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Pinning model

Homogeneous pinning model was introduced in physics literature to
study the behavior of a polymer at an interface.
One of the simplest model is given as follows:

Setting

Polymers:
Let (S, PS) be a simple random walk on Z starting from 0.

Polymer measure: For β ∈ R

P β
n (dS) :=

1

Zβ
n

exp

(
β

n∑
k=1

1{Sk = 0}

)
PS(dS),

where

Zβ
n := PS

[
exp

(
β

n∑
k=1

1{Sk = 0}

)]
(Partition function).

Makoto Nakashima (Univ. of Tsukuba) Phase trans. of RWPM 2nd September 2015 2 / 30



Introduction RWPM Main results Proof of theorems References

Makoto Nakashima (Univ. of Tsukuba) Phase trans. of RWPM 2nd September 2015 3 / 30



Introduction RWPM Main results Proof of theorems References

Pinning model

Homogeneous pinning model is studied well. To study it, we often use
the quantity, so-called the free energy which is defined by

F (β) = lim
n→∞

1

n
logZβ

n ∈ [0,∞).

Phase transition

If β ≤ 0, then F (β) = 0.

If β > 0, then F (β) > 0.
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Pinning model

In each phase, the behavior of the path is definitely different:

Theorem A

P β
n

[
n∑

k=1

1{Sk = 0}

]
=


O(1), β < 0 (delocalized phase)

O(
√
n), β = 0

O(n), β > 0 (localized phase).

Remark: Generally, homogeneous pinning models are defined by using
renewal processes like a return time of S.R.W. and we cannot consider
the behavior of “S”.
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Random walk pinning model

Random walk pinning model is an inhomogeneous pinning model
defined by using independent random walks, which was introduced by
Birkner and Sun.

Setting

Polymer: Let (X,PX) be a S.R.W. on Zd starting from 0.

Environment: Let (Y, PY ) be a S.R.W. on Zd starting from 0.

Polymer measure: For β ≥ 0 and fixed Y ,

µβ
n,Y (dX) :=

1

Zβ
n,Y

PX

[
exp

(
β

n∑
k=1

1{Xk = Yk}

)
: dX

]
,

where

Zβ
n,Y := PX

[
exp

(
β

n∑
k=1

1{Xk = Yk}

)]
(quenched partition fn.).
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Random walk pinning model

Also, we define the annealed partition function by

PY

[
Zβ
n,Y

]
.

We set

Ln(X,Y ) :=
n∑

k=1

1{Xk = Yk}, L(X,Y ) :=
∑
n≥1

1{Xn = Yn}.

Then, we have

Zβ
Y := lim

n→∞
Zβ
n,Y = PX [exp (βL(X,Y ))] , PY -a.s.

PY [Z
β
Y ] = lim

n→∞
PY

[
Zβ
n,Y

]
= PX,Y [exp(βL(X,Y ))] .
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Phase transitions I

Monotonicity implies the following phase transition:

Phase transition I

We set

βq
1(d) := sup{β ≥ 0 : Zβ

Y < ∞, PY -a.s.}

βa
1 (d) := sup{β ≥ 0 : PY [Z

β
Y ] < ∞}.

It is trivial that

βa
1 (d) ≤ βq

1(d).
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Free energies

We introduce the free energies of RWPM which are important
quantities to analyze the RWPM.

Free energies

It is known that the following limits exist and they are non-random:

F q(β) = lim
n→∞

1

n
logZβ

n,Y

= lim
n→∞

1

n
PY [logZ

β
n,Y ], PY -a.s.

quenched free enegy

F a(β) = lim
n→∞

1

n
logPY [Z

β
n,Y ]

annealed free enegy

We have that

F q(β) ≤ F a(β), β ≥ 0

from Jensen’s inequality.
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Phase transitions II

Also, monotonicity of F (β) yields the following phase transitions:

Phase transitions II

We set

βq
2(d) := sup{β ≥ 0 : F q(β) = 0}

βa
2 (d) := sup{β ≥ 0 : F a(β) = 0}.

Then,

βa
2 (d) ≤ βq

2(d).
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Remark

We give a remark on the annealed model.
The annealed partition function PY [Z

β
n,Y ] can be rewritten by

PX̃

[
exp

(
β

n∑
k=1

1{X̃k = 0}

)]
,

where X̃ is a random walk on Zd defined by X̃n = Xn − Yn.

This representation is also an example of pinning model and there are
many results on its partition function and free energy. Moreover, it is a
discrete homopolymer model.
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Known results

1 d = 1, 2 ([3])

βa
1 (d) = βq

1(d) = βa
2 (d) = βq

2(d) = 0

2 d ≥ 3 (annealed [4] et.al.)

0 < βa
1 (d) = βa

2 (d).

3 d ≥ 3 (quenched [1, 3] et.al.)

0 < βa
i (d) < βq

i (d), i = 1, 2.

Thus, we have that for d ≥ 3

0 < βa
1 (d) = βa

2 (d) < βq
1(d) ≤ βq

2(d).
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Main result 1

When we look at the critical points, we have the following result.

Theorem 1

βq
1(d) = βq

2(d)

for d ≥ 1.

Moreover, the quenched free energy F q(β) is given by

F q(β) = s−1
(
− log

(
eβ − 1

))
, β ≥ βq

1(d),

where s is a continuous, convex, and strictly decreasing function which
has a certain variational representation.
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Corollary

1 If β < βq
1(d), then

lim sup
n→∞

µβ
n,Y [Ln(X,Y )] < ∞

PY -a.s.

delocalized phase

2 If β > βq
1(d), then

lim inf
n→∞

µβ
n,Y

[
1

n
Ln(X,Y )

]
> 0,

PY -a.s.

localized phase
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Corollary
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2 If β > βq
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n→∞

µβ
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[
1

n
Ln(X,Y )
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Investigating the variational representation of s, we have the
asymptotics of F q(β) for the case d = 1, 2.

Corollary

1 (d = 1)

F q(β) ≍ β2, β ↘ 0.

2 (d = 2)

logF q(β) ≍ −β−1, β ↘ 0.
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Main results 2

So far, we investigated the path property of µβ
n,Y from a view point of

the collision local time. In the next theorem, we will see the path
property of µβ

N,Y in the distribution of X in Rd.

Theorem 2

When β < βq
1(d), we have that

µβ
n,Y

(
Xn√
n
∈ ·
)

⇒ µ(·), PY -a.s.,

where µ is a Gaussian measure on Rd with mean 0 and covariance
matrix 1

dI.
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Remark

1 We don’t know whether Zβ
Y < ∞ or not at critical point β = βq

1(d)
(d ≥ 3).

2 For continuous homopolymer model, Cranston and Molchanov
gave some path properties for delocalized phase, localized phase,
and the critical case.
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Idea of Proof

It is known that

F q(β) = lim
n→∞

1

n
logPY [exp(βLn(X,Y )) : Xn = Yn]

= lim
n→∞

1

n
logZβ,pin

n,Y , PY -a.s. (1)

We introduce

K(β, r) =
∞∑
n=1

e−rnZβ,pin
n,Y

for r ≥ 0.
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It follows from (1) that

r < F q(β) ⇒ K(β, r) = ∞,

r > F q(β) ⇒ K(β, r) < ∞.

Thus, F q(β) is determined by looking at K(β, r).
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Expanding

exp(βLn(X,Y )) =
n∏

j=1

exp (β1{Xj = Yj})

=

n∏
j=1

(
1 +

(
eβ − 1

)
1{Xj = Yj}

)
,

we have that

Zβ
Y = 1 +K(β, 0)

K(β, r) =
∑
k≥1

(
eβ − 1

)k ∑
1≤j1<···<jk<∞

e−rjkPX (Xji = Yji ; i = 1, · · · , k) .

(2)
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Lemma

We have that

s(r) = lim
k→∞

1

k
log

∑
1≤j1<···<jk<∞

e−rjkPX (Xji = Yji ; i = 1, · · · , k)

exists PY -a.s. and s is continuous and strictly decreasing in r ≥ 0.

Combining it with (2),

log(eβ − 1) + s(F q(β)) = 0

and also

log(eβ
q
1 − 1) + s(0) = 0.
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To prove Lemma, we have used the quenched LDP for word sequences
which was proved by Birkner, Greven, and den Hollander [1].

Word sequences

1 ρ(n) =
p2n(0)∑
n≥1 p2n(0)

, n ≥ 1.

2 {τi : i ≥ 1}: i.i.d. r.v.’s with law ρ(n).

3 ξi = Yi − Yi−1, i ≥ 1 is increments of Y . (letter)

Then, we define new r.v.’s {ζi : i ≥ 1} by

ζi = (ξTi−1+1, · · · , ξTi), (word)

where T0 = 0 and Ti = Ti−1 + τi.
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Roughly, we can rewrite as∑
1≤j1<···<jk<∞

e−rjkPX (Xji = Yji ; i = 1, · · · , k)

= P
[
exp

(
k

∫
fr(dy)Rk(dy)

)∣∣∣∣ ξ] ,
where fr is a bounded function on word set and Rk is an empirical
measure of k-tuples of words.

Since Birkner et. al. proved the quenched LDP for Rk, we can apply the
Varadhan’s lemma in the right hand side. So, we obtain Lemma.
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In the proof of CLT, we also used the quenched LDP for words.
Especially, we saw the continuity of the limit

s̃(α) = lim
k→∞

1

k
logPX (Xji = Yji : i = 1, · · · , k)α , α ∈ (

3

4
,∞)

at α = 1.
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Originally, Birkner and Sun introduced random walk pinning model to
give an lower bound of the weak-strong disorder critical point of
directed polymers in random environment and parabolic Anderson
model with Brownian noise.
Also, the coincidence of the critical points may be related to the
conjecture of the coincidence of the weak-strong-very strong disorder
critical points of directed polymers in random environment.
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Thank you for your attention!
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