## Invariance Principle for Variable Speed Random Walks on Trees

# **Wolfgang Löhr**, University of Duisburg-Essen joint work with **Siva Athreya** and **Anita Winter**

## STOCHASTIC ANALYSIS AND APPLICATIONS Thoku University, Sendai

September 3, 2015



#### Variable speed BMs and RWs on ${\mathbb R}$

**Object** Donsker:  $\hat{X} = (\hat{X}_t)_{t \ge 0}$  (cont. time) RW on  $\mathbb{Z}$ ,  $X_t^n := \frac{1}{n} \hat{X}_{n^2 t}$ 

•  $X_t^n$  is RW on  $\frac{1}{n}\mathbb{Z}$  with (homogeneous) jump rates  $n^2 = n \cdot n$ 

 $\rightsquigarrow X^n \xrightarrow{\mathcal{L}} X$  in Skorohod pathspace, where X is Brownian motion

#### Variable speed BMs and RWs on ${\mathbb R}$

- **Objective** Donsker:  $\hat{X} = (\hat{X}_t)_{t \ge 0}$  (cont. time) RW on  $\mathbb{Z}$ ,  $X_t^n := \frac{1}{n} \hat{X}_{n^2 t}$ 
  - $X_t^n$  is RW on  $\frac{1}{n}\mathbb{Z}$  with (homogeneous) jump rates  $n^2 = n \cdot n$

 $\rightsquigarrow X^n \xrightarrow{\mathcal{L}} X$  in Skorohod pathspace, where X is Brownian motion

2 For  $\sigma^{-1} \in L^2_{
m loc}(\lambda_{
m R})$ , want to approximate solution X of SDE

 $\mathrm{d}X_t = \sigma(X_t)\,\mathrm{d}B_t$ 

- "variable speed", speed measure ν = 1/σ<sup>2</sup> · λ<sub>R</sub>
   → We call X the ν-Brownian motion (ν-BM)
- Need variable rates for RWs  $X^n$  on  $\frac{1}{n}\mathbb{Z}$  to obtain  $X^n \xrightarrow{\mathcal{L}} X$ .

#### Variable speed BMs and RWs on ${\mathbb R}$

- **Objective** Donsker:  $\hat{X} = (\hat{X}_t)_{t \ge 0}$  (cont. time) RW on  $\mathbb{Z}$ ,  $X_t^n := \frac{1}{n} \hat{X}_{n^2 t}$ 
  - $X_t^n$  is RW on  $\frac{1}{n}\mathbb{Z}$  with (homogeneous) jump rates  $n^2 = n \cdot n$

 $\rightsquigarrow X^n \xrightarrow{\mathcal{L}} X$  in Skorohod pathspace, where X is Brownian motion

2 For  $\sigma^{-1} \in L^2_{
m loc}(\lambda_{
m R})$ , want to approximate solution X of SDE

 $\mathrm{d}X_t = \sigma(X_t)\,\mathrm{d}B_t$ 

- "variable speed", speed measure ν = 1/σ<sup>2</sup> · λ<sub>R</sub>
   → We call X the ν-Brownian motion (ν-BM)
- Need variable rates for RWs  $X^n$  on  $\frac{1}{n}\mathbb{Z}$  to obtain  $X^n \xrightarrow{\mathcal{L}} X$ .
- For measure  $\nu_n$  on  $\frac{1}{n}\mathbb{Z}$ , let  $X^n$  jump from x at rate  $\frac{n}{\nu_n(\{x\})}$  $\sim$  We call  $X^n$  the  $\nu_n$ -random walk ( $\nu_n$ -RW)
- Example:  $\nu = \lambda_{\mathbb{R}}, \ \nu_n = n \cdot \# \rightsquigarrow$  situation of Observe:  $\nu_n \to \nu$  vaguely.

## Speed-u motions on ${\mathbb R}$

 $\nu$ -BM:  $\nu = \sigma^{-2}\lambda_{\mathbb{R}}$  solves  $dX_t = \sigma(X_t)dB_t$ ;  $\nu$ -RW: jump rates  $\frac{n}{\nu(\{x\})}$  on  $\frac{1}{n}\mathbb{Z}$ 

What do  $\nu$ -BMs and  $\nu$ -RWs have in common?

- process on supp( $\nu$ ), does not jump over points in supp( $\nu$ )
- natural scale, i.e.  $\mathbb{P}_x(\{\tau_a < \tau_b\}) = \frac{b-x}{b-a}$  if  $x \in [a, b]$
- speed determined by  $\nu \, \rightsquigarrow \,$  process characterised by  $\nu$

## Speed-u motions on ${\mathbb R}$

 $\nu$ -BM:  $\nu = \sigma^{-2}\lambda_{\mathbb{R}}$  solves  $dX_t = \sigma(X_t)dB_t$ ;  $\nu$ -RW: jump rates  $\frac{n}{\nu(\{x\})}$  on  $\frac{1}{n}\mathbb{Z}$ 

What do  $\nu$ -BMs and  $\nu$ -RWs have in common?

- process on supp $(\nu)$ , does not jump over points in supp $(\nu)$
- natural scale, i.e.  $\mathbb{P}_x(\{\tau_a < \tau_b\}) = \frac{b-x}{b-a}$  if  $x \in [a, b]$
- speed determined by  $\nu \, \rightsquigarrow \,$  process characterised by  $\nu$
- time transformation of BM: Let  $L_s(x)$  be local time of B at x

$$X_t = B_{s_t}, \qquad s_t = \inf\left\{s \mid \int L_s \,\mathrm{d}\nu > t\right\} \tag{1}$$

• Alternative: characterise via occupation time formula (x > a)

$$\mathbb{E}_{\mathsf{x}}\left(\int_{0}^{\tau_{\mathsf{a}}} f(X_{t}) \, \mathrm{d}t\right) = \frac{1}{2} \int_{\mathsf{a}}^{\infty} f(y) \left(|y-\mathsf{a}| \wedge |x-\mathsf{a}|\right) \nu(\mathrm{d}y) \quad (2)$$

 $\rightsquigarrow$  For any *Radon measure*  $\nu$  on  $\mathbb{R}$ , the **speed**- $\nu$  **motion** X on  $supp(\nu)$  is defined by (1), or (2) + strong Markov property

Stone's invariance principle & Our goal

**2** SDE 
$$dX_t = \sigma(X_t) dB_t$$
,  $\nu = \sigma^{-2} \lambda_{\mathbb{R}}$ ;  $\nu_n$ -RW: rates  $\frac{n}{\nu_n(\{x\})}$  on  $\frac{1}{n}\mathbb{Z}$ 

#### Theorem ([STONE '63], continuity in $\nu$ of speed- $\nu$ motions)

 $\nu_n \to \nu$  vaguely,  $\operatorname{supp}(\nu_n) \to \operatorname{supp}(\nu)$  in local Hausdorff topology. Then  $X^n \xrightarrow{\mathcal{L}} X$  in pathspace. ( $X^n$  speed- $\nu_n$  motion, X speed- $\nu$  motion)

**Example**: can approximate SDE of **2** by RWs on  $\frac{1}{n}\mathbb{Z}$  with rates

$$n \cdot \nu \left( [x, x + \frac{1}{n}] \right)^{-1} = n \left( \int_{x}^{x + \frac{1}{n}} \frac{1}{\sigma^{2}(y)} \, \mathrm{d}y \right)^{-1}$$

Stone's invariance principle & Our goal

**2** SDE 
$$dX_t = \sigma(X_t) dB_t$$
,  $\nu = \sigma^{-2} \lambda_{\mathbb{R}}$ ;  $\nu_n$ -RW: rates  $\frac{n}{\nu_n(\{x\})}$  on  $\frac{1}{n}\mathbb{Z}$ 

Theorem ([STONE '63], continuity in  $\nu$  of speed- $\nu$  motions)

 $\nu_n \to \nu$  vaguely,  $\operatorname{supp}(\nu_n) \to \operatorname{supp}(\nu)$  in local Hausdorff topology. Then  $X^n \xrightarrow{\mathcal{L}} X$  in pathspace. ( $X^n$  speed- $\nu_n$  motion, X speed- $\nu$  motion)

**Example**: can approximate SDE of **2** by RWs on  $\frac{1}{n}\mathbb{Z}$  with rates

$$n \cdot \nu \left( [x, x + \frac{1}{n}] \right)^{-1} = n \left( \int_{x}^{x + \frac{1}{n}} \frac{1}{\sigma^{2}(y)} \, \mathrm{d}y \right)^{-1}$$

#### Goal

Generalise Stone's theorem to converging trees  $\mathcal{T}_n o \mathcal{T}$  replacing  $\mathbbm{R}$ 

**Example**: RW on Galton-Watson tree (conditioned on size *n*)  $\xrightarrow{\mathcal{L}}$  BM on Aldous's *Brownian Continuum Random Tree (CRT)* This particular case shown in [CROYDON '08: Convergence of simple...] Stone's invariance principle & Our goal

**2** SDE 
$$dX_t = \sigma(X_t) dB_t$$
,  $\nu = \sigma^{-2} \lambda_{\mathbb{R}}$ ;  $\nu_n$ -RW: rates  $\frac{n}{\nu_n(\{x\})}$  on  $\frac{1}{n}\mathbb{Z}$ 

#### Theorem ([STONE '63], continuity in $\nu$ of speed- $\nu$ motions)

 $\nu_n \to \nu$  vaguely,  $\operatorname{supp}(\nu_n) \to \operatorname{supp}(\nu)$  in local Hausdorff topology. Then  $X^n \xrightarrow{\mathcal{L}} X$  in pathspace. ( $X^n$  speed- $\nu_n$  motion, X speed- $\nu$  motion)

#### Goal

Generalise Stone's theorem to converging trees  $T_n \rightarrow T$  replacing  $\mathbb R$ 

**Result** (informal): *continuity* of  $(T, \nu) \mapsto X$  for the speed- $\nu$  motion X on T **ToDo** for precise formulation:

- **O** Define what we mean by *tree*: metric measure tree  $(T, \nu)$
- 2 Define *v*-motions on metric measure trees
- Define convergence of metric measure trees and of processes living on different spaces T<sub>n</sub>, T

A metric space (T, r) is 0-hyperbolic if the 4-point condition holds:

$$r(x_1, x_2) + r(x_3, x_4) \le \max \{r(x_1, x_3) + r(x_2, x_4), r(x_1, x_4) + r(x_2, x_3)\}$$

0-hyperbolicity implies for  $x, y, z \in T$ :

•  $[x, y] := \{ m \in T \mid r(x, y) = r(x, m) + r(m, y) \} \subseteq T$ is isometric to a subset of the interval  $[0, r(x, y)] \subseteq \mathbb{R}$ ,

• 
$$\#([x,y]\cap [y,z]\cap [z,x]) \leq 1$$

• If (T, r) is connected, it is an  $\mathbb{R}$ -tree

Note:  $\mathbb{R}$ -trees (usually) have curvature  $-\infty \rightarrow no$  *CD-condition* (*T*, *r*) is **Heine-Borel** if *closed*, *bounded sets are compact*. A measure  $\nu$  is **boundedly-finite** if  $\nu(A) < \infty$  for *bounded*  $A \subseteq T$ 

#### Definition (Metric measure tree)

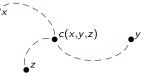
A (rooted) metric measure tree (mm-tree) is  $(T, r, \rho, \nu)$ , where

• (T, r) is a 0-hyperbolic Heine-Borel space with

$$[x,y] \cap [y,z] \cap [z,x] = c(x,y,z) \in T$$

- $\rho \in T$ , called the **root**
- ν is a *boundedly-finite* measure on T with full support, supp(ν) = T

c(x, y, z) is the branch point corresponding to x, y, z

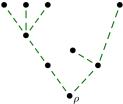


From now on,  $x = (T, r, \rho, \nu)$ ,  $x_n = (T_n, r_n, \rho_n, \nu_n)$  are mm-trees

## Particular cases of metric trees

An edge in (T, r) is a pair (x, y),  $x \neq y \in T$ , with  $[x, y] = \{x, y\}$ finite trees

- (T, E) finite (undirected) graph tree with edge weights  $r_{x,y} > 0$ ,  $(x, y) \in E$
- Metric r on T: maximal extension of  $r(x, y) := r_{x,y}, (x, y) \in E$
- $\rightsquigarrow$  (*T*, *r*) topologically discrete, 0-hyperbolic
- $\rightsquigarrow$  edges are precisely the elements of E

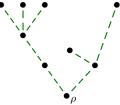


finite tree: edges (dashed) are not in the space (T, r)

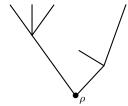
## Particular cases of metric trees

An edge in (T, r) is a pair (x, y),  $x \neq y \in T$ , with  $[x, y] = \{x, y\}$ finite trees

- (T, E) finite (undirected) graph tree with edge weights  $r_{x,y} > 0$ ,  $(x, y) \in E$
- Metric r on T: maximal extension of  $r(x, y) := r_{x,y}, (x, y) \in E$
- $\rightarrow$  (*T*, *r*) topologically discrete, 0-hyperbolic  $\rightarrow$  *edges* are precisely the elements of *E*
- $\mathbb{R}$ -trees
  - Connected 0-hyperbolic ~> no edges
  - infinite degrees, dense leaves possible
  - Hausdorff dimension arbitrary, topological dimension one → fractal



finite tree: edges (dashed) are not in the space (T, r)



corresponding  $\mathbb{R}$ -tree: no edges

#### Speed- $\nu$ motions on trees

 $x = (T, r, \rho, \nu)$  is an mm-tree. Recall  $T = \text{supp}(\nu)$ , c(x, y, z) is branch point

#### **Proposition** ([Athreya, L., WINTER '14<sup>+</sup>: *Invariance...*], compact case)

If (T, r) is compact, then there exists a unique strong Markov process  $X = (X_t)_{t \ge 0}$  on T satisfying the occupation time formula

$$\mathbb{E}_{\mathsf{x}}\left[\int_{0}^{\tau_{\mathsf{y}}} f(\mathsf{X}_{\mathsf{s}}) \, \mathrm{d}\mathsf{s}\right] = 2 \int_{\mathcal{T}} r(\mathsf{y}, \mathsf{c}(\mathsf{x}, \mathsf{y}, \mathsf{z})) f(\mathsf{z}) \, \nu(\mathrm{d}\mathsf{z})$$

for all  $x, y \in T$ , f bounded measurable,  $\tau_y$  first hitting time of y.  $\nu$  is reversible for X. We call X the speed- $\nu$  motion on (T, r).

#### Proofidea.

**Uniqueness:** Resolvent calculation **Existence:** Construct via *Dirichlet form* (see following slides)

#### Proposition ([Athreya, L., WINTER '14<sup>+</sup>: Invariance...], compact case)

If (T, r) is compact, then there exists a unique strong Markov process  $X = (X_t)_{t \ge 0}$  on T satisfying the occupation time formula

$$\mathbb{E}_{\mathsf{x}}\left[\int_{0}^{\tau_{\mathsf{y}}} f(\mathsf{X}_{\mathsf{s}}) \, \mathrm{d}\mathsf{s}\right] = 2 \int_{\mathcal{T}} r(\mathsf{y}, \mathsf{c}(\mathsf{x}, \mathsf{y}, \mathsf{z})) f(\mathsf{z}) \, \nu(\mathrm{d}\mathsf{z})$$

for all  $x, y \in T$ , f bounded measurable,  $\tau_y$  first hitting time of y.  $\nu$  is reversible for X. We call X the speed- $\nu$  motion on (T, r).

#### Remark (general case)

- If (T, r) is not compact, we still get a unique strong Markov process X, also called speed-ν motion, by approximating with balls B<sub>R</sub>(ρ) (R→∞). Or using the Dirichlet form
- If X is recurrent, we still obtain the occupation time formula

## The Dirichlet form

Unsurprisingly, the *Dirichlet form* of the speed- $\nu$  motion in defined on  $L^2(\nu)$  as the closure of  $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$  with

$$egin{aligned} \mathcal{E}(f,g) &= rac{1}{2} \int_{\mathcal{T}} 
abla f \cdot 
abla g \, \mathrm{d}\lambda_{\mathcal{T}}, \qquad f,g \in \mathcal{D}(\mathcal{E}), \ \mathcal{D}(\mathcal{E}) &= ig\{ f \in L^2(
u) \cap \mathcal{C}_\infty \mid 
abla f \in L^2(\lambda_{\mathcal{T}}) ig\}, \end{aligned}$$

but we have to define the *length measure*  $\lambda_T$  and the *gradient*  $\nabla$  properly.

## The Dirichlet form: Length measure on metric trees

$$\mathcal{E}(f,g) = \frac{1}{2} \int_{\mathcal{T}} \nabla f \cdot \nabla g \, \mathrm{d} \lambda_{\mathcal{T}}, \ \mathcal{D}(\mathcal{E}) = \{ f \in L^2(\nu) \cap \mathcal{C}_{\infty} \mid \nabla f \in L^2(\lambda_{\mathcal{T}}) \}$$

#### Lemma (length measure $\lambda_T$ )

There is a unique measure  $\lambda_T = \lambda_{(T,r,\rho)}$  (length measure) with

$$\lambda_T([\rho, x]) = r(\rho, x) \ \forall x \in T \quad and \quad \lambda_T(L) = 0,$$

where L consists of  $\rho$  and all leaves that are not isolated in (T, r).

- For  $T = \mathbb{R}$ ,  $\lambda_{\mathbb{R}}$  is the Lebesgue-measure
- $\lambda_T$  need not be locally finite, but is always  $\sigma$ -finite
- For **ℝ-trees** (i.e. (*T*, *r*) connected), λ<sub>T</sub> is the usual length measure (1-dim. Hausdorff measure on T \ L)
   → non-atomic and independent of ρ

 If (T, r) has an edge, λ<sub>T</sub> has an *atom* at the end further away from ρ. Its mass equals the length of the edge.

In particular,  $\lambda_T$  depends in this case on  $\rho$ 

#### The Dirichlet form: Gradient on metric trees

$$\mathcal{E}(f,g) = \frac{1}{2} \int_{\mathcal{T}} \nabla f \cdot \nabla g \, \mathrm{d}\lambda_{\mathcal{T}}, \ \mathcal{D}(\mathcal{E}) = \{ f \in L^2(\nu) \cap \mathcal{C}_{\infty} \mid \nabla f \in L^2(\lambda_{\mathcal{T}}) \}$$

Lemma ( $\nabla$ , [Athreya, L., WINTER '14<sup>+</sup>: Invariance...])

If  $f: T \to \mathbb{R}$  is absolutely continuous, then there exists a unique (up to  $\lambda_T$ -zero sets) gradient  $\nabla f \in L^1_{loc}(\lambda_T)$  with

$$f(x) - f(\rho) = \int_{[\rho, x]} \nabla f \, \mathrm{d}\lambda_T \qquad \forall x \in T$$

- $\nabla$  depends on  $\rho$ , even for  $\mathbb{R}$ -trees, where  $\lambda_T$  does not
- $T = \mathbb{R}_+$ ,  $\rho = 0$ :  $\nabla$  is the usual gradient on  $\mathbb{R}$
- $T = \mathbb{R}$ ,  $\rho = 0$ :  $\nabla f(x) = \operatorname{sgn}(x)f'(x) = \pm f'(x)$
- finite tree:  $\nabla f(x) = f(x) f(y)$  where (x, y) is the unique edge towards  $\rho$ , i.e. with  $y \in [\rho, x]$

## The Dirichlet form: speed- $\nu$ motion

#### $\mathcal{E}(f,g) = \frac{1}{2} \int_{\mathcal{T}} \nabla f \cdot \nabla g \, \mathrm{d}\lambda_{\mathcal{T}}, \ \mathcal{D}(\mathcal{E}) = \{ f \in L^2(\nu) \cap \mathcal{C}_{\infty} \mid \nabla f \in L^2(\lambda_{\mathcal{T}}) \}$

**Fact** [FUKUSHIMA, OSHIMA, TAKEDA '94]: To a regular Dirichlet form on  $L^2(\nu)$  corresponds a  $\nu$ -symmetric Markov process with generator G characterised by  $\mathcal{E}(f,g) = \langle Gf,g \rangle_{\nu}$ 

**Proposition** ([ATHREYA, L., WINTER '14<sup>+</sup>: *Invariance...*])

 $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$  is closable and its closure is a regular Dirichlet form. The corresponding Markov process  $X = (X_t)_{t \ge 0}$  is the speed- $\nu$  motion.

- Although  $\lambda_T$  and  $\nabla$  depend on  $\rho$ , the form  $\mathcal E$  does not
- ${\mathcal E}$  need not be *conservative*, i.e. X may hit  $\infty$  in finite time
- X has continuous paths iff (T, r) is an  $\mathbb{R}$ -tree, i.e. connected
- Jumps occur precisely over edges
- $T = \mathbb{R}$ ,  $\nu = \lambda_{\mathbb{R}}$ : X is standard Brownian motion
- $T = \mathbb{R}$ ,  $\nu$  arbitrary: X is process considered in [Stone '63]

## The Dirichlet form: speed- $\nu$ motion

$$\mathcal{E}(f,g) = \frac{1}{2} \int_{\mathcal{T}} \nabla f \cdot \nabla g \, \mathrm{d}\lambda_{\mathcal{T}}, \ \mathcal{D}(\mathcal{E}) = \{ f \in L^2(\nu) \cap \mathcal{C}_{\infty} \mid \nabla f \in L^2(\lambda_{\mathcal{T}}) \}$$

**Proposition** ([ATHREYA, L., WINTER '14<sup>+</sup>: *Invariance...*])

 $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$  is closable and its closure is a regular Dirichlet form. The corresponding Markov process  $X = (X_t)_{t \ge 0}$  is the speed- $\nu$  motion.

(T, r) R-tree: X is the ν-BM [ATHREYA, ECKHOFF, WINTER '13]
(T, r) finite tree: X jumps from x to y ~ x with rate

$$\gamma_{x,y} = (2\nu(\{x\})r(x,y))^{-1}$$

• (T, r) finite tree with unit edge-lengths:  $r_{x,y} = 1$  for  $x \sim y$ .  $\nu$  counting measure  $\rightsquigarrow$  degree-dependent total jump rate

$$\gamma_x = \sum_{y \sim x} \gamma_{x,y} = \frac{1}{2} \deg(x)$$

We get the constant speed (simple) RW with

$$\nu(\{x\}) = \frac{1}{2} \deg(x)$$

## Convergence of mm-trees

 $x_n = (T_n, r_n, \rho_n, \nu_n), \ x = (T, r, \rho, \nu)$  are mm-trees. Recall  $T_n = \text{supp}(\nu_n)$ 

#### Definition (Gromov-vague & Gromov-Hausdorff-vague topology)

 $x_n \xrightarrow{\text{Gv}} x$  (**Gromov-vague** convergence) if  $(T_n, r_n), (T, r)$  can be isometrically embedded in a metric space (E, d) such that, in this embedding,  $\rho_n \to \rho$  and for balls  $B = B_R(\rho)$  of radius R in (E, d)

$$u_n \upharpoonright_B \xrightarrow[n \to \infty]{w} \nu \upharpoonright_B \quad \text{for almost all } R > 0$$

- *Gv-topology* is a simple modification of *Gromov-weak topology* (finite measures) [GREVEN, PFAFFELHUBER, WINTER '09]
- Gromov's □<sub>1</sub>-metric [GROMOV '99: Metric structures...] induces the Gw-topology, shown in [L. '13: Equivalence of Gromov-Prohorov...]

## Convergence of mm-trees

 $x_n = (T_n, r_n, \rho_n, \nu_n), \ x = (T, r, \rho, \nu)$  are mm-trees. Recall  $T_n = \text{supp}(\nu_n)$ 

#### Definition (Gromov-vague & Gromov-Hausdorff-vague topology)

 $\chi_n \xrightarrow{\text{Gv}} \chi$  (**Gromov-vague** convergence) if  $(T_n, r_n), (T, r)$  can be isometrically embedded in a metric space (E, d) such that, in this embedding,  $\rho_n \to \rho$  and for balls  $B = B_R(\rho)$  of radius R in (E, d)

$$u_n \upharpoonright_B \xrightarrow[n \to \infty]{w} \nu \upharpoonright_B \quad \text{for almost all } R > 0$$

 $\begin{array}{c} \chi_n \xrightarrow{\text{GHv}} \chi \text{ (Gromov-Hausdorff-vague convergence) if additionally} \\ T_n \cap B \xrightarrow{\text{Hausdorff}} T \cap B \quad \text{ for almost all } R > 0 \end{array}$ 

- GHv-topology closely related to Gromov-Hausdorff-Prohorov metric but subtle difference: full-support assumption / equivalence classes
- → The GHP-metric is *not complete* on spaces of spaces with full support

## The gap between Gv and GHv topologies

Proposition ([ATHREYA, L., WINTER '14<sup>+</sup>: The gap between...])

• The GHv-topology is Polish, the Gv-topology is Lusin

• The Gv-topology *not* Polish. It becomes Polish if we drop the *Heine-Borel* assumption

## The gap between Gv and GHv topologies

**Proposition** ([ATHREYA, L., WINTER '14<sup>+</sup>: *The gap between...*])

The GHv-topology is Polish, the Gv-topology is Lusin

• 
$$x_n \xrightarrow{\text{GHv}} x$$
 if and only if  $x_n \xrightarrow{\text{Gv}} x$  and the lower mass-bound

$$\liminf_{n\to\infty}\inf_{x\in B_R(\rho_n)}\nu_n(B_{\delta}(x))>0\qquad \forall R>0\qquad (3)$$

In this case, (E, d) can be chosen as Heine-Borel space.

Gv-topology is induced by the algebra of functions of the form

$$\Phi(x) = \int_{\mathcal{T}^m} \varphi(r(x_i, x_j)_{i,j=0,\dots,m}) \nu^{\otimes m}(\mathrm{d} x), \quad x_0 := \rho,$$

for  $m \in \mathbb{N}, \ \varphi \in \mathcal{C}_{c}(\mathbb{R}^{(m+1) \times (m+1)}).$  Can use Le Cam:

→ For random variables:  $\mathcal{X}_n \xrightarrow[G_v]{\mathcal{L}} \mathcal{X} \Leftrightarrow \mathbb{E}[\Phi(\mathcal{X}_n)] \to \mathbb{E}[\Phi(\mathcal{X})] \forall \Phi$ • (3) acts as a *tightness condition*  We use the same *embedding approach* as for the definition of Gvand GHV-topology to define convergence of *processes living on different spaces*:

#### Definition (convergence of processes on different spaces)

Let  $X^n = (X_t^n)_{t \ge 0}$ ,  $n \in \mathbb{N} \cup \{\infty\}$ , be stochastic processes with values in  $(T_n, r_n)$ . We say that  $X^n$  converges to  $X = X^\infty$  in pathspace or f.d.d. if  $(T_n, r_n)$  can be *isometrically embedded* in a *metric space* (E, d) such that, in this embedding,  $X^n$  converges to X in pathspace or f.d.d., respectively, as E-valued processes.

## The Result

 $x_n = (T_n, r_n, \rho_n, \nu_n); X^n$  is the speed- $\nu_n$  motion on  $(T_n, r_n)$  started in  $\rho_n$ 

Theorem ([Athreya, L., Winter '14<sup>+</sup>: Invariance principle...])

Assume X is conservative, and consider the conditions (R > 0)

- Edge-length bound:  $\limsup_{n \to \infty} \sup \{ r_n(x, y) \mid r_n(\rho_n, x) < R, (x, y) \text{ edge} \} < \infty$
- **2** Gromov-vague convergence:  $x_n \xrightarrow{Gv} x$
- 3 Lower mass-bound:  $\liminf_{n\to\infty} \inf_{x\in B_R(\rho_n)} \nu_n(B_{\delta}(x)) > 0$
- Diameter bound:  $\sup_n \operatorname{diam}(T_n, r_n) < \infty$
- If (1), (2) and (3) hold, then  $X^n$  converges in pathspace to X. If (1), (2) and (3) hold, then  $X^n$  converges f.d.d. to X.
- is a weak condition; trivially satisfied for R-trees (no edges)
  can be weakened, but some condition is needed

## The Result

 $x_n = (T_n, r_n, \rho_n, \nu_n); X^n$  is the speed- $\nu_n$  motion on  $(T_n, r_n)$  started in  $\rho_n$ 

Theorem ([Athreya, L., Winter '14<sup>+</sup>: Invariance principle...])

Consider the conditions (R > 0)

• Edge-length bound:  $\limsup_{n \to \infty} \sup \{ r_n(x, y) \mid r_n(\rho_n, x) < R, (x, y) \text{ edge} \} < \infty$ 

**2** Gromov-vague convergence:  $\chi_n \xrightarrow{G_v} \chi$ 

3 Lower mass-bound:  $\liminf_{n\to\infty} \inf_{x\in B_R(\rho_n)} \nu_n(B_{\delta}(x)) > 0$ 

If (1), (2) and (3) hold, then  $X^n$  converges in pathspace to a process Y on the one-point compactification of T, and Y killed at infinity coincides with X

- Speed  $\nu$ -motions are always killed at infinity
- The limit process Y may hit  $\infty$  and not stay there
  - $\rightsquigarrow Y$  looses the Markov property at  $\infty$  and defines entrance laws for X from  $\infty$

For pathspace convergence (under the lower mass-bound):

- **1** Tightness using the Aldous criterion
- Strong Markov property of all limit processes (compact case)
  - show equicontinuity of the maps P<sub>n</sub>: (t, x) → L<sub>x</sub>(X<sup>n</sup><sub>t</sub>), n ∈ N, where L<sub>x</sub> is the law of a process started in x; use Arzelà-Ascoli
- Show occupation time formula for all limit processes
  - $\rightsquigarrow$  All *limit processes coincide* with X in the compact case
- approximate non-compact trees with compact trees

For pathspace convergence (under the lower mass-bound):

- **1** Tightness using the Aldous criterion
- Strong Markov property of all limit processes (compact case)
  - show equicontinuity of the maps P<sub>n</sub>: (t, x) → L<sub>x</sub>(X<sup>n</sup><sub>t</sub>), n ∈ N, where L<sub>x</sub> is the law of a process started in x; use Arzelà-Ascoli
- Show occupation time formula for all limit processes
  - $\rightsquigarrow$  All *limit processes coincide* with X in the compact case
- approximate non-compact trees with compact trees

For the f.d.d.-case (without the lower mass-bound):

- $\ \, \widehat{\mathsf{T}}_{n} \subseteq \mathsf{T}_{n}: \ \nu_{n}(\mathsf{T}_{n} \setminus \widehat{\mathsf{T}}_{n}) < \varepsilon, \ (\widehat{\mathsf{T}}_{n}, \mathsf{r}_{n}, \nu_{n}) \ \text{satisfies mass-bound}$
- Show closeness of marginals of  $X^n$  and  $\hat{X}^n$ 
  - Use a simple *heat-kernel bound* satisfied for speed- $\nu$  motions X:

$$\left\|q_t(x,\cdot)\right\|_2^2 \leq \nu(T)^{-1} + \operatorname{diam}(T) \cdot t^{-1} \qquad \forall x \in T, \ t > 0$$

• Use *pathspace convergence* of  $\hat{X}^n$  and Markov property

## Thank you for your attention!

## Arigatō gozaimasu!