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Uniformly elliptic operator
Lou = —V - (aVu), u : R* — RV (N = 1 in this talk)

with a(-) : R? — R%*? uniformly elliptic, stationary and ergodic.

Homogenization: 3; constant coefficient matrix anom € R%X%, s.t.
Vu >0 : (Log+ 1)t = (Lhom + 1)~ on large length scales.

Goals of this talk:
Regularity (on large length scales)

L, features the same regularity as Lnrom
above a critical Length scale 7.

Il. Application to quantitative homogenization

— Moment bounds on the corrector
— Quantitative two-scale expansion
— Starting point: stretched exp. moment bounds on 74

lIl. Correlated coefficients

— II. requires mixing assumption (in terms of LSI)
— Results sensitive to strength of mixing




Plan of the talk

. Stochastic Homogenization, notion of the corrector
. Intrinsic C1%-regularity, minimal radius 7
. Quantification of ergodicity, control of 7

. Application to quantitative stochastic homogenization



—V -a(:)Vue = f in H(U), U CC R®

with a(-) : R? — R%*? uniformly elliptic.

Assumption on the coefficients:

We suppose that (-) denotes a stationary and ergodic ensemble on
coeffcient fields

a ; R* — RO*4 (resp. tensor valued)

that are (-)-almost surely

(i) uniformly bounded

la(z)€| < €] for a.e. T € R?,
(ii) uniform elliptic in the sense of
/vc ave > )\/ IVC)2 for all ¢ € CR(RY)

(A > 0 is a fixed, deterministic constant of ellipticity).




—V -a(:)Vue = f in H(U), U CC R®

with a(-) : R? — R%*? uniformly elliptic.

Classical theorem of elliptic homogenization:

Janom € R¥*2 such that (for {-)-a.e. a and all r.h.s. f)
Ue — Unom weakly in Hz(U)
a(é)Vug — Ahom VUhom weakly in L2(U)
where Upom € H5(U) solves

—V - ahomVUnrom = [.

[Papanicolaou, Varadhan 79, Kozlov 79]
[60s, /70s: Spagnolo, Tartar, Bensoussan, Lions, Papanicolaoy, ...]




Formula for the homogenized coefficients

anomei = Limsup + a(e; + Vi)
100 By

Corrector equation

—V -a(e; + V@) =0 in R%, ¢ € HL _(R?)

loc

with V@, stationary, zero-expectation, finite second moment.

Existence: e.g. via regularization (massive term)

Sublinear growth property [cf. Sidovaricius & Sznitman '04]

Lim 7‘_2 (¢z — ¢z’)2 =0 (-)-a_s_ /fOLLOWS from
7100 B,

™

Br (Vi) = 0 & ergodicity.



Role played by the corrector (l)
Harmonic coordinates Vi(z) = z; + ¢i(x)
e (a-harmonic): —V -aVV¥; =0
e (coordinate map): LiMroo 772 f5 |Wi(T) — z4|* = 0
e (macroscopic gradient): e; = liMreo f5 VW,

e (macroscopic flux): @rome€i = LiMrroo f5 AV W

Flux corrector a(e; + V@;) — anome: = q; = V - 05
axd

o; € R, ., IS defined by
— A0k = 0Qik — OkQij
OkOijk = Qij

Vo, IS stationary, zero expectation and finite second moment.




Role played by the corrector (ll)

Two-scale Expansion

Ue(Z) = Unhom (Z) + €Pi(Z)OiUnom (T) away from U

(T0)+EPi(Z)OiUnom (To)

(fEO) + YUnom (5170)53




Role played by the corrector (ll)

Two-scale Expansion

Ue(Z) = Unhom (Z) + €Pi(Z)OiUnom (T) away from U

Classical estimate (for periodic coefficients)

Suppose that a, f and U are smooth. Consider
Ve := Ue — (Unom + €Pi(2)OiUnom )

Then
YU CC U : Vel S €

[cf. Avellaneda-Lin ‘87, Allaire-Amar 99, Gerard-Varet - Masmoudi 2]

Goal:
Similar result in the stochastic case, yet optimal scaling is different...




A cartoon of the periodic case

Suppose U = R? and Unom € S(R?).

Then:
—V - CL(;)V’Us = -V - (80'7,(2) —+ e@(g)a(;))v&unom
VOiUnom - (a(e; + V@;) — Gnomei) = —V - 0;VOilhom
and thus

[ 190 < €@ A Ne [ 10%unonP(10:()] + 16:()))?
N Y

> (/ |Dzumm|2></T<|a¢| + D)
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. Intrinsic CY@-regularity, minimal radius 7

Quantification of ergodicity, control of 7

Application to quantitative stochastic homogenization

Upcoming result in a nutshell:

—V -aV is as good as —V - arom'V on length scales > r«(a)

« [Avellanedo, Lin '87]: periodic case, compactness method

« [Armstrong, Smart 14]: convex energies, finite range condition

« [Armstrong, Mourrat '15]: monotone operators, mixing condition



Intrinsic regularity

Regularity of harmonic functions: —Au = 0 in Br

T
vr € (0, R] : min][ IV — e? < C(a)(—)2][ VU2
e€R? J g, R Br
Lemma (Regularity of a-harmonic functions). [Gloria, N. & Otto "15]

Suppose —V -aVu = 0 in Bgr, then

Exc(r) = min][ IVu — (e + Vo)
ecR® /g,

< c@ N (L +0(R)? + @ +8)()) f [vul

1
with 0 := sup — (¢, 0) — (¢, 0)|?
p€(2r,R) P B, B,




Cartoon of the proof
4 )

—V - homVUnom = O Br
Unom = U OBr

V=U— (unom + (Dv;az'unom>

\_ J

mln][ IVu — (I4+ Vo)el?

eER?

< IVu — I+ V) VUhom)|?
By By

St |Vu— A+ VO)VUrom|? + 1 I+ VOI?|VUrom — F VUrom|?
B By By

<4 |Vl + <1 +r 24 (¢p— ¢)2> 72 sup | D*Uhom|?
Boy By

BT BQ’I’



eER4

min7[ IVu — (14 Vo)el?
Br

(

\_

—V - Ghom V Uhom 0 Br
Uhom = U OBr

V=U— (uh,om + ¢'I;az'uh,om)

~N

J

<1 |VulP+ (1 + 7“‘27[ (p — ¢)2> 72 sup | D*Unom|?
BQ'r BQ'r B'r

By

Assume (for simplicity) (%): v = 0 in 8B,, so that

f1vor < (fr—Q (o] + |¢|>2> r2 sUp | D2 Unom|?
B By

combine with

By

_ T
72 sup IDQ'UIh,O'ml2 S min IV Unom — €|2 S (_)2 |V’U,nom|2
© Bor R

<T 2][ 2
SE? 1, 1vu

r

= Exc(r) < (%)2 <1 + 7"_27[
B

2r

- 2 2
0.0 = { @0 )fs v



min
eERa

<1 |Vt +

By

7[ Vu — (I+ Vo)e|
Br

(

\_

—V - homVUnhom = O Br
Unhom = U OBr

V=U— (uh,om + d)iaz'uh,om)

~N

J

(1 + 7“_27[ (¢ — ¢)2> 72 sup | D?*Unrom|?
BQ'r BQ'r B'r

Assume (for simplicity) (%): v = 0 in 8B,, so that

7

/

/

Instead of (%) the rigorous proof uses a cut-off function

VU =U— (Uhom + NPiOiUnom )

and requires to control a boundary Layer.
This is the source of the additional term

(= +6)()) f. 1vul’




Excess decay & minimal radius

—V - -aVu =20 in Br
Exc(r) := eigﬂgd][ |IVu — (e 4+ Ve)|?

Theorem (Excess decay). [Cloria, N. & Otto 'I5]
For all o € (0, 1) there exists C(d, A\, &) > 0O s.t.

Vr € (14, R) Exc(r) < C(d, A, a)(%)QO‘Ea:c(R).

re=r@ =int {5 5 f 10,.0~f @0 < gamay Ve >0}

Note: Since () is ergodic, have r«(a) < oo for (-)-a.e. a.




Consequences of excess decay

Lipschitz estimate

vr € (1., R) : 7[ Vul? < Cd ) |Vl
T Br
Non-degeneracy of the corrector
. 1. 2 2
VT 2 Ty Slel” < 7 le+ Vee|” < C(a, A)lel
By

Corollary (Liouville property).

Every a-harmonic function « that grows sub-quadratically in the
sense of

Lim R‘2(1+O‘)7[ u? =0 (for some o < 1)
Rt00 Br

is a-linear, i.e. u(x) =const+ £ -z 4+ ¢¢c(x).




Plan of the talk

. Stochastic Homogenization, notion of the corrector
. Intrinsic C1%-regularity, minimal radius 7
. Quantification of ergodicity, control of 7

. Application to quantitative stochastic homogenization

Upcoming result in a nutshell:

Up to now:
Ergodicity implies r, < ©0 a.s.

Next:

Quantification of ergodicity via LSI implies (exp(%'rf(l_m)) < 00.




Quantification of ergodicity via LSI and SG

Discrete case

{a(x)}zeze i.i.d. i. e. () = Z%fold product measure
F? 1 OF
< (Z |

= VF(a) : Ent(F?) = (F?log

= VF(a) : (F—(FN? < (Y |

TEZ4
Morally speaking, (5G), (LSI) corresponds to integrable correlations.

« (SQG) introduced to homogenization in the context of statistical mechanics by
[Naddaf & Spencer '9/]

« Systematic use in quantitative stochastic homogenization
(SG): [Gloria, Otto M, [Gloria, N., Otto 5]
(LSI): [Otto, Marahrens '14], [Ben-Artzi, Marahrens, N. 14]



Coarsened LS|

Given a partition {D} of R* we define the Dirichlet Energy

15 F =2 ([155) o F@em

Definition: c-LSI

We say (-) satisfies c-LSI(p,B8) (0 > 0 and 0 < B < 1), if there
exists a partition {D} of R% with

diam(D) ~ (dist(D) + 1)
such that for all random variables F:

1, 0F
Ent(F?) < ={l=—1I*).
nt( )_p<llaall>

0 = {D} equipartition(standard LSI)
1 = {D} dyadic decomposition(excluded)

[e e




“vertical derivative”

Consider
e a function F(a) € R, a : R? — R%*? coefficient field.
e an infinitesimal perturbation da(x) supported in D CC R¢

Functional derivative

F(a + tda) — F(a) :/ OF(a, )
Rd

Lim

i ; da(x) dx.

oa

A dual expression for the L1(D)-norm of 2= is

/lal—_(a ) — sup{Lim sup F(a + tda) — F(a)
t40 t

d0a supported in D, sup |[da| < 1}
TED




Example: Correlated Gaussian random field

Example [Gloria, N. & Otto "15]
Let w(x) be a stationary, centered scalar Gaussian random field with

covariance
c(z) ;= {(w(x)w(0)).

Suppose that the covariance decays mildly in the sense of:
[ letaDidzl + 1) dz < oo

for some 3 € [0, 1).
Then the associated ensemble satisfies LSI with parameter (.




Two-fold usage of LSl and SG

« As a Poincaré Inequality

<]{3 (6 — 7{3 $)?) < ][B (12212 < Expression of (V)

« In the spirit of concentration of measure

If F is Lipschitz, i.e. |4 <1,
then F—(F) has exponential moments, i.e. {(exp(p(F —{(F))) < 0.

[Herbst' argument]




Optimal control of 7T«

Theorem [Glorio, N. & Otto '15]
Suppose that (-) satisfies LSI(p, B8) with o > 0 and B8 € [0,1). Then

1 =5
<exp(C(d>\pm )) <2
ro=r@ =it {5 f 10.0~f @ < g5V > )

Proof invokes massive term approximation (¢r, o1), sensitivity esti-
mate, concentration of measure.




Plan of the talk

1. Stochastic Homogenization, notion of the corrector
2. Intrinsic CY@-regularity, minimal radius 7

3. Quantification of ergodicity, control of 7
4

. Application to quantitative stochastic homogenization

Assumption: (-) satisfies LSI(p, B) with p > 0 and B € [0, 1).

e d > 2 — dimension
e 3 € [0,1) — decay of correlation (8 1 < cor. 1)
e 5 =1— 2 — critical exponent

e C(x) — stationary random field with stretched exponential mo-

ments 1 208
(exp(EC = )) < 2

e ¢ = ¢(d, \) — hole filling exponent



Theorem (decay of spatial averages of the corrector's gradient)

I (Vo Vo) < Cla)r™2070).
Br(x) [Gloriag, N. & Otto "15]




Sensitivity Estimate

Theorem [Gloria, N. & Otto '15]
Let {D} denote a B-partition with 8 € [0, 1), and

1
2p
Fh :=/ h-g  with supp(g) C Br, <][ |g|2”> <r
R4 B

Then for 0 < p®—1 <K 1 and suitable K > 0 have

OFV(2.9) 12 < <('r + T*)6>d a5

oa T
| a2, Te(T) G-}
" </ (G + 0™ e + 0 0) dm)
In particular:
a/—‘V(cp o) s

<( V(cb o))?) SA 12y S =9 =0rd)

for some -y > 0.




Sensitivity estimate - Ingredients of the proof (p=l)

HaFV@llQ . (/ lFchz )
oa

|dentify vertical derivative
¢ = L¢i(a + tda) solves —V - aV{ = =V - da(V; + e;)

Duality
/ | OFV @,

| S/ |VU||V @i+ el with —V-a*Vv = —-V-g.
D

< ([ 1P| Vo + efPw
D D
Weighted L2 regulorl‘ity for dual equation

( R |V'U|2(Aj>§ 5 (/Rd |g|2(AJ)% for w(m) _ ( |$|

r—+ 7y

+ 1)7

Hole filling and Non-degeneracy

fiveter$ta diam(D)
D

T+« + dist(D)

)ed



Theorem (moment bounds on the corrector)

1 forO§ﬁ<1—§

<][ (@, 0)I2> 2 < I][(cb, o)|+C(z) < logz (2 + |z|) foro<pg=1-2
B(z) B 14 |$|%(5—(1—§)) for 1 — % < B.

[Gloria, N. & Otto '19]




Suppose that (-) satisfies LSI(p, B) with p > 0 and B € [0, 1).
Let Ue, Unom € HY(R?) satisfy

Theorem (Quantitative 2scale expansion).

IV ue — (VUrom + 8;Unom V@5 ()l L2®e)
g

1

<c( [ 10%unn(@Ppas(@) dz ) epan(})

with

1 for0<B<1—7

Pas(T) := < log(l + 7)> foro<pg=1-2
1+ 720-0-9) forpg >1—2

[Gloria, N. & Otto 'I5]




Thank you for your attention!

For details see:

arXiv:1409.26/8

A regularity theory for random elliptic operators
Antoine Gloria, Stefan Neukamm, Felix Otto
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