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Introduction

This talk is based on jointwork with
Satoshi Ishiwata (Yamagata) and Motoko Kotani (Tohoku).

& Crystal Lattice X

e X = (V, E) is a locally finite connected graph.
o I'( 7% ~ X, freely
e Xo = (Vo,Ep) :=T\ X is a finite graph.

® In other words, X is the abelian cover of a finite graph
Xo with the covering transformation group I'.
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Square lattice Triangular lattice

T = (o1,02) ~ 72

= (o1,02) ~ 72

= (o1,02) ~ 22
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Introduction

A random walk {x,}2 , on X (resp. Xg) is characterized
by a (I'-invariant) transition probability
p =p(e) : E — [0,1] with

S pe)=1 (€ V), ple)+pE) >0 (c€E).
ecE,

e A probability measure P, (z € V) on
Q:(X) = {c=(e1,e2,...) | o(e1) = =z,

o(en+1) = t(en),n € N}
is defined by

P(E({C = (ela cee s €py Ry Ky L }) = p(e1) ---plen)

e z,(c):=o0(ept1) (EV), c€ (X)), n=0,1,2,...
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o Lf(x):= Z p(e)f(t(e)) (transition operator)

ecE,
e p(n,x,y) := (L"dy)(x) (n-step transition probability)

& We assume the irreducibility on Xg:
Vz,y € Vp,In = n(x,y) € Ns.t. p(n,z,y) > 0.
Remark: irreducibility on X — irreducibility on X

Then by the Perron—-Frobenius theorem,

! m = (m(x))zev, (L-invariant measure) s.t.

® D sev,m(z) =1, m(z) >0 (z € V),

e m(x) :th(a:)< = Z p(E)m(t(e))) (x € Vo)

eG(Eo)z
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o m(e) := p(e)m(o(e))
e We define the homological direction (of the RW)
Yp € H{(Xo,R) by Tp = ZeEED m(e)e.

e RW is (m-)symmetric <= m(e) = m(e) <= v, =0
def iff

& Aim of this talk :

Long time behavior of the (non-symmetric) RW

e Generalizations of Donsker’s invariance principle:

(%) 1y = (B -
— tZO:> t)t>0 as n (o)

\/H L[nt]
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e (A refinement of) Local CLT:

p(n,z,y)m(y)~*
~ (27n)"Y2K . vol(AlbL)
|<I>0(£E) — 'i’O(y) - ”PR(W)‘EO
2n )

Xexp(—

— Last week conference in Osaka
& (Usual) probabilist’s viewpoint:

Realize the crystal lattice into R? with the canonical metric
firstly, then study limit theorems.
o Several text books of Spitzer, Woess, Lawler, ...
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& (Some) geometer’s viewpoint:

Study the most “natural realization” of the crystal lattice
through these limit theorems.

o Kotani—Shirai-Sunada ('98) o Shirai ('03)

o Kotani-Sunada ("'00~'06) ... “standard realization”

(harmonic realization & Albanese metric)

e Berger—Biskup ('07), etc ... “harmonic coordinate”
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Standard Realization of Crystal Lattices

& (modified) harmonic realization ®p: X - TR,
L®o — ®o = pr(7p)
(uniquely determined up to translation), where
prp s Hi(Xg,R) - T'® R is defined by
pr([c]) - 0o(é) = t(é) on X for [c] € H1(Xo, R).

® pr(7p) is called the asymptotic direction.

& A discrete version of
0 (AP ()03 ()) = pa(vp)’ with AP 2 A%e

Hiroshi KAWABI (Okayama University) German—Japanese conference on Stochastic Analysis and Applications

Functional CLTs for non-symmetric random walks on crystal lattices



Standard Realization of Crystal Lattices
[o] lele]e]e]

Standard Realization of Crystal Lattices

> 3
| E
3 ) \

NeT Harmonic
Harmenlc Realizetion
Realization

XD= (\700 Eb)
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Standard Realization of Crystal Lattices

& Albanese metric go on I' ® R : the dual metric of (-, -)
(restricted to Hom(T', R)) through the maps pp and
tpr : Hom(I',R) = (' ® R)* — H'(Xy,R).

e Due to the discrete Hodge—Kodaira theorem
(Kotani-Sunada ('06)), we may identify H'(X,, R) with

#'(Xo) = {w:Eo— R w(@E) = —w(e),
(6pw) (@) + (1pyw) =0, @€ Vo), where
(6p0) () 1= — Deoc (), P(€)w(e)
e We equip H'(Xo,R) ~ H!(X() with the inner product

(wi,w2) 1= Y wile)wa(e)m(e) — (Yp,w1){¥p, w2)
ecFEq
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We can summarize as

(F®R990) (_PL HI(XO’R)
T dual 7 dual

Hom([,R) <&  H'(Xo,R) =~ (H'(X0), ()

e vol(Alb') := vol(I' ® R/T, go)

Remark: -, = 0 =—> pr(7v,) = 0.
But, the converse doesn’t hold in general ! (e.g.
A class of non-symmetric RWs on the triangular lattice)
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bty -3
Xo X

es &o
ez2
1 _ k 1 K
6 2 ~ 6T 2
es el
el
1 K 1_ K
st 3 § 2

o vYp = m(el — eq + 63) c Hl(X(),R)
o pr(7p) =0T QR ~ R4
o vol(AlbY) = /3
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o Teruya ('12), Ishiwata-K-Teruya ('15, MJOU)
1

p(n,z,y) ~ V3(2rn)"%/2 exp (— —|®o(z) — <I>0(y)|§0)
2n

1 3%
X{1+(—5—7)n } as n — oo.
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Examples (Square lattice, Triangular lattice, Hexagonal lattice)
’
Y B N 5 .
x ca:=a+a’ B:=p+p3" Fi=~ 4+~
Xo es &o om=1
e2
a’ = o
€1 ’ ’
p = (. —a')er — (B—Bez + (v — v )es

es
AN ’
pr(vp)={(a—a')=(v=7)} o1 +{(v=7)=(B=B")} o2
8 <
Assumen_a—a =B8-8"=~v—-7 750:>’Yp¢091§(7p)—0
vol(Aler =a&aB + By +9a&

(1 vol(Ale)a)

™

 B(t(E2) = -

(1 —vol(Albr),B)

L@ (8(e1)) = Ve
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Examples (Square lattice, Triangular lattice, Hexagonal lattice)

B ~
o«
Xo en X A ,
& ofB:=8+p
o’ = @
ey el

a8’
—a)?p

—(x

= m=1,' 9p=(a— a')f1 + B - ﬁ')ezv; vol(A/lbr)_2
| —

-4

—

_ — Aa(t(er)) = (o,yo1(A1bF)
Pr(vp) | _
_ - |
®(t(e1)) = 1 (1, vol(AIBT) (& — a’) (8 — "))
a-(a—a’)2
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Examples (Square lattice, Triangular lattice, Hexagonal lattice)
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Functional CLT (1)

e We define a RW {&,}>°  (starting from 0) on I" ® R by
€n(c) := ‘I>0(5L'n(0))7 ¢ € Qg (X),

where xo € V is a fixed basepoint such that ®y(xp) = 0.
& (LLN, Kotani—Sunada (’06))

lim £n(c) = pr(Vp); Paze-a.s. ¢ € Qo (X).

n—oo n
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Functional CLT (1)

Define X(™ : Q. (X) - W := C([0,),T ® R) by
the piecewise linear interpolation of

1

™ (c) 1=
X (o) =

(E[”t](c)_[nt]pR(7p)), t>o0.

Theorem 1 : (1st Functional CLT)

X — (Bt)t>0 asm — oo, where

(Bt)t>0 is a I' ® R-valued standard BM with By = 0.
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Functional CLT (1)

Remark:
Xo p(e) =1,p(e) =0
= m(x)=1,yp=c¢€
r e
— ((wl, w2)) =0
T

——@ ® @ @ o

Ielre = { 2 <20
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[ Jele]e]

Functional CLT (2)

We introduce a family of transition probabilities {p. }o<c<1
by pc(e) := po(e) + q(e), where

_ 1 mt(e)
po(e) = (ple)+ 1 5P@),
L M)

Lemma 1: (1) vp. = ey, for 0 < e < 1.
(2) pc(e) >0, ec Egfor0<e <1
(3) po: (m-)symmetric, g: (m-)anti-symmetric

® {p.} interpolates between the original (non-symmetric)
RW and a symmetric RW.
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Functional CLT (2)

° ’H%g)(XO) denotes the set of the modified harmonic
1-forms associated with p. equipped with the inner product

(wi,w2) o) = Y wi(e)wz(e)pe(e)m(o(e))

ecFEg

—&? <’)’p’ w1) <’Yp, wa)

® Since the identification H' (X, R) ~ ’H%E)(XO) depends

on ¢, we write ’pg (w) as w(®) for w € Hom(T, R).

e Albanese metric g((f) on I' ® R: the dual metric of {-,-) )

e T®R) = (TOR,g{)
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Functional CLT (2)

Lemma 2 : For wy,wz € Hom(T',R) and x,y € T ® R,
1) (@, 0 = (@@, w0 as €\0,
) (xy),© = (Xy),© as e\ 0.

0 0

o L. = Lo+ =Q: the transition operator associated with p.
e (modified) harmonic realization <I'(()E) : X —->TQR:
LC(P((]E) B <I)(()€) = PR ('Yps)< — EPT"‘(’YI,)))
(uniquely determined up to translation)
e A RW {51(5)}%":0 (starting from 0) on (I' ® R) g is defined
by
£9(c) 1= 857 (@n(0)); ¢ € Dy (X),

where o € V is a fixed basepoint such that ®{ () = 0.
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Functional CLT (2)

Define Y& : Q. (X) — W) := C([0,00), (T ® R)(0))
by the piecewise linear interpolation of

Eg,N 1 151
YEM (¢) 1= ﬁg[(ni](c), t > 0.

Theorem 2 : (2nd Functional CLT)

y ) — (Bt + pR('yp)t>t>O as n — oo, where

(Bt)t>0 is a (I' ® R)(gy-valued standard BM with By = 0.
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Sketch of Theorems 1 and 2

e transition-shift operator L., on C(X X H;(Xo,R)) :

L, f(z,2):= Y p(e)f(t(e),z+v), © €V, z € Hi(Xo,R)
ecE,

e scaling operator P: : Coo (T ® R) — Coo (X X H1(X0,R))

Pef(a:’ Z) = .f(e(q)O(m) - pR(Z)))

& Ergodic theorem:

N-—1
=X Lin@) = Y hy)my) + O/N), =€V
j=0 yeVo

- HN152 I — L%)Psf - PE(%Ago)f”oo — 0 as N¢e? N 0
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Sketch of Theorems 1 and 2

By Trotter’s approximation theorem,

A
HL,[YZt]Pn—l/2f — Pn—l/ze_t%f”oo — 0 as n — oco. Thus

LPip,, mf(wo,0)
1
— 3 p(c)f<ﬁ(q>(t(c))—[nt]pR(vp)))

Cenmo, [nt] (X)

1 _Ivi3,
—) _— 2t
/r@R F&) (2mt)d/2 ¢

& Tightness: 4th moment estimate & harmonicity

dy.

& In the proof of Thm 2, we need to make use of the
purturbation theory (cf. Parry—Pollicott’s monograph).
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Remark on the Symmetric Case

& symmetric case (i.e., v, = 0)

e $: X - T ®R, periodic, i.e., ®(ox)=P(x)+ o
d®(é) := ®(t(e)) — P(o(€)), e € Ey
e g: flat metricon I' ® R

1 N
o £(®,9) = 2 Z ‘d@(é)lzm(e) : Energy functional
ecFEg

e A variational characterization: (Kotani—-Sunada (’00))

E(®Po,g90) < E(P,g) holds for all (®,g) with

vol(' ® R/T, g) = vol(I' ® R/T, go) =: vol(Alb")
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A Variational Characterization of the Modified Standard Realization

e o = (1) : R — R: a smooth function bounded
from above and ¢(7) = 7 around T = 0

e g: a fixed flat metricon ' @ R

e Pn: X —» (T®R,g), N =2,3,...is the unique

minimizer of a functional

eN@) = ;; |d®(&)[ m(e)
—¢( Y (QOn-1(2), ®()),m(z))
xEF
+ > {pr(1p), ®(x)) m(x)
xEF

of periodic realizations & with Z ®(z)m(x) = 0.
zeF
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A Variational Characterization of the Modified Standard Realization

& > (Q2(z), 2(x))gm(zx) =0

xeF

Theorem 3 : (A variational characterization of ®¢)

For any periodic realization ®; : X — (I' ® R, g), there
exists a subsequence {®p(;)} such that & ;) — ®¢ as
j — oo.

& Takeyuki Nagasawa ("99): A minimizing movement
approach to the (non-stationary) Navier-Stokes equation

e b(u,u,u):

[t Vyu,ude = o0

= bun—_1,uNn—_1,u)
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A Variational Characterization of the Modified Standard Realization

Theorem 4 : (A variational characterization of gg)
Let $p: X — I' ® R be the (modified) harmonic realization.

Then the Albanese metric g is the (unique) minimizer of a

functional

Eaole) = 5 O (dB(),dB(@) — prlrp)),m(e)
ecFEg

( _ ; Z ’d@(é)}zﬁ(e) - ’PR('YP)C)

ecEg
of flat metrics g on I' ® R with
Vol(T' ® R/T, g) = Vol(Albh).
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Further Topics

The End

The End

Many thanks for your kind attention !
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