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Introduction

Model: Surface Diffusion
We consider evolutional model of a discrete surface:
• surface is realized by 2-dim Young diagram
• number of cells in Young diagram is conserved quantity
• a cell at the edge can jump next corner with jump rate
1/(length)2
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Introduction

Model: Surface Diffusion
If we consider 2-dim Young diagram, restricted Young diagram,
state space of zero range pr., and state space of exclusion pr., then
each pair of them has bijection,

2d-Young diagram restricted Young diagram

zero range process exclusion process

Hence we treat this model as an exclusion process.
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Introduction

Model: Surface Diffusion
In the exclusion model, we have two types of jumps.
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Introduction

Notation
Λn := {1, 2, . . . , n}
Σn := {0, 1}Λn

Σn,K ,M := {η ∈ Σn :
∑

x∈Λn
ηx = K ,

∑
x∈Λn

xηx = M}
K = KΛn(η) :=

∑
x∈Λn

ηx : number of particles
M = MΛn(η) :=

∑
x∈Λn

xηx : (physical) moment
τx : shift operator
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Introduction

Notation
We set π(i ,j), σ(i ,j) for i < j by

π(i ,j)f (η) := σ(i ,j)f (η)− f (η) = f (σ(i ,j)η)− f (η)

with

(σ(i ,j)η)k =



ηi if k = i − 1

ηi−1 if k = i

ηj+1 if k = j

ηj if k = j + 1

ηk otherwise.

i j
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Introduction

Notation
We set F±

r ,G± as

F+
r (η) := 1(η−1 = 0, η0 = . . . = ηr = 1, ηr+1 = 0)(η)

F−
r (η) := 1(η−1 = 1, η0 = 0, η1 = . . . = ηr−1 = 1, ηr = 0, ηr+1 = 1)(η)

G−
r (η) := 1(η−1 = 1, η0 = . . . = ηr = 0, ηr+1 = 1)(η)

G+
r (η) := 1(η−1 = 0, η0 = 1, η1 = . . . = ηr−1 = 0, ηr = 1, ηr+1 = 0)(η).

0 r

F +
r (η) = 1

G+

r
(η) = 1

G−
r
(η) = 1

F+

r
(η) = 1

F−
r
(η) = 1
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Introduction

Notation
We set F±

r ,G± as

F+
r (η) := 1(η−1 = 0, η0 = . . . = ηr = 1, ηr+1 = 0)(η)

F−
r (η) := 1(η−1 = 1, η0 = 0, η1 = . . . = ηr−1 = 1, ηr = 0, ηr+1 = 1)(η)

G−
r (η) := 1(η−1 = 1, η0 = . . . = ηr = 0, ηr+1 = 1)(η)

G+
r (η) := 1(η−1 = 0, η0 = 1, η1 = . . . = ηr−1 = 0, ηr = 1, ηr+1 = 0)(η).

Then we define c(x , y ; η) by

c(x , y ; η) :=
1

|y − x |2
{τx(F+

y−x(η)+F−
y−x(η))+τx(G

+
y−x(η)+G−

y−x(η))}

for x < y .
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Introduction

Notation
Our generator is defined

Lf (η) :=
∑

x ,y ;x<y

c(x , y ; η)π(x ,y)f (η).
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Introduction

Notation
Our generator is defined

Lf (η) :=
∑

x ,y ;x<y

c(x , y ; η)π(x ,y)f (η).

There are two conserved quantities;
K = KΛn(η) :=

∑
x∈Λn

ηx : number of particles
M = MΛn(η) :=

∑
x∈Λn

xηx : (physical) moment
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Introduction

Notation
Our generator is defined

Lf (η) :=
∑

x ,y ;x<y

c(x , y ; η)π(x ,y)f (η).

There are two conserved quantities;
K = KΛn(η) :=

∑
x∈Λn

ηx : number of particles
M = MΛn(η) :=

∑
x∈Λn

xηx : (physical) moment
Hence uniform measure on Σn,K ,M for each fixed n,K ,M becomes
reversible measure.
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Introduction

Notation
Our generator is defined

Lf (η) :=
∑

x ,y ;x<y

c(x , y ; η)π(x ,y)f (η).

There are two conserved quantities;
K = KΛn(η) :=

∑
x∈Λn

ηx : number of particles
M = MΛn(η) :=

∑
x∈Λn

xηx : (physical) moment
Hence uniform measure on Σn,K ,M for each fixed n,K ,M becomes
reversible measure.

Proposition [Funaki] (Equivalence of Ensembles)

Equivalence of ensembles holds true; i.e.,
there exists a function β(x) such that the uniform measure on
Σn,K ,M is approximated by inhomogeneous Bernoulli measure
whose mean at site x is given by β(x/N).
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Results

Spectral gap
Set
En,K ,M : the expectation w.r.t. uniform measure on Σn,K ,M

Ln,K ,M : the restriction of L on Σn,K ,M

Definition of spectral gap

λ(n,K ,M) := inf

{
En,K ,M [f (−Ln,K ,M)f ]

En,K ,M [f 2]

∣∣∣∣∣ En,K ,M [f ] = 0

}
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Results

Spectral gap

Proposition; An estimate of spectral gap [N]

There exists a constant C such that

λ(n,K ,M) ≥ C

n4
.
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Results

Spectral gap; Upper bound estimate
We pick and fix “good” K ,M such that β does not depend on the
position. We take for α > 2

f (η) :=
∑
x

xαηx

Then we have

V [f ] = β(1− β)
1

2α+ 1
n2α+1

D[f ] = β(α− 1)2n2α−3

Hence we have

λ(n,K ,M) ≤ C

n4
.
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Idea of the proof

Proof of the theorem
We consider mean field type process.
We set T x ,y ;z and Sx ,y ;z for x < y and z < (y − x)/2 by

T x ,y ;z f (η) := Sx ,y ;z f (η)− f (η) = f (Sx ,y ;zη)− f (η)

with

(Sx ,y ;zη)k =



ηx+z if k = x

ηx if k = x + z

ηy if k = y − z

ηy−z if k = y

ηk otherwise.
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Idea of the proof

Proof of the theorem
We consider mean field type process.
Note that T x ,y ;1 = π(x−1,y−1).
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Idea of the proof

Proof of the theorem
We consider mean field type process.
We define cm(x , y , z ; η) for x < y and z < (y − x)/2 by

cm(x , y , z ; η) :=
1

(y − x)2
{1(ηx = ηy = 1, ηz+z = ηy−z = 0)

+ 1(ηx = ηy = 0, ηz+z = ηy−z = 1)}

Then we define a generator of the mean field type process by

Lmf (η) :=
∑

x ,y ,z;x<y ,z<(y−x)/2

cm(x , y , z ; η)T x ,y ;z f (η).
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Idea of the proof

Proof of the theorem
We consider mean field type process.
Lmn,K ,M : the restriction of Lm on Σn,K ,M

Definition of spectral gap for mean field type

λm(n,K ,M) := inf

{
En,K ,M [f (−Lmn,K ,M)f ]

En,K ,M [f 2]

∣∣∣∣∣ En,K ,M [f ] = 0

}
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Idea of the proof

Proof of the theorem
We consider mean field type process.

An estimate of spectral gap for mean field type

There exists a constant C such that

λm(n,K ,M) ≥ C .

A comparison estimate

There exists a constant C such that

En,K ,M [f (−Lmn,K ,M)f ] ≤ Cn3K 2En,K ,M [f (−Ln,K ,M)f ]

≤ Cn5En,K ,M [f (−Ln,K ,M)f ].
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Idea of the proof

Proof of the theorem
If we separate these two propositions, our spectral gap estimate
becomes O(1/n5).
However if we marge the proof of these two propositions, our
spectral gap estimate becomes O(1/n4).
The main idea is

A comparison estimate with restriction

There exists a set A and a constant C such that

En,K ,M [f (−Lmn,K ,M)f 1(A)] ≤ Cn4En,K ,M [f (−Ln,K ,M)f 1(A)].

This estimate do not make sense if we separate our proof.
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Idea of the proof

Proof of the theorem: Lu-Yau’s martingale method
The proof of the spectral gap estimate for mean field type is due
to Lu-Yau’s martingale (induction) method.
In general, we have

V [f ] = E [(f−E [f ])2] = E [E [(f−E [f |ηn])2|ηn]]+E [(E [f |ηn]−E [f ])2]

We assume that the first part is already estimated by using
n − 1-th Dirichlet form as an induction assumption, i.e., there is
W (n − 1) such that

E [(f − E [f |ηn])2|ηn]
≤ W (n − 1)E [

∑
x ,y ,z;x<y ,z<(y−x)/2

c(x , z ; η)(π(x ,z)f (η))2|ηn]

The second part is rewritten by

E [(E [f |ηn]−E [f ])2] = P(ηn = 1)P(ηn = 0)(E [f |ηn = 1]−E [f |ηn = 0])2.
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Idea of the proof

Proof of the theorem: Lu-Yau’s martingale method
separate case
By direct computation, we have

P(ηn = 1)P(ηn = 0)(E [f |ηn = 1]− E [f |ηn = 0])2

≤ C1

n2
E [

∑
x ,z;z<(n−x)/2

(T x ,n;z f (η))2] +
C2

n2
V [f ]

≤ C1E [
∑

x ,z;z<(n−x)/2

cm(x , n, z ; η)(T x ,n;z f (η))2] +
C2

n2
V [f ]

for some constant C1,C2 which are independent of n,K ,M, f .
(This is very hard computation.)
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Idea of the proof

Proof of the theorem: Lu-Yau’s martingale method
marge case
By direct computation, we have

P(ηn = 1)P(ηn = 0)(E [f |ηn = 1]− E [f |ηn = 0])2

≤ C1

n2
E [

∑
x ,z;z<(n−x)/2

(T x ,n;z f (η))21(A)] +
C2

n2
V [f ] + P(Ac)V [f ]

≤ C1E [
∑

x ,z;z<(n−x)/2

cm(x , n, z ; η)(T x ,n;z f (η))21(A)] +
C3

n
V [f ]

for some constant C1,C2,C3 which are independent of n,K ,M, f
and C3 is small enough.
(This is very hard computation.)
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Idea of the proof

Proof of the theorem: Lu-Yau’s martingale method
We apply

A comparison estimate with restriction

There exists a set A and a constant C such that

E [
∑

x ,z;z<(n−x)/2

cm(x , n, z ; η)(T x ,n;z f (η))21(A)]

≤ Cn3E [
∑
x ,z

c(x , z ; η)(π(x ,z)f (η))21(A)]

Note that this inequality implies

En,K ,M [f (−Lmn,K ,M)f 1(A)] ≤ Cn4En,K ,M [f (−Ln,K ,M)f 1(A)].
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Idea of the proof

Proof of the theorem: Lu-Yau’s martingale method
We have

V [f ] ≤ W (n − 1)E [
∑
x ,z

c(x , z ; η)(π(x ,z)f (η))2|ηn]

+C ′
1n

3E [
∑
x ,z

c(x , z ; η)(π(x ,z)f (η))2] +
C3

n
V [f ]

≤ (1 +
C ′
3

n
)(W (n − 1) + C ′

1n
3)[

∑
x ,z

c(x , z ; η)(π(x ,z)f (η))21(A)]

This inequality says that

W (n) ≤ (1 +
C ′
3

n
)(W (n − 1) + C ′

1n
3).

Hence we have

W (n) ≤ Cn4 for some constantC .

Y. Nagahata An estimate of spectral gap for surface diffusion



Idea of the proof

Why we need A and how to select A
Given a configuration η we set {li} the length of the cluster;

l : the length of the clusterj

3 2 2 2

Then we should have to use following inequality;

E [(f (η)− f (η′))2] = E [{
∑
j

(f (ηj−1)− f (ηj))}2]

= E [{
∑
j

lj ×
1

lj
(f (ηj−1)− f (ηj))}2]

≤ E [
∑
j

l2j
∑
j

1

l2j
(f (ηj−1)− f (ηj))2]

≤ sup
η

∑
j

l2j E [
∑
j

1

l2j
(f (ηj−1)− f (ηj))2]
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Idea of the proof

Why we need A and how to select A
It is not difficult to see that

sup
η

∑
j

l2j = Cn2, for some constant C ,

but
E [

∑
j

l2j ] = C ′n, for some constant C ′.
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Idea of the proof

Why we need A and how to select A
Hence if we set

A := {η;
∑
j

l2j < C ′′n}, for some constant C ′′ ≫ C ′

Then P(Ac) < O(1/n) and

E [(f (η)− f (η′))21(A)] ≤ E [
∑
j

l2j
∑
j

1

l2j
(f (ηj−1)− f (ηj))21(A)]

≤ sup
η∈A

∑
j

l2j E [
∑
j

1

l2j
(f (ηj−1)− f (ηj))21(A)]

≤ C ′′nE [
∑
j

1

l2j
(f (ηj−1)− f (ηj))21(A)]

as we required
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Fin

Thank you for your attention!
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