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Variable speed BMs and RWs on R

1 Donsker: X̂ = (X̂t)t≥0 (cont. time) RW on Z, X n
t := 1

n
X̂n2t

X n
t is RW on 1

n
Z with (homogeneous) jump rates n2 = n · n

❀ X n L
−→ X in Skorohod pathspace, where X is Brownian motion
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X̂n2t

X n
t is RW on 1

n
Z with (homogeneous) jump rates n2 = n · n

❀ X n L
−→ X in Skorohod pathspace, where X is Brownian motion

2 For σ−1 ∈ L2
loc

(λR), want to approximate solution X of SDE

dXt = σ(Xt) dBt

“variable speed”, speed measure ν = 1
σ
2 · λR

❀ We call X the ν-Brownian motion (ν-BM)

Need variable rates for RWs X n on 1
n
Z to obtain X n L

−→ X .
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Variable speed BMs and RWs on R

1 Donsker: X̂ = (X̂t)t≥0 (cont. time) RW on Z, X n
t := 1

n
X̂n2t

X n
t is RW on 1

n
Z with (homogeneous) jump rates n2 = n · n

❀ X n L
−→ X in Skorohod pathspace, where X is Brownian motion

2 For σ−1 ∈ L2
loc

(λR), want to approximate solution X of SDE

dXt = σ(Xt) dBt

“variable speed”, speed measure ν = 1
σ
2 · λR

❀ We call X the ν-Brownian motion (ν-BM)

Need variable rates for RWs X n on 1
n
Z to obtain X n L

−→ X .

For measure νn on 1
n
Z, let X n jump from x at rate n

νn({x})

❀ We call X n the νn-random walk (νn-RW)

Example: ν = λR, νn = n ·# ❀ situation of 1

Observe: νn → ν vaguely.
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Speed-ν motions on R

ν-BM: ν = σ−2λR solves dXt = σ(Xt)dBt ; ν-RW: jump rates n

ν({x})
on 1

n
Z

What do ν-BMs and ν-RWs have in common?

process on supp(ν), does not jump over points in supp(ν)

natural scale, i.e. Px({ τa < τb }) =
b−x
b−a

if x ∈ [a, b]

speed determined by ν ❀ process characterised by ν
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Speed-ν motions on R

ν-BM: ν = σ−2λR solves dXt = σ(Xt)dBt ; ν-RW: jump rates n

ν({x})
on 1

n
Z

What do ν-BMs and ν-RWs have in common?

process on supp(ν), does not jump over points in supp(ν)

natural scale, i.e. Px({ τa < τb }) =
b−x
b−a

if x ∈ [a, b]

speed determined by ν ❀ process characterised by ν

time transformation of BM: Let Ls(x) be local time of B at x

Xt = Bst , st = inf
{

s
∣

∣

∫

Ls dν > t
}

(1)

Alternative: characterise via occupation time formula (x > a)

Ex

(

∫ τa

0
f (Xt) dt

)

= 1
2

∫ ∞

a

f (y)
(

|y − a| ∧ |x − a|
)

ν(dy) (2)

❀ For any Radon measure ν on R, the speed-ν motion X on
supp(ν) is defined by (1), or (2) + strong Markov property
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Stone’s invariance principle & Our goal

2 SDE dXt = σ(Xt)dBt , ν = σ−2λR; νn-RW: rates n

νn({x})
on 1

n
Z

Theorem ([Stone ’63], continuity in ν of speed-ν motions)

νn → ν vaguely, supp(νn) → supp(ν) in local Hausdorff topology.

Then X n L
−→ X in pathspace. (X n speed-νn motion, X speed-ν motion)

Example: can approximate SDE of 2 by RWs on 1
n
Z with rates

n · ν
(

[x , x + 1
n
]
)

−1 = n
(

∫ x+ 1
n

x

1
σ2(y)

dy
)−1
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Stone’s invariance principle & Our goal

2 SDE dXt = σ(Xt)dBt , ν = σ−2λR; νn-RW: rates n

νn({x})
on 1

n
Z

Theorem ([Stone ’63], continuity in ν of speed-ν motions)

νn → ν vaguely, supp(νn) → supp(ν) in local Hausdorff topology.

Then X n L
−→ X in pathspace. (X n speed-νn motion, X speed-ν motion)

Example: can approximate SDE of 2 by RWs on 1
n
Z with rates

n · ν
(

[x , x + 1
n
]
)

−1 = n
(

∫ x+ 1
n

x

1
σ2(y)

dy
)−1

Goal

Generalise Stone’s theorem to converging trees Tn→T replacing R

Example: RW on Galton-Watson tree (conditioned on size n)
L
−→ BM on Aldous’s Brownian Continuum Random Tree (CRT)

This particular case shown in [Croydon ’08: Convergence of simple...]
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Stone’s invariance principle & Our goal

2 SDE dXt = σ(Xt)dBt , ν = σ−2λR; νn-RW: rates n

νn({x})
on 1

n
Z

Theorem ([Stone ’63], continuity in ν of speed-ν motions)

νn → ν vaguely, supp(νn) → supp(ν) in local Hausdorff topology.

Then X n L
−→ X in pathspace. (X n speed-νn motion, X speed-ν motion)

Goal

Generalise Stone’s theorem to converging trees Tn→T replacing R

Result (informal): continuity of (T , ν) 7→ X for the speed-ν motion X on T

ToDo for precise formulation:

1 Define what we mean by tree: metric measure tree (T , ν)

2 Define ν-motions on metric measure trees

3 Define convergence of metric measure trees
and of processes living on different spaces Tn, T
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Metric trees for us, trees are metric spaces

A metric space (T , r) is 0-hyperbolic if the 4-point condition holds:

r(x1, x2)+r(x3, x4) ≤ max
{

r(x1, x3)+r(x2, x4), r(x1, x4)+r(x2, x3)
}

0-hyperbolicity implies for x , y , z ∈ T :

[x , y ] := {m ∈ T | r(x , y) = r(x ,m) + r(m, y) } ⊆ T
is isometric to a subset of the interval

[

0, r(x , y)
]

⊆ R,

#
(

[x , y ] ∩ [y , z ] ∩ [z , x ]
)

≤ 1

If (T , r) is connected, it is an R-tree

Note: R-trees (usually) have curvature −∞ ❀ no CD-condition

(T , r) is Heine-Borel if closed, bounded sets are compact.

A measure ν is boundedly-finite if ν(A) < ∞ for bounded A ⊆ T
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Metric measure trees for us, trees are metric spaces

Definition (Metric measure tree)

A (rooted) metric measure tree (mm-tree) is (T , r , ρ, ν), where

(T , r) is a 0-hyperbolic Heine-Borel space with

[x , y ] ∩ [y , z ] ∩ [z , x ] = c(x , y , z) ∈ T

ρ ∈ T , called the root

ν is a boundedly-finite measure on T with full support,
supp(ν) = T

c(x , y , z) is the branch point corresponding to x , y , z
•x

•c(x ,y ,z) •y

•z

From now on, X = (T , r , ρ, ν), Xn = (Tn, rn, ρn, νn) are mm-trees
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Particular cases of metric trees

An edge in (T , r) is a pair (x , y), x 6= y ∈ T , with [x , y ] = {x , y}

finite trees

(T ,E ) finite (undirected) graph tree with
edge weights rx ,y > 0, (x , y) ∈ E

Metric r on T : maximal extension of
r(x , y) := rx ,y , (x , y) ∈ E

❀ (T , r) topologically discrete, 0-hyperbolic

❀ edges are precisely the elements of E

• • • •

•
•

• •

•ρ
finite tree: edges (dashed)
are not in the space (T , r)
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Particular cases of metric trees

An edge in (T , r) is a pair (x , y), x 6= y ∈ T , with [x , y ] = {x , y}

finite trees

(T ,E ) finite (undirected) graph tree with
edge weights rx ,y > 0, (x , y) ∈ E

Metric r on T : maximal extension of
r(x , y) := rx ,y , (x , y) ∈ E

❀ (T , r) topologically discrete, 0-hyperbolic

❀ edges are precisely the elements of E

R-trees

Connected 0-hyperbolic ❀ no edges

infinite degrees, dense leaves possible

Hausdorff dimension arbitrary,
topological dimension one ❀ fractal

• • • •

•
•

• •

•ρ
finite tree: edges (dashed)
are not in the space (T , r)

•ρ
corresponding R-tree: no edges
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Speed-ν motions on trees

X = (T , r , ρ, ν) is an mm-tree. Recall T = supp(ν), c(x , y , z) is branch point

Proposition ([Athreya, L., Winter ’14+: Invariance...], compact case)

If (T , r) is compact, then there exists a unique strong Markov
process X = (Xt)t≥0 on T satisfying the occupation time formula

Ex

[

∫ τy

0
f (Xs) ds

]

= 2

∫

T

r
(

y , c(x , y , z)
)

f (z) ν(dz)

for all x , y ∈ T, f bounded measurable, τy first hitting time of y .
ν is reversible for X . We call X the speed-ν motion on (T , r).

Proofidea.

Uniqueness: Resolvent calculation
Existence: Construct via Dirichlet form (see following slides)
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Speed-ν motions on trees

Proposition ([Athreya, L., Winter ’14+: Invariance...], compact case)

If (T , r) is compact, then there exists a unique strong Markov
process X = (Xt)t≥0 on T satisfying the occupation time formula

Ex

[

∫ τy

0
f (Xs) ds

]

= 2

∫

T

r
(

y , c(x , y , z)
)

f (z) ν(dz)

for all x , y ∈ T, f bounded measurable, τy first hitting time of y .
ν is reversible for X . We call X the speed-ν motion on (T , r).

Remark (general case)

If (T , r) is not compact, we still get a unique strong Markov
process X , also called speed-ν motion, by approximating
with balls BR(ρ) (R → ∞). Or using the Dirichlet form

If X is recurrent, we still obtain the occupation time formula
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The Dirichlet form

Unsurprisingly, the Dirichlet form of the speed-ν motion in defined
on L2(ν) as the closure of

(

E ,D(E)
)

with

E(f , g) = 1
2

∫

T

∇f · ∇g dλT , f , g ∈ D(E),

D(E) =
{

f ∈ L2(ν) ∩ C∞
∣

∣ ∇f ∈ L2(λT )
}

,

but we have to define the length measure λT and the gradient ∇
properly.
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The Dirichlet form: Length measure on metric trees

E(f , g) = 1
2

∫
T
∇f · ∇g dλT , D(E) = { f ∈ L2(ν) ∩ C∞ | ∇f ∈ L2(λT ) }

Lemma (length measure λT )

There is a unique measure λT = λ(T ,r ,ρ) ( length measure) with

λT

(

[ρ, x ]
)

= r(ρ, x) ∀x ∈ T and λT (L) = 0,

where L consists of ρ and all leaves that are not isolated in (T , r).

For T = R, λR is the Lebesgue-measure

λT need not be locally finite, but is always σ-finite
For R-trees (i.e. (T , r) connected), λT is the usual length
measure (1-dim. Hausdorff measure on T \ L)
❀ non-atomic and independent of ρ

If (T , r) has an edge, λT has an atom at the end further
away from ρ. Its mass equals the length of the edge.
In particular, λT depends in this case on ρ
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The Dirichlet form: Gradient on metric trees

E(f , g) = 1
2

∫
T
∇f · ∇g dλT , D(E) = { f ∈ L2(ν) ∩ C∞ | ∇f ∈ L2(λT ) }

Lemma (∇, [Athreya, L., Winter ’14+: Invariance...])

If f : T → R is absolutely continuous, then there exists a unique
(up to λT -zero sets) gradient ∇f ∈ L1

loc
(λT ) with

f (x)− f (ρ) =

∫

[ρ,x]
∇f dλT ∀x ∈ T

∇ depends on ρ, even for R-trees, where λT does not

T = R+, ρ = 0: ∇ is the usual gradient on R

T = R, ρ = 0: ∇f (x) = sgn(x)f ′(x) = ±f ′(x)

finite tree: ∇f (x) = f (x)− f (y) where (x , y) is the unique
edge towards ρ, i.e. with y ∈ [ρ, x ]
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The Dirichlet form: speed-ν motion

E(f , g) = 1
2

∫
T
∇f · ∇g dλT , D(E) = { f ∈ L2(ν) ∩ C∞ | ∇f ∈ L2(λT ) }

Fact [Fukushima, Oshima, Takeda ’94]: To a regular Dirichlet form on

L2(ν) corresponds a ν-symmetric Markov process with generator G

characterised by E(f , g) = 〈Gf , g〉ν

Proposition ([Athreya, L., Winter ’14+: Invariance...])

(E ,D(E)) is closable and its closure is a regular Dirichlet form. The
corresponding Markov process X = (Xt)t≥0 is the speed-ν motion.

Although λT and ∇ depend on ρ, the form E does not

E need not be conservative, i.e. X may hit ∞ in finite time

X has continuous paths iff (T , r) is an R-tree, i.e. connected

Jumps occur precisely over edges

T = R, ν = λR: X is standard Brownian motion

T = R, ν arbitrary: X is process considered in [Stone ’63]
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The Dirichlet form: speed-ν motion

E(f , g) = 1
2

∫
T
∇f · ∇g dλT , D(E) = { f ∈ L2(ν) ∩ C∞ | ∇f ∈ L2(λT ) }

Proposition ([Athreya, L., Winter ’14+: Invariance...])

(E ,D(E)) is closable and its closure is a regular Dirichlet form. The
corresponding Markov process X = (Xt)t≥0 is the speed-ν motion.

(T , r) R-tree: X is the ν-BM [Athreya, Eckhoff, Winter ’13]

(T , r) finite tree: X jumps from x to y ∼ x with rate

γx ,y =
(

2ν({x})r(x , y)
)

−1

(T , r) finite tree with unit edge-lengths: rx ,y = 1 for x ∼ y .
ν counting measure ❀ degree-dependent total jump rate

γx =
∑

y∼xγx ,y = 1
2 deg(x)

We get the constant speed (simple) RW with

ν({x}) = 1
2 deg(x)
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Convergence of mm-trees

Xn = (Tn, rn, ρn, νn), X = (T , r , ρ, ν) are mm-trees. Recall Tn = supp(νn)

Definition (Gromov-vague & Gromov-Hausdorff-vague topology)

Xn
Gv

−→ X (Gromov-vague convergence) if (Tn, rn), (T , r) can be
isometrically embedded in a metric space (E , d) such that, in this
embedding, ρn → ρ and for balls B = BR(ρ) of radius R in (E , d)

νn↾B
w

−−−→
n→∞

ν↾B for almost all R > 0

Gv-topology is a simple modification of Gromov-weak topology
(finite measures) [Greven, Pfaffelhuber, Winter ’09]

Gromov’s ✷1-metric [Gromov ’99: Metric structures...] induces the
Gw-topology, shown in [L. ’13: Equivalence of Gromov-Prohorov...]
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Convergence of mm-trees

Xn = (Tn, rn, ρn, νn), X = (T , r , ρ, ν) are mm-trees. Recall Tn = supp(νn)

Definition (Gromov-vague & Gromov-Hausdorff-vague topology)

Xn
Gv

−→ X (Gromov-vague convergence) if (Tn, rn), (T , r) can be
isometrically embedded in a metric space (E , d) such that, in this
embedding, ρn → ρ and for balls B = BR(ρ) of radius R in (E , d)

νn↾B
w

−−−→
n→∞

ν↾B for almost all R > 0

Xn
GHv

−−→X (Gromov-Hausdorff-vague convergence) if additionally

Tn ∩ B
Hausdorff

−−−−−→ T ∩ B for almost all R > 0

GHv-topology closely related to Gromov-Hausdorff-Prohorov metric
but subtle difference: full-support assumption / equivalence classes

❀ The GHP-metric is not complete on spaces of spaces with full
support
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The gap between Gv and GHv topologies

Proposition ([Athreya, L., Winter ’14+: The gap between...])

The GHv-topology is Polish, the Gv-topology is Lusin

The Gv-topology not Polish. It becomes Polish if we drop the
Heine-Borel assumption
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The gap between Gv and GHv topologies

Proposition ([Athreya, L., Winter ’14+: The gap between...])

The GHv-topology is Polish, the Gv-topology is Lusin

Xn
GHv

−−→ X if and only if Xn
Gv

−→ X and the lower mass-bound

lim inf
n→∞

inf
x∈BR (ρn)

νn
(

Bδ(x)
)

> 0 ∀R > 0 (3)

In this case, (E , d) can be chosen as Heine-Borel space.

Gv-topology is induced by the algebra of functions of the form

Φ(X) =

∫

Tm

ϕ
(

r(xi , xj)i ,j=0,...,m

)

ν⊗m(dx), x0 := ρ,

for m ∈ N, ϕ ∈ Cc
(

R
(m+1)×(m+1)

)

. Can use Le Cam:

❀ For random variables: Xn
L
−→
Gv

X ⇔ E[Φ(Xn)] → E[Φ(X )] ∀Φ

(3) acts as a tightness condition
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Convergence of processes

We use the same embedding approach as for the definition of Gv-
and GHV-topology to define convergence of processes living on
different spaces:

Definition (convergence of processes on different spaces)

Let X n = (X n
t )t≥0, n ∈ N ∪ {∞}, be stochastic processes with

values in (Tn, rn). We say that X n converges to X = X∞ in
pathspace or f.d.d. if (Tn, rn) can be isometrically embedded in a
metric space (E , d) such that, in this embedding, X n converges to
X in pathspace or f.d.d., respectively, as E -valued processes.
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The Result

Xn = (Tn, rn, ρn, νn); X n is the speed-νn motion on (Tn, rn) started in ρn

Theorem ([Athreya, L., Winter ’14+: Invariance principle...])

Assume X is conservative, and consider the conditions (R > 0)

1 Edge-length bound:
lim supn→∞ sup

{

rn(x , y)
∣

∣ rn(ρn, x) < R , (x , y) edge
}

< ∞

2 Gromov-vague convergence: Xn
Gv

−→ X

3 Lower mass-bound: lim infn→∞ infx∈BR (ρn) νn
(

Bδ(x)
)

> 0

4 Diameter bound: supn diam(Tn, rn) < ∞

If 1 , 2 and 3 hold, then X n converges in pathspace to X .
If 1 , 2 and 4 hold, then X n converges f.d.d. to X .

1 is a weak condition; trivially satisfied for R-trees (no edges)
4 can be weakened, but some condition is needed
2 + 3 is equivalent to Gromov-Hausdorff-vague convergence
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The Result

Xn = (Tn, rn, ρn, νn); X n is the speed-νn motion on (Tn, rn) started in ρn

Theorem ([Athreya, L., Winter ’14+: Invariance principle...])

Consider the conditions (R > 0)

1 Edge-length bound:
lim supn→∞ sup

{

rn(x , y)
∣

∣ rn(ρn, x) < R , (x , y) edge
}

< ∞

2 Gromov-vague convergence: Xn
Gv

−→ X

3 Lower mass-bound: lim infn→∞ infx∈BR (ρn) νn
(

Bδ(x)
)

> 0

If 1 , 2 and 3 hold, then X n converges in pathspace to a process
Y on the one-point compactification of T , and Y killed at infinity
coincides with X

Speed ν-motions are always killed at infinity
The limit process Y may hit ∞ and not stay there
❀ Y looses the Markov property at ∞ and defines entrance laws

for X from ∞
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Proof strategy

For pathspace convergence (under the lower mass-bound):

1 Tightness using the Aldous criterion
2 Strong Markov property of all limit processes (compact case)

show equicontinuity of the maps Pn : (t, x) 7→ Lx(X
n
t ), n ∈ N,

where Lx is the law of a process started in x ; use Arzelà-Ascoli

3 Show occupation time formula for all limit processes

❀ All limit processes coincide with X in the compact case

4 approximate non-compact trees with compact trees
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Proof strategy

For pathspace convergence (under the lower mass-bound):

1 Tightness using the Aldous criterion
2 Strong Markov property of all limit processes (compact case)

show equicontinuity of the maps Pn : (t, x) 7→ Lx(X
n
t ), n ∈ N,

where Lx is the law of a process started in x ; use Arzelà-Ascoli

3 Show occupation time formula for all limit processes

❀ All limit processes coincide with X in the compact case

4 approximate non-compact trees with compact trees

For the f.d.d.-case (without the lower mass-bound):

5 T̂n ⊆ Tn: νn(Tn \ T̂n) < ε, (T̂n, rn, νn) satisfies mass-bound

6 Show closeness of marginals of X n and X̂ n

Use a simple heat-kernel bound satisfied for speed-ν motions X :
∥

∥qt(x , ·)
∥

∥

2

2
≤ ν(T )−1 + diam(T ) · t−1 ∀x ∈ T , t > 0

7 Use pathspace convergence of X̂ n and Markov property
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The End

Thank you for your attention!

Arigatō gozaimasu!
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