▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Recurrence criteria for diffusion processes generated by divergence free perturbations of non-symmetric energy forms

Gerald Trutnau (Seoul National University)

Joint work with Minjung Gim September 3, 2015

(日)

Contents

- 1. Analytic characterization of recurrence
- 2. Connection to recurrence in the classical probabilistic sense
- 3. Application to a class of diffusions on Euclidean space
- 4. Examples and Counterexamples

1. Analytic characterization of recurrence

- *E* = Hausdorff topological space
- $\mathcal{B}(E) = \sigma(C(E))$
- μ is a σ -finite measure on $\mathcal{B}(E)$ with full support

(H1) $(T_t)_{t>0}$ is a submarkovian C_0 -semigroup of contractions on $L^2(E, \mu)$ (H2) The adjoint semigroup $(\hat{T}_t)_{t>0}$ on $L^2(E, \mu)$ is also submarkovian

Let (L, D(L)) be the $L^2(E, \mu)$ -generator of $(T_t)_{t>0}$, i.e.

$$D(L) = \{u \in L^2(E,\mu) \mid \exists Lu := \lim_{t \downarrow 0} \frac{T_t u - u}{t} \text{ in } L^2(E,\mu)\}$$

 $(\hat{L}, D(\hat{L}))$ adjoint operator of (L, D(L)) in $L^2(E, \mu)$.

(L, D(L)) induces a generalized Dirichlet form

$$\mathcal{E}(u,v) := \begin{cases} -\int Lu \cdot v \, d\mu; & u \in D(L), \ v \in L^2(E,\mu) \\ -\int u \cdot \hat{L}v \, d\mu; & u \in L^2(E,\mu), \ v \in D(\hat{L}). \end{cases}$$

In general:

- (L, D(L)) needs not be symmetric, i.e. $(L, D(L)) = (\hat{L}, D(\hat{L}))$
- (L, D(L)) needs not be sectorial, e.g.

$$\left|\int Lu \cdot v \, d\mu\right| \leq \operatorname{const} \cdot \sqrt{-\int Lu \cdot u \, d\mu} \cdot \sqrt{-\int Lv \cdot v \, d\mu}.$$

Remark: If $(\mathcal{E}, D(L))$ is sectorial, then it is closable in $L^2(E, \mu)$ and the closure $(\mathcal{E}, D(\mathcal{E}))$ is a sectorial Dirichlet form on $L^2(E, \mu)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $(T_t)_{t>0}$.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Let $(G_{\alpha})_{\alpha>0}$, $(\hat{G}_{\alpha})_{\alpha>0}$, be the $L^{2}(E,\mu)$ -resolvents of $(T_{t})_{t>0}$, $(\hat{T}_{t})_{t\geq0}$.

 $(\hat{T}_t)_{t>0}$ is submarkovian $\Leftrightarrow (T_t)_{t>0}$ is an $L^1(E,\mu)$ -contraction

 $\sim (T_t)_{t>0}$ can be defined as a C_0 -semigroup of contractions on $L^1(E,\mu)$.

Definition For $f \in L^{1}(E, \mu)$, $f \ge 0 \mu$ -a.e. $Gf(x) := \lim_{N \to \infty} \int_{0}^{N} T_{t}f(x)dt = \lim_{\alpha \to 0} \underbrace{\int_{0}^{\infty} e^{-\alpha t} T_{t}f(x)dt}_{=G_{\alpha}f(x)} (\le \infty)$ is uniquely defined μ -a.e. G is called potential operator associated with

Since $(T_t)_{t>0}$ is sub-Markovian, $(T_t)_{t>0}$ and its potential operator G can also be defined on $L^{\infty}(E, \mu)$.

Definition

(i) $(T_t)_{t>0}$ (or also \mathcal{E}) is recurrent, if for any $f \in L^1(E, \mu)$ with $f \ge 0$ μ -a.e., we have

Gf = 0 or
$$\infty$$
 μ -a.e.

(ii) $(T_t)_{t>0}$ (or also \mathcal{E}) is transient, if there exists $g \in L^1(E, \mu)$ with g > 0 μ -a.e. such that

$$\textit{Gg} < \infty \ \mu$$
-a.e.

(iii) $B \in \mathcal{B}(E)$ is weakly invariant w.r.t. $(T_t)_{t>0}$, if for any t > 0, $f \in L^2(E, \mu)$

$$T_t(f1_B)(x) = 0$$
 μ -a.e. $x \in E \setminus B$

(iv) $(T_t)_{t>0}$ is strictly irreducible, if for any weakly invariant set B relative to $(T_t)_{t>0}$, $\mu(B) = 0$ or $\mu(E \setminus B) = 0$.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Remark (cf. e.g. [Kuwae, 2010])

- (a) $(T_t)_{t>0}$ is transient, if and only if $Gf < \infty \mu$ -a.e. for any $f \in L^1(E, \mu)$ with $f \ge 0 \mu$ -a.e.
- (b) If g ∈ L¹(E, μ) with g > 0 μ-a.e., then {x ∈ E : Gg(x) = ∞} is a weakly invariant set relative to (T_t)_{t>0}. Consequently, if (T_t)_{t>0} is strictly irreducible, then it is either transient or recurrent.

(c) If there exists a strictly positive measurable function $(p_t(x, y))_{x,y \in E}$ with

$$T_t f(x) = \int_E p_t(x, y) f(y) \mu(dy)$$

for any $x \in E$, $f \in L^2(E, \mu)$, then $(T_t)_{t>0}$ is strictly irreducible.

Theorem (Gim/Trutnau, 2015)

If there exists a sectorial Dirichlet form $(\mathcal{E}^0, D(\mathcal{E}^0))$ with $D(L)_b \subset D(\mathcal{E}^0)$ and

 $\mathcal{E}^0(u,u) \leq \mathcal{E}(u,u)$ for any $u \in D(L)_b$,

then the transience of $(\mathcal{E}^0, D(\mathcal{E}^0))$ implies the transience of $(T_t)_{t>0}$.

Remark

If $(\mathcal{E}^0, D(\mathcal{E}^0))$ is a sectorial Dirichlet form on $L^2(E, \mu)$, then its symmetric part $(\tilde{\mathcal{E}}^0, D(\mathcal{E}^0))$ is a symmetric Dirichlet form on $L^2(E, \mu)$. By the Theorem, we obtain: a sectorial Dirichlet form $(\mathcal{E}^0, D(\mathcal{E}^0))$ is transient, if and only if $(\tilde{\mathcal{E}}^0, D(\mathcal{E}^0))$ is transient.

Lemma (Gim/Tr, 2015)

If $(T_t)_{t>0}$ is transient, then there exists a function $g \in L^1(E, \mu)_b$ with g > 0 μ -a.e. and $\|Gg\|_{L^{\infty}(\mu)} < \infty$.

(H3) There exist a sectorial Dirichlet form $(\mathcal{E}^0, D(\mathcal{E}^0))$ with $D(L)_b \subset D(\mathcal{E}^0)$ and a linear operator (N, D(N)) on $L^2(E, \mu)$ such that

$$\mathcal{E}(u,v) = \mathcal{E}^{0}(u,v) + \int_{E} u \cdot Nv \, d\mu, \quad u \in D(L)_{b}, \quad v \in D(N) \cap D(\mathcal{E}^{0})$$

and

$$\mathcal{E}^{0}(u,u) \leq \mathcal{E}(u,u), \ u \in D(L)_{b}.$$

The **extended Dirichlet** space of $D(\mathcal{E}^0)$ is defined as the set of all functions u for which there exists an \mathcal{E}^0 -Cauchy sequence $(u_n)_{n\geq 1} \subset D(\mathcal{E}^0)$ such that

$$\lim_{n\to\infty} u_n = u \quad \mu\text{-a.e.}$$

(see [Oshima, Semi-Dirichlet forms, 2013]). Since the Dirichlet form $(\mathcal{E}^0, D(\mathcal{E}^0))$ is sectorial, for *u* in the extended Dirichlet space,

$$\mathcal{E}^{0}(u,u) := \lim_{n \to \infty} \mathcal{E}^{0}(u_n,u_n)$$

is independent of the choice of $(u_n)_{n\geq 1} \subset D(\mathcal{E}^0)$.

Theorem (Gim/Trutnau, 2015)

Suppose $(T_t)_{t>0}$ is transient and let $g \in L^1(E, \mu)_b$ with g > 0 μ -a.e. and $\|Gg\|_{L^{\infty}(\mu)} < \infty$. Then Gg is in the extended Dirichlet space of $D(\mathcal{E}^0)$ and

$$(g, u) = \underbrace{\mathcal{E}^{0}(Gg, u)}_{:=\lim_{\alpha \to 0} \mathcal{E}^{0}(G_{\alpha g}, u)} + \int_{E} Gg \cdot Nu \, d\mu$$

for any $u \in D := \{u \in D(N) \cap D(\mathcal{E}^0) : Nu \in L^1(E, \mu)\}.$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Corollary (Gim/Tr, 2015)

 (a) If there exists a sequence of functions (χ_n)_{n≥1} ⊂ D with 0 ≤ χ_n ≤ 1, lim_{n→∞} χ_n = 1 μ-a.e. satisfying

$$\lim_{n\to\infty}\left(\mathcal{E}^0(f,\chi_n)+\int_E f\cdot N\chi_n\,d\mu\right)=0,$$

for any non-negative bounded f (so in part. for f = Gg) in the extended Dirichlet space of $D(\mathcal{E}^0)$, then $(T_t)_{t>0}$ is not transient.

(b) If (T_t)_{t>0} is strictly irreducible, then (a) represents a sufficient condition for recurrence of (T_t)_{t>0}, because if (T_t)_{t>0} is strictly irreducible, then it is either transient or recurrent.

2. Connection to recurrence in the classical probabilistic sense

Let $\mathbb{M} = (\Omega, (\mathcal{F}_t)_{t \ge 0}, (X_t)_{t \ge 0}, (\mathbb{P}_x)_{x \in E_{\Delta}})$ with life time ζ be a strong Markov process with state space E, resolvent

$$R_{\alpha}f(x) := \mathbb{E}_{x}\Big[\int_{0}^{\infty} e^{-\alpha t}f(X_{t})dt\Big], \ x \in E, \ \alpha > 0, \ f \in B(E)_{b}$$

and transition semigroup

$$p_t f(x) := \mathbb{E}_x \Big[f(X_t) \Big], \ x \in E, \ t > 0, \ f \in B(E)_b.$$

Suppose that the process $\mathbb M$ is associated with $\mathcal E$, i.e.

$$\begin{array}{l} R_{\alpha}f = G_{\alpha}f \\ p_{t}f = T_{t}f \end{array} \right\} \quad \mu \text{-a.e. for any } \alpha > 0, \ t > 0, \ f \in B(E)_{b} \cup L^{2}(E,\mu)_{b} \end{array}$$

In particular $f \in L^1(E,\mu)$, $f \ge 0 \mu$ -a.e.

$$Gf(x) = \mathbb{E}_{x}\Big[\int_{0}^{\infty} f(X_{t})dt\Big].$$

・ロト ・ 日 ・ ・ 田 ト ・ 日 ・ ・ 今 の く

 $(T_t)_{t>0}$ is **recurrent**, if for any $f \in L^1(E, \mu)$ with f > 0 μ -a.e., we have

$$\mathbb{E}_{x}\Big[\int_{0}^{\infty}f(X_{t})dt\Big]=\infty \ \mu ext{-a.e.} \ x\in E.$$

 $(T_t)_{t>0}$ is transient, if there exists $g \in L^1(E,\mu)$ with g>0 μ -a.e., such that

$$\mathbb{E}_x\Big[\int_0^\infty g(X_t)dt\Big] < \infty \ \mu$$
-a.e. $x \in E$.

 $B \in \mathcal{B}(E)$ is weakly invariant relative to $(T_t)_{t>0}$, if for any t > 0,

$$\mathbb{E}_{x}\Big[1_{B}(X_{t})\Big]=0$$
 μ -a.e. $x\in E\setminus B$.

Define the **first hitting** time of $B \in \mathcal{B}(E)$ by

$$\sigma_B(\omega) := \inf\{t > 0: X_t(\omega) \in B\}$$

and the last exit time from $B \in \mathcal{B}(E)$ by

$$L_B(\omega) := \sup\{t \ge 0: X_t(\omega) \in B\} \in \mathcal{F}_{\infty}.$$

Proposition (following [Getoor, 1980])

(a) (T_t)_{t>0} is transient, if and only if there exists a sequence of Borel finely open sets (B_n)_{n≥1} increasing to E up to some μ-negligible set N such that for any x ∈ E \ N, n ≥ 1

 $\mathbb{P}_x(L_{B_n} < \infty) = 1.$

(b) If $(T_t)_{t>0}$ is strictly irreducible recurrent, then $\mathbb{P}_x(\zeta = \infty) = 1$ for μ -a.e. $x \in E$ and for any non μ -polar^a finely open set $B \in \mathcal{B}(E)$

$$\mathbb{P}_{x}(L_{B}=\infty)=1$$
 μ -a.e. $x \in E$.

^aB is μ -polar if $\int_F P_x(\sigma_B < \infty)\mu(dx) = 0$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

If $(T_t)_{t>0}$ is strictly irreducible and recurrent, then for any B open, $B \neq \emptyset$,

$$\mathbb{P}_{x}(\underbrace{\{L_{B}=\infty\}}_{=:\Lambda})=1 \quad \text{for} \quad \mu\text{-a.e.} \ x \in E$$

Assume that the **semigroup** p_t of \mathbb{M} is strong Feller in the following sense: there exists a measurable function $(p_t(x, y))_{t>0, x, y \in E}$ with

$$p_tf(x) = \int_E p_t(x,y)f(y)\mu(dy)$$
 for any $x \in E, \ f \in B(E)_b$

and

$$p_t f$$
 is continuous for any $f \in B(E)_b$.

Since Λ is shift invariant, we get for $x \in E$

$$\mathbb{P}_{x}(\Lambda) = \mathbb{P}_{x}(\vartheta_{t}^{-1}(\Lambda)) = \mathbb{E}_{x}[\mathbb{E}_{x}[1_{\Lambda} \circ \vartheta_{t} \mid \mathcal{F}_{t}]] = \mathbb{E}_{x}[\mathbb{E}_{X_{t}}[1_{\Lambda}]] = p_{t}\mathbb{E}_{\cdot}[1_{\Lambda}](x)$$

hence since μ has full support

$$\mathbb{P}_x(\Lambda) = 1$$
 for any $x \in E$.

3. Application to a class of diffusions on Euclidean space

- $E \subset \mathbb{R}^d$ open or closed with $dx(\partial E) = 0$
- $d\mu := \rho dx$, where $\rho \in L^1_{loc}(E, dx)$ with $\rho > 0$ dx-a.e.
- A = (a_{ij}) ∈ L¹_{loc}(E, μ) 1 ≤ i, j ≤ d and for each relatively compact open set V ⊂ E, there exists ν_V > 0 such that

$$u_V^{-1} |\xi|^2 \leq \sum_{i,j=1}^d \widetilde{a}_{ij}(x) \xi_i \xi_j \leq \nu_V |\xi|^2$$
 (locally elliptic)

for all
$$\xi = (\xi_1, ..., \xi_d) \in \mathbb{R}^d$$
, $x \in V$.

Suppose

$$\mathcal{E}^0(f,g) = \sum_{i,j=1}^d \int_E a_{ij}(x) \partial_i f(x) \partial_j g(x) \mu(dx) \ f,g \in C_0^\infty(E).$$

is closable on $L^2(E,\mu)$ and that $(\mathcal{E}^0, C_0^{\infty}(E))$ satisfies the **strong sector** condition, i.e. there is a constant K > 0 such that

$$|\mathcal{E}^{0}(f,g)| \leq K\sqrt{\mathcal{E}^{0}(f,f)}\sqrt{\mathcal{E}^{0}(g,g)} \qquad \forall f,g \in C_{0}^{\infty}(E).$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Denote the closure of $(\mathcal{E}^0, C_0^{\infty}(E))$ on $L^2(E, \mu)$ by $(\mathcal{E}^0, D(\mathcal{E}^0))$.

 $\sim (\mathcal{E}^0, D(\mathcal{E}^0))$ non-symmetric regular sectorial Dirichlet form on $L^2(E, \mu)$.

Let $(L^0, D(L^0))$ be the linear operator corresponding to $(\mathcal{E}^0, D(\mathcal{E}^0))$ on $L^2(E, \mu)$.

For any $V \subset \subset E$, $(\mathcal{E}^0, C_0^{\infty}(V))$ is closable on $L^2(V, \mu)$.

Denote its closure by $(\mathcal{E}^{0,V}, D(\mathcal{E}^{0,V}))$, then $D(\mathcal{E}^{0,V}) \subset D(\mathcal{E}^{0})$ and

$$D(\mathcal{E}^{0,E}) := \bigcup_{V \subset \subset E} D(\mathcal{E}^{0,V}) \subset D(\mathcal{E}^{0}).$$

Let $B(x) := (B_1(x), \dots, B_d(x)) \in L^2_{loc}(E, \mathbb{R}^d, \mu)$ satisfy $\int_E \langle B(x), \nabla f(x) \rangle \mu(dx) = 0 \quad \text{ for any } f \in C_0^{\infty}(E),$

hence for any $f \in D(\mathcal{E}^{0,E})$.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Using a similar technique as in [Stannat, 1999], we get:

Lemma (Gim/Tr, 2015)

There exists a closed operator $(\overline{L}, D(\overline{L}))$ on $L^1(E, \mu)$ which is the generator of sub-Markovian C_0 -semigroup of contractions $(\overline{T}_t)_{t>0}$ satisfying the following properties:

- (a) $(\overline{L}, D(\overline{L}))$ is a closed extension of $Lu = L^0u + \langle B, \nabla u \rangle$, $u \in D(L^0)_{0,b}$ on $L^1(E, \mu)$.
- (b) $D(\overline{L})_b \subset D(\mathcal{E}^0)$ and for $u \in D(\overline{L})_b$, $v \in D(\mathcal{E}^{0,E})_b$, we have

$$\mathcal{E}^{0}(u,v) - \int_{E} \langle B, \nabla u \rangle v d\mu = - \int_{E} \overline{L} u \cdot v \, d\mu$$

and

$$\mathcal{E}^{0}(u,u)\leq-\int_{E}\overline{L}u\cdot u\,d\mu.$$

Denote the C_0 -resolvent of $(\overline{L}, D(\overline{L}))$ by $(\overline{G}_{\alpha})_{\alpha>0}$.

Since $(\overline{T}_t)_{t>0}$ is a sub-Markovian C_0 -semigroup of contractions on $L^1(E,\mu)$ and $L^1(E,\mu)_b \subset L^2(E,\mu)$ densely, we can construct uniquely a sub-Markovian C_0 -semigroup of contractions $(T_t)_{t>0}$ on $L^2(E,\mu)$ such that $T_t \equiv \overline{T}_t$ for t>0on $L^1(E,\mu) \cap L^2(E,\mu)$ (cf. the Riesz-Thorin interpolation Theorem).

Let (L, D(L)) be the generator of $(T_t)_{t>0}$ and $(G_{\alpha})_{\alpha>0}$ be the corresponding C_0 -resolvent. Clearly, $G_{\alpha} \equiv \overline{G}_{\alpha}$ for $\alpha > 0$ on $L^1(E, \mu) \cap L^2(E, \mu)$.

Let $(\widehat{L}, D(\widehat{L}))$ be the adjoint operator of (L, D(L)) in $L^2(E, \mu)$. Then

$$\mathcal{E}(f,g) := \left\{ egin{array}{ll} (-Lf,g) & f \in D(L), \ g \in L^2(E,\mu), \ (-\widehat{L}g,f) & g \in D(\widehat{L}), \ f \in L^2(E,\mu), \end{array}
ight.$$

satisfies (H1). Clearly (H2) holds since (L, D(L)) satisfies the same assumptions as $(\widehat{L}, D(\widehat{L}))$.

(ロ)、(型)、(E)、(E)、(E)、(Q)、(Q)

In particular, the bilinear form ${\mathcal E}$ is an extension of

$$\int_{E} \langle A \nabla f, \nabla g \rangle d\mu - \int_{E} \langle B, \nabla f \rangle g d\mu, \quad f, g \in C_{0}^{\infty}(E) \cap D(L^{0}).$$

Put

$$Nv := \langle B, \nabla v \rangle, \ v \in D(N) := D(\mathcal{E}^{0, E})_b.$$

Then

$$D = D(N) \cap D(\mathcal{E}^0) = D(\mathcal{E}^{0,E})_b$$

and \mathcal{E} satisfies assumption (H3), i.e.

$$\mathcal{E}^{0}(u,u) \leq \mathcal{E}(u,u), \ u \in D(L)_{b}$$

and

$$(-Lu, v) = \mathcal{E}^{0}(u, v) + \int_{E} \langle B, \nabla v \rangle u d\mu, \ u \in D(L)_{b}, \ v \in D.$$

By the results of 1. we get:

Corollary (Gim/Tr, 2015)

- (a) If $(\mathcal{E}^0, D(\mathcal{E}^0))$ is transient, then $(T_t)_{t>0}$ is also transient.
- (b) If there exists a sequence of functions (χ_n)_{n≥1} ⊂ D with 0 ≤ χ_n ≤ 1, lim_{n→∞} χ_n = 1 μ-a.e. satisfying

$$\lim_{n\to\infty} \left(\mathcal{E}^0(g,\chi_n) + \int_E \langle B,\nabla\chi_n\rangle g d\mu \right) = 0 \qquad (\star$$

for any non-negative bounded g in the extended Dirichlet space of $D(\mathcal{E}^0)$, then $(T_t)_{t>0}$ is not transient.

Remark

(*) holds, if

$$\lim_{n\to\infty}\left(\mathcal{E}^0(\chi_n,\chi_n)+\int_E|\langle B,\nabla\chi_n\rangle|d\mu\right)=0,$$

Furthermore, since -B satisfies the same assumptions as B, the co-form is then also not transient.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Theorem (Gim/Tr, 2015)

If $(\overline{T}_t)_{t>0}$ is recurrent, then there exists a sequence of functions $(\chi_n)_{n\geq 1}$ in $D(\overline{L})_b$ with $0 \leq \chi_n \leq 1$ and $\lim_{n\to\infty} \chi_n = 1$ μ -a.e. satisfying

$$\lim_{n\to\infty}(-\overline{L}\chi_n,\chi_n)=0.$$

Furthermore, $\lim_{n\to\infty} -\overline{L}\chi_n = 0$ μ -a.e. and in $L^1(E,\mu)$. In particular, $(\tilde{\mathcal{E}}^0, D(\mathcal{E}^0))$ is recurrent, i.e. $\lim_{n\to\infty} \tilde{\mathcal{E}}^0(\chi_n, \chi_n) = 0$.

Corollary

If $(\overline{T}_t)_{t>0}$ is recurrent, then it is conservative, i.e. for all t > 0, $\overline{T}_t 1 = 1 \mu$ -a.e..

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Explicit conditions for recurrence

Assume that there exists a non-negative continuous function $\phi(x)$ on E with

$$abla \phi \in L^\infty_{\mathit{loc}}({\it E}, {\mathbb R}^d, \mu)$$

such that for r > 0

$$E_r := \{x \in E : \phi(x) < r\}$$

is a relatively compact open set in E and $\bigcup_{r>0} E_r = E$. (For instance, if E is closed or $E = \mathbb{R}^d$, we may choose $\phi(x) = |x|$.)

Define for r > 0,

$$v(r) := \underbrace{\int_{E_r} \langle A(x) \nabla \phi(x), \nabla \phi(x) \rangle \mu(dx)}_{=:v_1(r)} + \underbrace{\int_{E_r} \phi(x) \cdot |\langle B(x), \nabla \phi(x) \rangle |\mu(dx)}_{=:v_2(r)}$$

Theorem (Gim/Tr, 2015)

Assume that $(T_t)_{t>0}$ is strictly irreducible. If the sequence a_n defined by

$$a_n := \int_1^n \frac{r}{v(r)} dr$$

satisfies $\lim_{n\to\infty} a_n = \infty$ and $\lim_{n\to\infty} \frac{\log(v_2(n)\vee 1)}{a_n} = 0$, then $(T_t)_{t>0}$ is recurrent.

Proof.

Define $\chi_n(x) := \psi_n(\phi(x))$, where for r > 0

$$\psi_n(r) := \begin{cases} 1 & 0 \le r \le 1, \\ 1 - \frac{1}{a_n} \int_1^r \frac{t}{v(t)} dt & 1 \le r \le n, \\ 0 & r \ge n. \end{cases}$$

Then $\chi_n \in D(\mathcal{E}^{0,\mathcal{E}})_b$, $0 \le \chi_n \le 1$, $\lim_{n \to \infty} \chi_n = 1$ μ -a.e. and

$$\mathcal{E}^0(\chi_n,\chi_n) + \int_E |\langle B,\nabla\chi_n\rangle| d\mu \leq \frac{2}{a_n} + \frac{1}{a_n^2 v(1)} + \frac{\log(v_2(n) \vee 1)}{a_n}$$

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Corollary

Assume that $(T_t)_{t>0}$ is strictly irreducible. The conditions of the Theorem are satisfied if one of the following conditions is fulfilled for sufficiently large r and some constant C > 0:

(a)
$$v_1(r) \leq Cr^2$$
 and $v_2(r) \leq C \log r$

(b) $v(r) \leq Cr^{\alpha}$ for some constant $\alpha < 2$.

4. Examples and Counterexamples

Counterexamples to the symmetric case

• $E = \mathbb{R}$

• $d\mu := \varphi(x)dx, \varphi : \mathbb{R} \to \mathbb{R}^+$ is locally bounded above and below by strictly positive constants, $\varphi' \in L^2_{loc}(\mathbb{R}, dx)$

• $(\mathcal{E}^0, D(\mathcal{E}^0))$ is given as the closure of

$$\mathcal{E}^0(f,g):=rac{1}{2}\int_{\mathbb{R}}f'(x)g'(x)\mu(dx), \ f,g\in C_0^\infty(\mathbb{R})$$

on $L^2(\mathbb{R},\mu)$.

•
$$B(x) := \frac{const.}{\varphi} \in L^2_{loc}(\mathbb{R}, d\mu)$$
 (is μ -divergence free)

Then, using the construction method of 3. one can see that (H1)-(H3) are satisfied with $D := D(\mathcal{E}^0)_{0,b}$. The constructed \mathcal{E} is an extension of

$$\mathcal{E}(f,g)=\frac{1}{2}\int_{\mathbb{R}}f'(x)g'(x)\mu(dx)-\int_{\mathbb{R}}B(x)f'(x)g(x)\,\mu(dx),\ f,g\in C_0^\infty(\mathbb{R}).$$

・ロト ・ 日 ・ ・ 田 ト ・ 日 ト ・ 日 ト

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Moreover

 $C_0^\infty(\mathbb{R})\subset D(L^0)_{0,b}\subset D(L)_{0,b}$

and

$$Lu = \frac{1}{2}u'' + \left(\frac{\varphi'}{2\varphi} + B\right)u', \quad u \in C_0^{\infty}(\mathbb{R}).$$

We consider three explicit cases:

(a)
$$\varphi(x) = e^{-|x|}, \ B = \frac{1}{2}e^{|x|}$$
 (b) $\varphi(x) = \inf(1, \frac{1}{|x|}), \ B = \frac{b}{\varphi},$
(c) $\varphi(x) \equiv 1, \ B \equiv b.$

In all explicit cases, choose $(\chi_n)_{n\geq 1} \subset C_0^{\infty}(\mathbb{R})$ such that $1_{B_n(0)} \leq \chi_n \leq 1_{B_{2n}(0)}$, $\lim_{n\to\infty} \chi_n = 1, \ 0 \leq \chi_n \nearrow 1\mu$ -a.e. and $\|\chi'_n\|_{L^{\infty}(\mu)} \leq 2/n$. Then

$$\lim_{n\to\infty}(-L\chi_n,\chi_n)=\lim_{n\to\infty}\mathcal{E}(\chi_n,\chi_n)=\lim_{n\to\infty}\underbrace{\mathcal{E}^0(\chi_n,\chi_n)}_{\leq \frac{const.}{n}}=0.$$

and so $(\mathcal{E}^0, D(\mathcal{E}^0))$ is recurrent, but we will see \mathcal{E} is not recurrent.

Idea : Symmetrize \mathcal{E}

We have

$$\mathcal{E}(u,v) = -\int_{\mathbb{R}} Lu \cdot v \underbrace{\varphi}_{=\mu} dx.$$

We can find (a symmetrizing measure) $\tilde{\mu}$, such that

$$\widetilde{\mathcal{E}}(u,v) := -\int_{\mathbb{R}} Lu \cdot v \, d\widetilde{\mu} = -\int_{\mathbb{R}} u \cdot Lv \, d\widetilde{\mu}, \; \forall u, v \in C_0^{\infty}(\mathbb{R})$$

and such that $\widetilde{\mathcal{E}}$ coincides with a sym. Dirichlet form $(\widetilde{\mathcal{E}}, D(\widetilde{\mathcal{E}}))$ on $C_0^{\infty}(\mathbb{R})$.

Moreover, if

$$(\mathcal{G}_{lpha})_{lpha>0}\leftrightarrow\mathcal{E}$$
 and $(\widetilde{\mathcal{G}}_{lpha})_{lpha>0}\leftrightarrow(\widetilde{\mathcal{E}},D(\widetilde{\mathcal{E}})),$

then

$$\mathcal{G}_{\alpha}f = \widetilde{\mathcal{G}}_{\alpha}f, \ \forall f \in L^{2}(\mathbb{R},\mu) \cap L^{2}(\mathbb{R},\widetilde{\mu}).$$

Conclusion : \mathcal{E} is recurrent (transient) $\iff \widetilde{\mathcal{E}}$ is recurrent (transient).

This idea works with

$$\widetilde{\varphi}(x) := \exp\Big(\int_0^x \frac{\varphi'(s) + 2b}{\varphi(s)} ds\Big) = \varphi(x) \exp\Big(\int_0^x \frac{2b}{\varphi(s)} ds\Big).$$

Note that our form $\ensuremath{\mathcal{E}}$ is

$$\mathcal{E}(f,g) := \underbrace{\frac{1}{2} \int_{\mathbb{R}} f'g' \varphi dx}_{=\mathcal{E}^0(f,g)} - \int_{\mathbb{R}} Bf'g \varphi dx, \ f,g \in C_0^\infty(\mathbb{R}).$$

In case of:

(a)
$$\varphi(x) = e^{-|x|}$$
, $B(x) = \frac{1}{2}e^{|x|}$, we have

$$\int_0^\infty \frac{1}{\widetilde{\varphi}(x)} dx = \int_0^\infty \frac{e^x}{\exp(e^x - 1)} dx = 1.$$

 $\implies \mathcal{E} \text{ is not recurrent by scale function arguments (cf. e.g book Mandl).}$ $\implies \mathcal{E} \text{ is not recurrent.}$

Moreover, ${\cal E}$ is not conservative and does not satisfy the weak sector condition,

$$\sup_{u,v\in C_0^{\infty}(\mathbb{R})} \frac{|\mathcal{E}(u,v)|}{\|u\|_{D(\mathcal{E}^0)} \|v\|_{D(\mathcal{E}^0)}} = \infty.$$

(b) $\varphi(x) = \inf(1, \frac{1}{|x|}), \ B(x) = \frac{1}{2}\varphi^{-1}(x),$

$$\int_0^\infty \frac{1}{\widetilde{\varphi}(x)} dx < 1 + \int_1^\infty \frac{1}{\exp(\frac{x^2+1}{2})} dx < \infty.$$

 $\implies \widetilde{\mathcal{E}} \text{ is not recurrent} \implies \mathcal{E} \text{ is not recurrent}.$

Here \mathcal{E} is conservative and does not satisfy the strong sector condition, i.e.

$$\sup_{u,v\in C_0^\infty(\mathbb{R})}\frac{|\mathcal{E}(u,v)|}{\mathcal{E}^0(u,u)^{1/2}\mathcal{E}^0(v,v)^{1/2}}=\infty.$$

(but we do not know whether the weak sector condition is satisfied).

(c) $\varphi(x) \equiv 1$, $B(x) \equiv b > 0$ then

$$\int_0^\infty \frac{1}{\widetilde{\varphi}(x)} dx = \int_0^\infty \frac{1}{\exp(2bx)} dx = \frac{1}{2b}$$

 $\implies \widetilde{\mathcal{E}} \text{ is not recurrent} \implies \mathcal{E} \text{ is not recurrent}.$

Here \mathcal{E} is conservative and satisfies the weak sector condition but not the strong sector condition (otherwise \mathcal{E}^0 is transient, since \mathcal{E} strictly irreducible).

Muckenhoupt weights

Let

•
$$E = \mathbb{R}^d$$
, $d \ge 2$

• $d\mu := \rho(x)dx$, $\rho > 0 dx$ -a.e. such that

$$\mathcal{E}^0(f,g) := rac{1}{2} \int_{\mathbb{R}^d} \langle
abla f,
abla g
angle \mu(\mathit{dx}), \ f,g \in C_0^\infty(\mathbb{R}^d)$$

is closable on $L^2(\mathbb{R}^d,\mu)$ with closure $(\mathcal{E}^0,D(\mathcal{E}^0)).$

• $B \in L^2_{loc}(\mathbb{R}^d, \mathbb{R}^d, \mu)$ is μ -divergence free and there exist M > 0 and $\alpha \in \mathbb{R}$ such that

$$|\langle B(x),x\rangle| \leq M(1+|x|)^{lpha}$$

for sufficiently large |x|.

Then as in 3. we can construct a generalized Dirichlet form ${\cal E}$ satisfying (H1)-(H3) and which is an extension of

$$\mathcal{E}(f,g)=rac{1}{2}\int_{\mathbb{R}^d}\langle
abla f,
abla g
angle \mu(dx)-\int_{\mathbb{R}^d}\langle B(x),
abla f(x)
angle g(x)\mu(dx),\;f,g\in C_0^\infty(\mathbb{R}^d).$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Definition

Let $\psi \in \mathcal{B}(\mathbb{R}^d)$ with $\psi > 0$ dx-a.e. and A a positive constant

 (i) ψ is called a Muckenhoupt A_β-weight (in notation ψ ∈ A_β), β ∈ (1,2], if for every ball B ⊂ ℝ^d,

$$\left(\int_{B}\psi dx\right)\left(\int_{B}\psi^{-\frac{1}{\beta-1}}dx\right)\leq A\left(\int_{B}1\,dx\right)^{2}.$$

(ii) ψ is called a Muckenhoupt A_1 -weight (in notation $\psi \in A_1$), if for every ball $B \subset \mathbb{R}^d$ $\left(\int_B \psi dx\right) \operatorname{ess. sup}_{x \in B} \frac{1}{\psi(x)} \leq A \int_B 1 dx.$

For $\varphi \in \mathcal{A}_{\beta}$, $\beta \in [1,2]$, the closability follows since

$$\mathcal{A}_eta \subset \mathcal{A}_2 \; \; ext{and} \; \; rac{1}{arphi} \in L^1_{\mathit{loc}}(\mathbb{R}^d, d\mathsf{x}) \; \; \; orall arphi \in \mathcal{A}_2.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

(a): Let d = 2 and ρ be a Muckenhoupt A_1 -weight.

Then for sufficiently large r > 1

$$v_1(r) = \mu(B_r) \leq Ar^2$$

and

$$v_2(r) = \int_{B_r} |\langle B(x), x \rangle|
ho(x) dx \leq C(1+r)^{lpha+2}$$

By the last Corollary of 3. if $\alpha \leq -2$, then \mathcal{E} is not transient.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

(b): Let φ be a Muckenhoupt A_{β} -weight with $1 \leq \beta \leq 2$. Then for r > 1 and some constant A, we have that

$$v_1(r) \sim A r^{eta d}$$

and by resuts of [Sturm 96, AOLDS III.] (\mathcal{E}^0 , $D(\mathcal{E}^0)$) admits a strictly positive heat kernel $(p_t^0(x, y))_{t>0, x, y \in \mathbb{R}^d}$. Hence $(\mathcal{E}^0, D(\mathcal{E}^0))$ is strictly irreducible. By the Corollary again,

 $\beta d > 2 \Rightarrow \mathcal{E}^0$ is transient $\Rightarrow \mathcal{E}$ is transient $\forall \alpha \in \mathbb{R}$.

(c): Let $\rho(x) := |x|^{\eta}$ with $\eta > -d$. Then

$$v_1(r) = \int_{B_r} |x|^{\eta} dx = Cr^{d+\eta}$$

and for sufficiently large r > 1,

$$v_2(r) = \int_{B_r} |\langle B(x),x
angle| \cdot |x|^\eta dx \leq \left\{egin{array}{ll} C(1+r)^{lpha+d+\eta} & lpha+d+\eta
eq 0,\ C\log\left(1+r
ight) & lpha+d+\eta=0. \end{array}
ight.$$

Then \mathcal{E} is not transient, if one of the following conditions is satisfied

(b1)
$$d + \eta = 2$$
 and $\alpha \le -2$.
(b2) $d + \eta \in (0, 2)$ and $\alpha + d + \eta < 2$.

Similarly to [Stannat, 1999], [Tr 2003], \exists diffusion process associated with \mathcal{E} and if $d + \eta \in (0, 1]$, it is not a semimartingale. Thus (b2) asserts that one can determine non-transience or recurrence even in the non semimartingale case.