov spaces + "reconstruction theorem".
2. Reformulate required operations for U and obtain analogues to classical embedding theorems / Schauder estimates.

3. Show that suitable "renormalised" ways of lifting $\xi^{(\varepsilon)}$ to model $\Pi^{(\varepsilon)}$ converge to limit and characterise limit. Derive 'renormalised equation'

Steps

1. Given function U, when does there exist a unique function / distribution u described by $\Pi_{z} U(z)$ locally "near z " for every z ? Leads to analogues of Hölder / Sobolev / Besov spaces + "reconstruction theorem".
2. Reformulate required operations for U and obtain analogues to classical embedding theorems / Schauder estimates.
3. Derive fixed point problem for U. Solution map continuous function of "model" Π.
4. Show that suitable "renormalised" ways of lifting $\xi^{(\varepsilon)}$ to model $\Pi^{(\varepsilon)}$ converge to limit and characterise limit. Derive 'renormalised equation'

Steps

1. Given function U, when does there exist a unique function / distribution u described by $\Pi_{z} U(z)$ locally "near z " for every z ? Leads to analogues of Hölder / Sobolev / Besov spaces + "reconstruction theorem".
2. Reformulate required operations for U and obtain analogues to classical embedding theorems / Schauder estimates.
3. Derive fixed point problem for U. Solution map continuous function of "model" Π.
4. Show that suitable "renormalised" ways of lifting $\xi^{(\varepsilon)}$ to model $\Pi^{(\varepsilon)}$ converge to limit and characterise limit. Derive "renormalised equation".

Algebraic structure

Need to understand two things:

- How does $\Pi_{z_{0}} \tau$ relate to $\Pi_{z_{1}} \tau$ (reexpansion)?
- Which renormalisation procedures maintain these relations?

Structure: Two combinatorial Hopf algebras acting on symbols, basis vectors indexed by decorated trees / forests. Reexpansion: generalisation of Connes-Kreimer Hopf algebra / Butcher group. Renormalisation: generalisation of substitution Hopf algebra (analysis of B-series in numerical analysis)

Details depend on problem at hand. Can all be obtained in a functorial way from a single structure where linear maps are replaced by a different kind of morphism.

Algebraic structure

Need to understand two things:

- How does $\Pi_{z_{0}} \tau$ relate to $\Pi_{z_{1}} \tau$ (reexpansion)?
- Which renormalisation procedures maintain these relations?

Structure: Two combinatorial Hopf algebras acting on symbols, basis vectors indexed by decorated trees / forests. Reexpansion: generalisation of Connes-Kreimer Hopf algebra / Butcher group. Renormalisation: generalisation of substitution Hopf algebra (analysis of B-series in numerical analysis).

Details depend on problem at hand. Can all be obtained in a functorial way from a single structure where linear maps are replaced by a different kind of morphism.

Algebraic structure

Need to understand two things:

- How does $\Pi_{z_{0}} \tau$ relate to $\Pi_{z_{1}} \tau$ (reexpansion)?
- Which renormalisation procedures maintain these relations?

Structure: Two combinatorial Hopf algebras acting on symbols, basis vectors indexed by decorated trees / forests. Reexpansion: generalisation of Connes-Kreimer Hopf algebra / Butcher group. Renormalisation: generalisation of substitution Hopf algebra (analysis of B-series in numerical analysis).

Details depend on problem at hand. Can all be obtained in a functorial way from a single structure where linear maps are replaced by a different kind of morphism.

Conclusions

1. Can build solution theories for very singular parabolic SPDEs very similar to "standard" deterministic PDE theory.
2. Analogues of many classical function spaces and results in this context. (Sobolev, Besov, Hölder, embeddings, etc) Rule of thumb: reconstruction operator only requires positive "regularity index"
3. Some missing pieces: general proof of convergence of "models", general "central limit theorem" anywhere near optimality.

Conclusions

1. Can build solution theories for very singular parabolic SPDEs very similar to "standard" deterministic PDE theory.
2. Analogues of many classical function spaces and results in this context. (Sobolev, Besov, Hölder, embeddings, etc) Rule of thumb: reconstruction operator only requires positive "regularity index".
3. Some missing pieces: general proof of convergence of "models", general "central limit theorem" anywhere near optimality.

Conclusions

1. Can build solution theories for very singular parabolic SPDEs very similar to "standard" deterministic PDE theory.
2. Analogues of many classical function spaces and results in this context. (Sobolev, Besov, Hölder, embeddings, etc) Rule of thumb: reconstruction operator only requires positive "regularity index".
3. Some missing pieces: general proof of convergence of "models", general "central limit theorem" anywhere near optimality.
