	RWPM	Main results	Proof of theorems	References
0000	00000000	00000	0000000	

Phase transition of random walk pinning model

Makoto Nakashima

University of Tsukuba

2nd September 2015

Introduction	RWPM	Main results	Proof of theorems	References
•000	000000000	00000	00000000	
Pinning mc	del			

Homogeneous pinning model was introduced in physics literature to study the behavior of a polymer at an interface. One of the simplest model is given as follows:

Setting

• Polymers:

Let (S, P_S) be a simple random walk on \mathbb{Z} starting from 0.

• Polymer measure: For $\beta \in \mathbb{R}$

$$P_n^{\beta}(dS) := \frac{1}{Z_n^{\beta}} \exp\left(\beta \sum_{k=1}^n \mathbf{1}\{S_k = 0\}\right) P_S(dS),$$

where

$$Z_n^{\beta} := P_S\left[\exp\left(\beta \sum_{k=1}^n \mathbf{1}\{S_k = 0\}\right)\right]$$
(Partition function).

Makoto Nakashima (Univ. of Tsukuba

Makoto Nakashima (Univ. of Tsukuba

Phase trans. of RWPM

2nd September 2015 3 / 30

Homogeneous pinning model is studied well. To study it, we often use the quantity, so-called the *free energy* which is defined by

$$F(\beta) = \lim_{n \to \infty} \frac{1}{n} \log Z_n^{\beta} \in [0, \infty).$$

Introduction 0000	RWPM 000000000	Main results 00000	Proof of theorems 00000000	References
Pinning mo	del			

Homogeneous pinning model is studied well. To study it, we often use the quantity, so-called the *free energy* which is defined by

$$F(\beta) = \lim_{n \to \infty} \frac{1}{n} \log Z_n^{\beta} \in [0, \infty).$$

Phase transition

- If $\beta \leq 0$, then $F(\beta) = 0$.
- If $\beta > 0$, then $F(\beta) > 0$.

Introduction	RWPM	Main results	Proof of theorems	References
0000	000000000	00000	0000000	
Pinning n	nodel			

In each phase, the behavior of the path is definitely different:

Theorem A

$$P_n^{\beta} \left[\sum_{k=1}^n \mathbf{1} \{ S_k = 0 \} \right] = \begin{cases} O(1), & \beta < 0 \quad (\text{delocalized phase}) \\ O(\sqrt{n}), & \beta = 0 \\ O(n), & \beta > 0 \quad (\text{localized phase}). \end{cases}$$

Remark: Generally, homogeneous pinning models are defined by using renewal processes like a return time of S.R.W. and we cannot consider the behavior of "S".

RWPM References

Random walk pinning model

Random walk pinning model is an inhomogeneous pinning model defined by using independent random walks, which was introduced by Birkner and Sun.

Setting

- Polymer: Let (X, P_X) be a S.R.W. on \mathbb{Z}^d starting from 0.
- Environment: Let (Y, P_Y) be a S.R.W. on \mathbb{Z}^d starting from 0.

• Polymer measure: For $\beta \geq 0$ and fixed Y,

$$\mu_{n,Y}^{\beta}(dX) := \frac{1}{Z_{n,Y}^{\beta}} P_X\left[\exp\left(\beta \sum_{k=1}^n \mathbf{1}\{X_k = Y_k\}\right) : dX\right],$$

where

$$Z_{n,Y}^{\beta} := P_X \left[\exp\left(\beta \sum_{k=1}^n \mathbf{1}\{X_k = Y_k\}\right) \right] (quenched partition fn.).$$

Makoto Nakashima

RWPM	Main results	Proof of theorems	References
00000000			

Introduction
0000RWPM
00000000Main results
000000Proof of theorems
00000000ReferencesRandom walk pinning model

Also, we define the annealed partition function by

$$P_Y\left[Z_{n,Y}^\beta\right].$$

We set

$$L_n(X,Y) := \sum_{k=1}^n \mathbf{1}\{X_k = Y_k\}, \ L(X,Y) := \sum_{n \ge 1} \mathbf{1}\{X_n = Y_n\}.$$

Introduction
0000RWPM
00000000Main results
000000Proof of theorems
00000000ReferencesRandom walk pinning model

Also, we define the annealed partition function by

$$P_Y\left[Z_{n,Y}^\beta\right].$$

We set

$$L_n(X,Y) := \sum_{k=1}^n \mathbf{1}\{X_k = Y_k\}, \ L(X,Y) := \sum_{n \ge 1} \mathbf{1}\{X_n = Y_n\}.$$

Then, we have

$$Z_Y^{\beta} := \lim_{n \to \infty} Z_{n,Y}^{\beta} = P_X \left[\exp\left(\beta L(X,Y)\right) \right], \quad P_Y\text{-a.s.}$$
$$P_Y[Z_Y^{\beta}] = \lim_{n \to \infty} P_Y \left[Z_{n,Y}^{\beta} \right] = P_{X,Y} \left[\exp(\beta L(X,Y)) \right].$$

Introduction	RWPM	Main results	Proof of theorems	References
0000	000000000	00000	00000000	
Phase trans	sitions I			

Monotonicity implies the following phase transition:

Phase transition I

We set

$$\beta_1^q(d) := \sup\{\beta \ge 0 : Z_Y^\beta < \infty, P_Y\text{-a.s.}\}$$

$$\beta_1^a(d) := \sup\{\beta \ge 0 : P_Y[Z_Y^\beta] < \infty\}.$$

$\begin{array}{c} \text{Introduction} \\ \text{0000} \end{array}$	RWPM 000000000	Main results 00000	Proof of theorems	References
Phase tran	sitions I			

Monotonicity implies the following phase transition:

Phase transition I

We set

$$\beta_1^q(d) := \sup\{\beta \ge 0 : Z_Y^\beta < \infty, P_Y\text{-a.s.}\}$$
$$\beta_1^a(d) := \sup\{\beta \ge 0 : P_Y[Z_Y^\beta] < \infty\}.$$

It is trivial that

 $\beta_1^a(d) \le \beta_1^q(d).$

RWPM	Main results	Proof of theorems	References
000000000			

Free energies

We introduce the free energies of RWPM which are important quantities to analyze the RWPM.

Free energies

It is known that the following limits exist and they are non-random:

$$F^{q}(\beta) = \lim_{n \to \infty} \frac{1}{n} \log Z^{\beta}_{n,Y}$$
$$= \lim_{n \to \infty} \frac{1}{n} P_{Y}[\log Z^{\beta}_{n,Y}], \quad P_{Y}\text{-a.s.}$$
$$F^{a}(\beta) = \lim_{n \to \infty} \frac{1}{n} \log P_{Y}[Z^{\beta}_{n,Y}]$$

0000	000000000	00000	00000000	itelefences

Free energies

We introduce the free energies of RWPM which are important quantities to analyze the RWPM.

Free energies

It is known that the following limits exist and they are non-random:

$$F^{q}(\beta) = \lim_{n \to \infty} \frac{1}{n} \log Z^{\beta}_{n,Y}$$

= $\lim_{n \to \infty} \frac{1}{n} P_{Y}[\log Z^{\beta}_{n,Y}], P_{Y}\text{-a.s.} \qquad quenched free enegy$
$$F^{a}(\beta) = \lim_{n \to \infty} \frac{1}{n} \log P_{Y}[Z^{\beta}_{n,Y}] \qquad annealed free enegy$$

0000	000000000	00000	0000000	

Free energies

We introduce the free energies of RWPM which are important quantities to analyze the RWPM.

Free energies

It is known that the following limits exist and they are non-random:

$$F^{q}(\beta) = \lim_{n \to \infty} \frac{1}{n} \log Z^{\beta}_{n,Y}$$

= $\lim_{n \to \infty} \frac{1}{n} P_{Y}[\log Z^{\beta}_{n,Y}], P_{Y}\text{-a.s.} \qquad quenched free enegy$
$$F^{a}(\beta) = \lim_{n \to \infty} \frac{1}{n} \log P_{Y}[Z^{\beta}_{n,Y}] \qquad annealed free enegy$$

We have that

$$F^q(\beta) \le F^a(\beta), \quad \beta \ge 0$$

from Jensen's inequality.

Makoto Nakashima (Univ. of Tsukuba

Introduction	RWPM	Main results	Proof of theorems	References
0000	000000000	00000	00000000	
Phase trai	nsitions II			

Also, monotonicity of $F(\beta)$ yields the following phase transitions:

Phase transitions II

We set

$$\begin{split} \beta_2^q(d) &:= \sup\{\beta \ge 0 : F^q(\beta) = 0\}\\ \beta_2^a(d) &:= \sup\{\beta \ge 0 : F^a(\beta) = 0\}. \end{split}$$

Introduction	RWPM	Main results	Proof of theorems	References
0000	00000●000	00000	00000000	
Phase tra:	nsitions II			

Also, monotonicity of $F(\beta)$ yields the following phase transitions:

Phase transitions II

We set

$$\begin{split} \beta_2^q(d) &:= \sup\{\beta \ge 0 : F^q(\beta) = 0\}\\ \beta_2^a(d) &:= \sup\{\beta \ge 0 : F^a(\beta) = 0\}. \end{split}$$

Then,

 $\beta_2^a(d) \le \beta_2^q(d).$

Introduction	RWPM	Main results	Proof of theorems	References
0000	0000000●00	00000	00000000	
Remark				

We give a remark on the annealed model. The annealed partition function $P_Y[Z_{n,Y}^\beta]$ can be rewritten by

$$P_{\tilde{X}}\left[\exp\left(\beta\sum_{k=1}^{n}\mathbf{1}\{\tilde{X}_{k}=0\}\right)\right],$$

where \tilde{X} is a random walk on \mathbb{Z}^d defined by $\tilde{X}_n = X_n - Y_n$.

Introduction	RWPM	Main results	Proof of theorems	References
0000	0000000000	00000	00000000	
Remark				

We give a remark on the annealed model. The annealed partition function $P_Y[Z_{n,Y}^\beta]$ can be rewritten by

$$P_{\tilde{X}}\left[\exp\left(\beta\sum_{k=1}^{n}\mathbf{1}\{\tilde{X}_{k}=0\}\right)\right],$$

where \tilde{X} is a random walk on \mathbb{Z}^d defined by $\tilde{X}_n = X_n - Y_n$. This representation is also an example of pinning model and there are many results on its partition function and free energy. Moreover, it is a discrete homopolymer model.

Introduction 0000	RWPM 0000000●0	Main results 00000	Proof of theorems	References
Known rest	ılts			

 $\textcircled{0} \ d = 1,2 \ ([3])$

$$\beta_1^a(d) = \beta_1^q(d) = \beta_2^a(d) = \beta_2^q(d) = 0$$

2 $d \geq 3$ (annealed [4] et.al.)

$$0 < \beta_1^a(d) = \beta_2^a(d).$$

 $\textcircled{0} d \geq 3 \text{ (quenched [1, 3] et.al.)}$

$$0 < \beta_i^a(d) < \beta_i^q(d), \quad i = 1, 2.$$

Introduction 0000	RWPM ○○○○○○○● ○	Main results 00000	Proof of theorems	References
Known resu	ılts			

 $\textcircled{0} \ d = 1,2 \ ([3])$

$$\beta_1^a(d) = \beta_1^q(d) = \beta_2^a(d) = \beta_2^q(d) = 0$$

2 $d \geq 3$ (annealed [4] et.al.)

$$0 < \beta_1^a(d) = \beta_2^a(d).$$

 $\textcircled{o} d \geq 3 \text{ (quenched [1, 3] et.al.)}$

$$0 < \beta_i^a(d) < \beta_i^q(d), \quad i = 1, 2.$$

Thus, we have that for $d \geq 3$

$$0 < \beta_1^a(d) = \beta_2^a(d) < \beta_1^q(d) \le \beta_2^q(d).$$

13 / 30

RWPM	Main results	Proof of theorems	References
00000000			

Makoto Nakashima (Univ. of Tsukuba

Phase trans. of RWPM

Introduction 0000	RWPM 000000000	Main results ●0000	Proof of theorems	References
Main result	1			

When we look at the critical points, we have the following result.

Theorem 1 $\beta_1^q(d) = \beta_2^q(d)$ for d > 1.

Introduction	RWPM	Main results	Proof of theorems	References
0000	000000000	●0000	00000000	
Main result	1			

When we look at the critical points, we have the following result.

Theorem 1

 $\beta_1^q(d) = \beta_2^q(d)$

for $d \geq 1$. Moreover, the quenched free energy $F^q(\beta)$ is given by

$$F^q(\beta) = s^{-1}\left(-\log\left(e^{\beta}-1\right)\right), \ \beta \ge \beta_1^q(d),$$

where s is a continuous, convex, and strictly decreasing function which has a certain variational representation.

RWPM	Main results	Proof of theorems	References
	00000		

Corollary

 $If \beta < \beta_1^q(d), then$

$$\limsup_{n \to \infty} \mu_{n,Y}^{\beta}[L_n(X,Y)] < \infty$$

$$P_Y$$
-a.s.

$$If \beta > \beta_1^q(d), then$$

$$\liminf_{n\to\infty} \mu_{n,Y}^\beta \left[\frac{1}{n}L_n(X,Y)\right] > 0,$$

 P_Y -a.s.

16 / 30

	RWPM	Main results	Proof of theorems	References
0000	00000000	00000	0000000	

Corollary

• If $\beta < \beta_1^q(d)$, then

$$\limsup_{n \to \infty} \mu_{n,Y}^{\beta}[L_n(X,Y)] < \infty$$

 P_Y -a.s. delocalized phase

 $@ If \beta > \beta_1^q(d), then$

$$\liminf_{n \to \infty} \mu_{n,Y}^{\beta} \left[\frac{1}{n} L_n(X,Y) \right] > 0,$$

 P_Y -a.s. localized phase

16 / 30

RWPM	Main results	Proof of theorems	References
	00000		

Investigating the variational representation of s, we have the asymptotics of $F^{q}(\beta)$ for the case d = 1, 2.

Corollary		
(1) $(d = 1)$		
	$F^q(\beta) \asymp \beta^2, \beta \searrow 0.$	
❷ (d = 2)		
	$\log F^q(\beta) \asymp -\beta^{-1}, \ \beta \searrow 0.$	

Introduction	RWPM	Main results	Proof of theorems	References
0000	000000000	000●0	00000000	
Main result	s 2			

So far, we investigated the path property of $\mu_{n,Y}^{\beta}$ from a view point of the collision local time. In the next theorem, we will see the path property of $\mu_{N,Y}^{\beta}$ in the distribution of X in \mathbb{R}^d .

Theorem 2

When $\beta < \beta_1^q(d)$, we have that

$$\mu_{n,Y}^{\beta}\left(\frac{X_n}{\sqrt{n}}\in\cdot\right) \Rightarrow \mu(\cdot), \quad P_{Y}\text{-a.s.},$$

where μ is a Gaussian measure on \mathbb{R}^d with mean 0 and covariance matrix $\frac{1}{d}I$.

Introduction	RWPM	Main results	Proof of theorems	References
0000	000000000	0000●	00000000	
Remark				

- We don't know whether $Z_Y^{\beta} < \infty$ or not at critical point $\beta = \beta_1^q(d)$ $(d \ge 3).$
- Proceeding of the properties of the continuous homopolymer model, Cranston and Molchanov gave some path properties for delocalized phase, localized phase, and the critical case.

Introduction	RWPM	Main results	Proof of theorems	References
0000	000000000	00000	•0000000	
Idea of Pr	roof			

It is known that

$$F^{q}(\beta) = \lim_{n \to \infty} \frac{1}{n} \log P_{Y} \left[\exp(\beta L_{n}(X, Y)) : X_{n} = Y_{n} \right]$$
$$= \lim_{n \to \infty} \frac{1}{n} \log Z_{n,Y}^{\beta, \text{pin}}, \quad P_{Y}\text{-a.s.}$$
(1)

We introduce

$$K(\beta, r) = \sum_{n=1}^{\infty} e^{-rn} Z_{n,Y}^{\beta, \text{pin}}$$

for $r \geq 0$.

20 / 30

	RWPM	Main results	Proof of theorems	References
0000	00000000	00000	000000	

It follows from (1) that

$$\begin{split} r < F^q(\beta) &\Rightarrow K(\beta,r) = \infty, \\ r > F^q(\beta) &\Rightarrow K(\beta,r) < \infty. \end{split}$$

Thus, $F^q(\beta)$ is determined by looking at $K(\beta, r)$.

	RWPM	Main results	Proof of theorems	References
0000	00000000	00000	000000	

Expanding

$$\exp(\beta L_n(X, Y)) = \prod_{j=1}^n \exp(\beta \mathbf{1}\{X_j = Y_j\}) = \prod_{j=1}^n \left(1 + \left(e^\beta - 1\right) \mathbf{1}\{X_j = Y_j\}\right),$$

we have that

$$Z_Y^{\beta} = 1 + K(\beta, 0)$$

$$K(\beta, r) = \sum_{k \ge 1} \left(e^{\beta} - 1 \right)^k \sum_{1 \le j_1 < \dots < j_k < \infty} e^{-rj_k} P_X \left(X_{j_i} = Y_{j_i}; i = 1, \dots, k \right).$$
(2)

Makoto Nakashima (Univ. of Tsukuba

22 / 30

	RWPM	Main results	Proof of theorems	References
0000	00000000	00000	0000000	

Lemma

We have that

$$s(r) = \lim_{k \to \infty} \frac{1}{k} \log \sum_{1 \le j_1 < \dots < j_k < \infty} e^{-rj_k} P_X \left(X_{j_i} = Y_{j_i}; i = 1, \cdots, k \right)$$

exists P_Y -a.s. and s is continuous and strictly decreasing in $r \ge 0$.

Combining it with (2),

$$\log(e^{\beta} - 1) + s(F^q(\beta)) = 0$$

and also

$$\log(e^{\beta_1^q} - 1) + s(0) = 0.$$

Makoto Nakashima (Univ. of Tsukuba

Phase trans. of RWPM

IntroductionRWPMMain resultsProof of theoremsR000000000000000000000000000

To prove Lemma, we have used the quenched LDP for word sequences which was proved by Birkner, Greven, and den Hollander [1].

Word sequences

•
$$\rho(n) = \frac{p_{2n}(0)}{\sum_{n \ge 1} p_{2n}(0)}, n \ge 1.$$

• $\{\tau_i : i \ge 1\}$: i.i.d. r.v.'s with law $\rho(n)$.
• $\xi_i = Y_i - Y_{i-1}, i \ge 1$ is increments of Y. (letter)
Then, we define new r.v.'s $\{\zeta_i : i \ge 1\}$ by

$$\zeta_i = (\xi_{T_{i-1}+1}, \cdots, \xi_{T_i}), \quad (\text{word})$$

where $T_0 = 0$ and $T_i = T_{i-1} + \tau_i$.

	RWPM	Main results	Proof of theorems	References
0000	00000000	00000	00000000	

Roughly, we can rewrite as

$$\sum_{1 \le j_1 < \dots < j_k < \infty} e^{-rj_k} P_X \left(X_{j_i} = Y_{j_i}; i = 1, \cdots, k \right)$$
$$= \mathbb{P} \left[\exp \left(k \int f_r(dy) R_k(dy) \right) \middle| \xi \right],$$

where f_r is a bounded function on word set and R_k is an empirical measure of k-tuples of words.

	RWPM	Main results	Proof of theorems	References
0000	00000000	00000	00000000	

Roughly, we can rewrite as

$$\sum_{1 \le j_1 < \dots < j_k < \infty} e^{-rj_k} P_X \left(X_{j_i} = Y_{j_i}; i = 1, \cdots, k \right)$$
$$= \mathbb{P} \left[\exp \left(k \int f_r(dy) R_k(dy) \right) \middle| \xi \right],$$

where f_r is a bounded function on word set and R_k is an empirical measure of k-tuples of words.

Since Birkner et. al. proved the quenched LDP for R_k , we can apply the Varadhan's lemma in the right hand side. So, we obtain Lemma.

RWPM	Main results	Proof of theorems	References
		00000000	

In the proof of CLT, we also used the quenched LDP for words. Especially, we saw the continuity of the limit

$$\tilde{s}(\alpha) = \lim_{k \to \infty} \frac{1}{k} \log P_X \left(X_{j_i} = Y_{j_i} : i = 1, \cdots, k \right)^{\alpha}, \quad \alpha \in \left(\frac{3}{4}, \infty\right)$$

at $\alpha = 1$.

Introduction	RWPM	Main results	Proof of theorems	References
0000	000000000	00000	0000000●	

Originally, Birkner and Sun introduced random walk pinning model to give an lower bound of the weak-strong disorder critical point of directed polymers in random environment and parabolic Anderson model with Brownian noise.

Also, the coincidence of the critical points may be related to the conjecture of the coincidence of the weak-strong-very strong disorder critical points of directed polymers in random environment.

Introduction	RWPM	Main results	Proof of theorems	References
0000	000000000	00000	00000000	
Reference	s I			

- Matthias Birkner, Andreas Greven, and Frank den Hollander.
 Quenched large deviation principle for words in a letter sequence. Probab. Theory Related Fields, Vol. 148, No. 3-4, pp. 403–456, 2010.
- [2] Matthias Birkner, Andreas Greven, and Frank den Hollander. Collision local time of transient random walks and intermediate phases in interacting stochastic systems. *Electron. J. Probab.*, Vol. 16, pp. no. 20, 552–586, 2011.
- M. Birkner, R. Sun: Annealed vs Quenched critical points for a random walk pinning model. Ann. Inst. H. Poincaré Probab. Stat. Vol. 46, pp.414-441. 2010
- G. Giacomin: *Random polymer models*. Imperial College Press, London, 2007.

 H. Lacoin, M. Moreno: Directed polymers on hierarchical lattices with site disorder. Stochastic Process. Appl., Vol. 120, No. 4, pp. 467–493, 2010

Introduction	RWPM	Main results	Proof of theorems	References
0000	000000000	00000	00000000	
References 1	II			

 [6] M. Nakashima: On phase transition of random walk pinning model. in preparation.

	RWPM	Main results	Proof of theorems	References
0000	00000000	00000	0000000	

Thank you for your attention!