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Introduction

This talk is based on jointwork with

Satoshi Ishiwata (Yamagata) and Motoko Kotani (Tohoku).

♣ Crystal Lattice X

• X = (V,E) is a locally finite connected graph.

• Γ(∼= Zd) ↷ X, freely

• X0 = (V0, E0) := Γ \X is a finite graph.

♠ In other words, X is the abelian cover of a finite graph

X0 with the covering transformation group Γ.
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Introduction

X0 =

Γ = ⟨σ1, σ2⟩ ≃ Z2

σ2

σ1

Hexagonal lattice

σ2

Square lattice

X0 =

Γ = ⟨σ1, σ2⟩ ≃ Z2

σ1

Γ = ⟨σ1, σ2⟩ ≃ Z2

X0 =

Triangular lattice

σ2

σ1
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Introduction

A random walk {xn}∞n=0 on X (resp. X0) is characterized

by a (Γ-invariant) transition probability

p = p(e) : E → [0, 1] with∑
e∈Ex

p(e) = 1 (x ∈ V ), p(e) + p(e) > 0 (e ∈ E).

• A probability measure Px (x ∈ V ) on

Ωx(X) := {c = (e1, e2, . . .) | o(e1) = x,

o(en+1) = t(en), n ∈ N}
is defined by

Px({c = (e1, . . . , en, ∗, ∗, . . .}) := p(e1) · · · p(en)

• xn(c) := o(en+1) (∈ V ), c ∈ Ωx(X), n = 0, 1, 2, . . .
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Introduction

• Lf(x) :=
∑
e∈Ex

p(e)f(t(e)) (transition operator)

• p(n, x, y) := (Lnδy)(x) (n-step transition probability)

♣ We assume the irreducibility on X0:

∀x, y ∈ V0, ∃n = n(x, y) ∈ N s.t. p(n, x, y) > 0.

Remark: irreducibility on X =⇒ irreducibility on X0

Then by the Perron–Frobenius theorem,

∃! m = (m(x))x∈V0 (L-invariant measure) s.t.

•
∑

x∈V0
m(x) = 1, m(x) > 0 (x ∈ V0),

• m(x) = tLm(x)
(
:=

∑
e∈(E0)x

p(e)m(t(e))
)

(x ∈ V0)
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Introduction

• m̃(e) := p(e)m(o(e))

• We define the homological direction (of the RW)

γp ∈ H1(X0,R) by γp :=
∑

e∈E0
m̃(e)e.

• RW is (m-)symmetric ⇐⇒
def

m̃(e) = m̃(e)⇐⇒
iff

γp = 0

♣ Aim of this talk :

Long time behavior of the (non-symmetric) RW

• Generalizations of Donsker’s invariance principle:( 1
√
n
x[nt]

)
t≥0

=⇒ (Bt)t≥0 as n→∞
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• (A refinement of) Local CLT:

p(n, x, y)m(y)−1

∼ (2πn)−d/2K · vol(AlbΓ)

× exp

(
−

∣∣Φ0(x)− Φ0(y)− nρR(γp)
∣∣2
g0

2n

)
=⇒ Last week conference in Osaka

♣ (Usual) probabilist’s viewpoint:

Realize the crystal lattice into Rd with the canonical metric

firstly, then study limit theorems.

◦ Several text books of Spitzer, Woess, Lawler, ...
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Introduction

♣ (Some) geometer’s viewpoint:

Study the most “natural realization” of the crystal lattice

through these limit theorems.

◦ Kotani–Shirai–Sunada (’98) ◦ Shirai (’03)

◦ Kotani–Sunada (’00∼’06) ... “standard realization”

(harmonic realization & Albanese metric)

• Berger–Biskup (’07), etc ... “harmonic coordinate”
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Standard Realization of Crystal Lattices

♣ (modified) harmonic realization Φ0 : X → Γ⊗ R ,

LΦ0 − Φ0 = ρR(γp)

(uniquely determined up to translation), where

ρR : H1(X0,R) ↠ Γ⊗ R is defined by

ρR([c]) · o(c̃) = t(c̃) on X for [c] ∈ H1(X0,R).

• ρR(γp) is called the asymptotic direction.

♠ A discrete version of

∂α(A
αβ(x)∂βΦ(x)i) = ρR(γp)

i
with Aαβ ̸= Aβα
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Standard Realization of Crystal Lattices
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Standard Realization of Crystal Lattices

♣ Albanese metric g0 on Γ⊗ R : the dual metric of ⟨⟨·, ·⟩⟩
(restricted to Hom(Γ,R)) through the maps ρR and
tρR : Hom(Γ,R) = (Γ⊗ R)∗ ↪→ H1(X0,R).

• Due to the discrete Hodge–Kodaira theorem

(Kotani–Sunada (’06)), we may identify H1(X0,R) with

H1(X0) =
{
ω : E0 → R| ω(e) = −ω(e),

(δpω)(x) + ⟨γp, ω⟩ = 0, x ∈ V0

}
, where

(δpω)(x) := −
∑

e∈(E0)x
p(e)ω(e)

• We equip H1(X0,R) ≃ H1(X0) with the inner product

⟨⟨ω1, ω2⟩⟩ :=
∑
e∈E0

ω1(e)ω2(e)m̃(e)− ⟨γp, ω1⟩⟨γp, ω2⟩
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Standard Realization of Crystal Lattices

We can summarize as

(Γ⊗ R, g0)
ρR←−←− H1(X0,R)

↕ dual ↕ dual

Hom(Γ,R)
tρR
↪→ H1(X0,R) ≃

(
H1(X0), ⟨⟨·, ·⟩⟩

)
• vol(AlbΓ) := vol(Γ⊗ R/Γ, g0)

Remark: γp = 0 =⇒ ρR(γp) = 0.

But, the converse doesn’t hold in general ! (e.g.

A class of non-symmetric RWs on the triangular lattice)
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Standard Realization of Crystal Lattices
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◦ γp = κ(e1 − e2 + e3) ∈ H1(X0,R)

◦ ρR(γp) = 0 ∈ Γ⊗ R ≃ Rd

◦ vol(AlbΓ) =
√
3

X0

e2

e3

e1

X
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Standard Realization of Crystal Lattices

◦ Teruya (’12), Ishiwata-K-Teruya (’15, MJOU)

p(n, x, y) ∼
√
3(2πn)−2/2 exp

(
−

1

2n
|Φ0(x)− Φ0(y)|2g0

)
×
{
1 + (−

1

2
−

3κ2

2
)n−1

}
as n→∞.
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Examples (Square lattice, Triangular lattice, Hexagonal lattice)

ẽ3

γ′β

γ

α

ẽ2

β′

ẽ1
α′

e3

X0

e1

e2

◦ α̂ := α + α′

ρR(γp)=
{
(α−α′)−(γ−γ′)

}
σ1+

{
(γ−γ′)−(β−β′)

}
σ2

γp = (α − α′)e1 − (β − β′)e2 + (γ − γ′)e3

γ̂ := γ + γ′β̂ := β + β′

Φ(t(ẽ2)) = 1√
α̂+β̂

(
1, vol(AlbΓ)α̂

)

Φ(t(ẽ1)) = 1√
α̂+β̂

(
1,−vol(AlbΓ)β̂

)

Assume κ := α − α′ = β − β′ = γ − γ′ ̸= 0 =⇒ γp ̸= 0, ρR(γp) = 0

X

vol(AlbΓ)−2 = α̂β̂ + β̂γ̂ + γ̂α̂

◦ m ≡ 1
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Examples (Square lattice, Triangular lattice, Hexagonal lattice)

X0

e1

e2

αα′
ẽ1

ẽ2

β

X

β′

◦ α̂ := α + α′

◦ β̂ := β + β′

=⇒ m ≡ 1, γp = (α − α′)e1 + (β − β′)e2, vol(AlbΓ)−2 = α̂β̂ − α̂(β − β′)2 − (α − α′)2β̂

ρR(γp)

Φ(t(ẽ2)) =
(
0, vol(AlbΓ)

√
α̂ − (α − α′)2

)

Φ(t(ẽ1)) = 1√
α̂−(α−α′)2

(
1, vol(AlbΓ)(α − α′)(β − β′)

)
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Examples (Square lattice, Triangular lattice, Hexagonal lattice)

x̃1
x̃2

σ1

σ2 ρR(γp)
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Functional CLT (1)

• We define a RW {ξn}∞n=0 (starting from 0) on Γ⊗ R by

ξn(c) := Φ0(xn(c)), c ∈ Ωx0(X),

where x0 ∈ V is a fixed basepoint such that Φ0(x0) = 0.

♣ (LLN, Kotani–Sunada (’06))

lim
n→∞

1

n
ξn(c) = ρR(γp), Px0-a.s. c ∈ Ωx0(X).
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Functional CLT (1)

Define X(n) : Ωx0(X)→W := C([0,∞),Γ⊗ R) by

the piecewise linear interpolation of

X (n)
t (c) :=

1
√
n

(
ξ[nt](c)−[nt]ρR(γp)

)
, t ≥ 0.

Theorem 1 : (1st Functional CLT)

X(n) =⇒ (Bt)t≥0 as n→∞, where

(Bt)t≥0 is a Γ⊗ R–valued standard BM with B0 = 0.
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Functional CLT (1)

x

X0

ee

p(e) = 1, p(e) = 0

=⇒ m(x) ≡ 1, γp = e

=⇒ ⟨⟨ω1, ω2⟩⟩ ≡ 0

X

ẽ

∥x∥Γ⊗R =
{

0 (x = 0)
∞ (x ̸= 0)

Remark:
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Functional CLT (2)

We introduce a family of transition probabilities {pε}0≤ε≤1

by pε(e) := p0(e) + εq(e), where

p0(e) :=
1

2

(
p(e) +

m(t(e))

m(o(e))
p(e)

)
,

q(e) :=
1

2

(
p(e)−

m(t(e))

m(o(e))
p(e)

)
.

Lemma 1: (1) γpε = εγp for 0 ≤ ε ≤ 1.

(2) pε(e) > 0, e ∈ E0 for 0 ≤ ε < 1

(3) p0: (m-)symmetric, q: (m-)anti-symmetric

♠ {pε} interpolates between the original (non-symmetric)

RW and a symmetric RW.
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Functional CLT (2)

• H1
(ε)(X0) denotes the set of the modified harmonic

1-forms associated with pε equipped with the inner product

⟨⟨ω1, ω2⟩⟩(ε) :=
∑
e∈E0

ω1(e)ω2(e)pε(e)m(o(e))

−ε2⟨γp, ω1⟩⟨γp, ω2⟩

♠ Since the identification H1(X0,R) ≃ H1
(ε)(X0) depends

on ε, we write tρR(ω) as ω(ε) for ω ∈ Hom(Γ,R).

• Albanese metric g
(ε)
0 on Γ⊗R: the dual metric of ⟨⟨·, ·⟩⟩(ε)

• (Γ⊗ R)(ε) := (Γ⊗ R, g(ε)
0 )

Hiroshi KAWABI (Okayama University) German–Japanese conference on Stochastic Analysis and Applications

Functional CLTs for non-symmetric random walks on crystal lattices



Introduction Standard Realization of Crystal Lattices Main Results Sketch of Proof Further Topics

Functional CLT (2)

Lemma 2 : For ω1, ω2 ∈ Hom(Γ,R) and x, y ∈ Γ⊗ R,

(1) ⟨⟨ω(ε)
1 , ω

(ε)
2 ⟩⟩(ε) → ⟨⟨ω

(0)
1 , ω

(0)
2 ⟩⟩(0) as ε↘ 0,

(2) ⟨x, y⟩
g
(ε)
0
→ ⟨x, y⟩

g
(0)
0

as ε↘ 0.

• Lε = L0 + εQ: the transition operator associated with pε

• (modified) harmonic realization Φ
(ε)
0 : X → Γ⊗ R:

LεΦ
(ε)
0 − Φ

(ε)
0 = ρR(γpε)

(
= ερR(γp)

)
(uniquely determined up to translation)

• A RW {ξ(ε)n }∞n=0 (starting from 0) on (Γ⊗ R)(0) is defined

by

ξ(ε)n (c) := Φ
(ε)
0 (xn(c)), c ∈ Ωx0(X),

where x0 ∈ V is a fixed basepoint such that Φ
(ε)
0 (x0) = 0.
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Functional CLT (2)

Define Y(ε,n) : Ωx0(X)→W(0) := C([0,∞), (Γ⊗ R)(0))
by the piecewise linear interpolation of

Y(ε,n)
t (c) :=

1
√
n
ξ
(ε)
[nt](c), t ≥ 0.

Theorem 2 : (2nd Functional CLT)

Y(n−1/2,n) =⇒
(
Bt + ρR(γp)t

)
t≥0

as n→∞, where

(Bt)t≥0 is a (Γ⊗ R)(0)-valued standard BM with B0 = 0.
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Sketch of Theorems 1 and 2

• transition-shift operator Lγp on C(X ×H1(X0,R)) :

Lγpf(x, z) :=
∑
e∈Ex

p(e)f(t(e), z+γp), x ∈ V, z ∈ H1(X0,R)

• scaling operator Pε : C∞(Γ⊗ R)→ C∞(X ×H1(X0,R))

Pεf(x, z) := f
(
ε(Φ0(x)− ρR(z))

)
♣ Ergodic theorem:

1

N

N−1∑
j=0

Ljh(x) =
∑
y∈V0

h(y)m(y) + O(1/N), x ∈ V0

=⇒ ∥ 1
Nε2

(I − LN
γp
)Pεf − Pε(

1
2
∆g0)f∥∞ → 0 as Nε2 ↘ 0
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Sketch of Theorems 1 and 2

By Trotter’s approximation theorem,

∥L[nt]
γp

Pn−1/2f − Pn−1/2e−t
∆g0
2 f∥∞ → 0 as n→∞. Thus

L[nt]
γp

P1/
√

nf(x0, 0)

=
∑

c∈Ωx0,[nt](X)

p(c)f

(
1
√
n
(Φ(t(c))− [nt]ρR(γp))

)

→
∫
Γ⊗R

f(y)
1

(2πt)d/2
e−

|y|2g0
2t dy.

♣ Tightness: 4th moment estimate & harmonicity

♣ In the proof of Thm 2, we need to make use of the

purturbation theory (cf. Parry–Pollicott’s monograph).
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Remark on the Symmetric Case

♣ symmetric case (i.e., γp = 0)

• Φ : X → Γ⊗ R, periodic, i.e., Φ(σx) = Φ(x) + σ

dΦ(ẽ) := Φ(t(ẽ))− Φ(o(ẽ)), e ∈ E0

• g: flat metric on Γ⊗ R

• E(Φ, g) =
1

2

∑
e∈E0

∣∣dΦ(ẽ)
∣∣2
g
m̃(e) : Energy functional

• A variational characterization: (Kotani–Sunada (’00))

E(Φ0, g0) ≤ E(Φ, g) holds for all (Φ, g) with

vol(Γ⊗ R/Γ, g) = vol(Γ⊗ R/Γ, g0) =: vol(AlbΓ)
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A Variational Characterization of the Modified Standard Realization

• φ = φ(τ ) : R→ R: a smooth function bounded

from above and φ(τ ) = τ around τ = 0

• g: a fixed flat metric on Γ⊗ R
• ΦN : X → (Γ⊗ R, g), N = 2, 3, . . . is the unique

minimizer of a functional

ENg (Φ) =
1

2

∑
e∈E0

∣∣dΦ(ẽ)
∣∣2
g
m̃(e)

−φ
(∑
x∈F

⟨
QΦN−1(x),Φ(x)

⟩
g
m(x)

)
+

∑
x∈F

⟨
ρR(γp),Φ(x)

⟩
g
m(x)

of periodic realizations Φ with
∑
x∈F

Φ(x)m(x) = 0.
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A Variational Characterization of the Modified Standard Realization

♣
∑
x∈F
⟨QΦ(x),Φ(x)⟩gm(x) = 0

Theorem 3 : (A variational characterization of Φ0)

For any periodic realization Φ1 : X → (Γ⊗ R, g), there
exists a subsequence {ΦN(j)} such that ΦN(j) → Φ0 as

j →∞.

♣ Takeyuki Nagasawa (’99): A minimizing movement

approach to the (non-stationary) Navier-Stokes equation

• b(u, u, u) :=

∫
⟨(u · ∇)u, u⟩dx = 0

=⇒ b(uN−1, uN−1, u)
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A Variational Characterization of the Modified Standard Realization

Theorem 4 : (A variational characterization of g0)

Let Φ0 : X → Γ⊗ R be the (modified) harmonic realization.

Then the Albanese metric g0 is the (unique) minimizer of a

functional

EΦ0(g) :=
1

2

∑
e∈E0

⟨
dΦ(ẽ), dΦ(ẽ)− ρR(γp)

⟩
g
m̃(e)(

=
1

2

∑
e∈E0

∣∣dΦ(ẽ)
∣∣2
g
m̃(e)−

∣∣ρR(γp)
∣∣2
g

)
of flat metrics g on Γ⊗ R with

Vol(Γ⊗ R/Γ, g) = Vol(AlbΓ).
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The End

The End

Many thanks for your kind attention !
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