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Introduction

Rubber band constrained to lie on a Manifold: u : S1 →M.

Deterministic part of evolution: “length shortening” / heat flow.
Suitable L2-gradient flow for

∫
gu(u̇, u̇) dt.



Local coordinates

In local coordinates, heat flow given by:

∂tu
α = ∂2xu

α + Γαβγ(u) ∂xu
β∂xu

γ =: ( u)α .

Nonlinearity given by Christoffel symbols of Levi-Civita connection
Γ.

Introduced by Eells-Sampson to show that every smooth map
N →M is homotopic to a harmonic map.

Makes sense for any torsion-free connection (not just Levi-Civita):
equilibria satisfy ∇∂xu∂xu = 0. Unit speed geodesics.
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Adding noise

Consider a discrete version:

ε

Add independent noises to each bead.

Basic question: how strong should the noise be to create an effect
of order 1? Recall that noise of strength σ yields displacement
O(σ
√
t).

First guess: relevant timescale O(ε2), want displacement O(ε) ⇒
σ ≈ 1.
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A convergence result

Continuous version:

∂tuε = uε + σi(uε)ξ
(ε)
i ,

ξi centred Gaussian with Eξ
(ε)
i (t, x)ξ

(ε)
j (s, y) = ε−2δij%( t−s

ε2
, y−xε )

for % smooth compactly supported. (Factor ε−2 correct scaling for
white noise in time.)

Theorem: As ε→ 0, uε → u where u solves

∂tu = u+ c
(
∇σiσi

)
(u) ,

for some c depending on %.

Limit is deterministic, not really what we wanted...
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Stronger noise

To have any hope for finite limit with stronger noise, need
∇σiσi = 0, or need to compensate this term.

Geometric interpretation: If vectors σi span the whole tangent
space at each point, then they define an (inverse) metric by

gαβ(u) = σαi (u)σβi (u) .

Metric + connection ⇒ Laplace-Beltrami operator ∆.

Fact: diffusion ẋ = σi(x)ξi with i.i.d. white noises ξi interpreted in
Stratonovich sense has generator ∆ if and only if ∇σiσi = 0.

Yields natural (nonlinear) centering condition, should allow to go
from LLN to CLT.
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How strong?

Recall discrete picture:

ε

Random limit ⇒ expect solutions to behave like random walks
⇒ each “step” should be of size O(

√
ε) to yield effect O(1) after

O(1/ε) steps.

Conclusion: want σ ≈ ε−1/2 to have displacement O(
√
ε) over

timescale O(ε2) ⇒ want Eξ
(ε)
i (t, x)ξ

(ε)
i (s, y) = ε−3%( t−s

ε2
, y−xε ).

Yields space-time white noise in the limit.
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Main result

Consider similarly to before

∂tuε = uε + σi(uε)ξ
(ε)
i + h(uε)−

log ε

4π
√

3
ĥ(uε) ,

but now Eξ
(ε)
i (t, x)ξ

(ε)
i (s, y) = ε−3%( t−s

ε2
, y−xε ) and ∇σiσi = 0. For

R curvature tensor built from Γ, set ĥα = Rαβγδg
γη∇ηgδβ.

Theorem: There is a choice of vector field h depending on % such
that, as ε→ 0, uε → u for a limiting process u independent of %.
Comes with intrinsic characterisation of limiting process, morally

∂tu = u+ σi(u)ξi .
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A few existing results

1. Very large literature on SPDEs in flat space. Even there,
approximation is highly non-trivial if martingale structure is
destroyed (cf. H. & Pardoux, ’14).

2. Model of random string considered in (Funaki, ’92), requires
noise smooth in space.

3. Static case (i.e. make sense of the measure formally described
by exp(−

∫
gu(u̇, u̇) dt) “Du”) quite well understood, see

Inoue & Maeda ’85, Andersson & Driver ’99. Different
interpretations of “Du” yield slightly different measures.

4. Paraproduct-based theory developed by Gubinelli, Imkeller &
Perkowski ’14 does not seem to apply in this case.
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Main idea

One can “guess” the local behaviour of solutions:

∂tu
α = ∂2xu

α + Γαβγ(u) • ∂xuβ • ∂xuγ + σαi (u) • ξi .

Near (x, t), one would expect

uα(y, s) ≈ uα(x, t) + σαi (u(x, t))
(
vi(y, s)− vi(x, t)

)
,

with vi solving ∂tvi = ∂2xvi + ξi.

Hope: Maybe defining the various products for v instead of u
already yields enough information? Should be easier since v is
explicit... Unfortunately not: Needs to go to higher order.
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Higher order expansion

Graphical notations for symbols: for noise, for heat kernel,
for derivative of heat kernel. For example (Πz0 )(z) = v(z)− v(z0).
(! Suitable recentering required !) One has

U = u1 + σ + σ∂σ + Γσ2 + u′X

+ 2Γσ2∂σ + 2Γ2σ3 + σ3∂Γ

+
1

2
σ2∂2σ + σ(∂σ)2 + Γσ2∂σ

+ u′∂σ + 2Γσu′ .

Remark: Similar to expansions in Feynman diagrams. However,
coefficients are not constant but depend on the solution itself.
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Steps

1. Given function U , when does there exist a unique function /
distribution u described by ΠzU(z) locally “near z” for every
z? Leads to analogues of Hölder / Sobolev / Besov spaces +
“reconstruction theorem”.

2. Reformulate required operations for U and obtain analogues
to classical embedding theorems / Schauder estimates.

3. Derive fixed point problem for U . Solution map continuous
function of “model” Π.

4. Show that suitable “renormalised” ways of lifting ξ(ε) to
model Π(ε) converge to limit and characterise limit. Derive
“renormalised equation”.
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z? Leads to analogues of Hölder / Sobolev / Besov spaces +
“reconstruction theorem”.

2. Reformulate required operations for U and obtain analogues
to classical embedding theorems / Schauder estimates.

3. Derive fixed point problem for U . Solution map continuous
function of “model” Π.

4. Show that suitable “renormalised” ways of lifting ξ(ε) to
model Π(ε) converge to limit and characterise limit. Derive
“renormalised equation”.



Algebraic structure

Need to understand two things:

• How does Πz0τ relate to Πz1τ (reexpansion)?

• Which renormalisation procedures maintain these relations?

Structure: Two combinatorial Hopf algebras acting on symbols,
basis vectors indexed by decorated trees / forests. Reexpansion:
generalisation of Connes-Kreimer Hopf algebra / Butcher group.
Renormalisation: generalisation of substitution Hopf algebra
(analysis of B-series in numerical analysis).

Details depend on problem at hand. Can all be obtained in a
functorial way from a single structure where linear maps are
replaced by a different kind of morphism.
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Conclusions

1. Can build solution theories for very singular parabolic SPDEs
very similar to “standard” deterministic PDE theory.

2. Analogues of many classical function spaces and results in this
context. (Sobolev, Besov, Hölder, embeddings, etc) Rule of
thumb: reconstruction operator only requires positive
“regularity index”.

3. Some missing pieces: general proof of convergence of
“models”, general “central limit theorem” anywhere near
optimality.
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