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The underlying graph

Let G = (V ,E ) be an infinite, connected, locally finite graph such that for
some d ≥ 2:

Volume regularity: For all x ∈ V ,

C−1reg nd ≤ |B(x , n)| ≤ Creg nd ∀n ≥ N1(x),

with B(x , n) := {y : d(x , y) ≤ n} ball w.r.t. the graph distance.

Local Sobolev inequality (Sd
1 ): For all x ∈ V ,( ∑

y∈B(x ,n)

|u(y)|
d

d−1

)d−1
d

≤ CS1

∑
y∨z∈B(x ,n)
{y ,z}∈E

∣∣u(y)− u(z)
∣∣, ∀n ≥ N2(x),

for all u : V → R with supp u ⊂ B(x , n).

Put weights (or conductances) ωe ∈ (0,∞) on the edges of G .
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Random Walk
Choose a ‘speed measure’ πx(ω), x ∈ V . (How? See next slide...)

For ω ∈ Ω = (0,∞)E let Pω
x be the probability law on D([0,∞),V ) which

makes the coordinate process Xt a Markov chain starting at x with
generator

Lπf (x) =
1

πx

∑
y∼x

ωxy (f (y)− f (x)).

Then X is reversible (symmetric) with respect to π. Write

µx =
∑
y∼x

ωxy , νx =
∑
y∼x

1

ωxy
.

Example: Random Conductance Model (RCM)

G = (Zd ,Ed)

(ωe)e∈Ed
stationary ergodic random variables under some probability

measure P.
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Choices for the ‘speed measure’ π

πx = µx =
∑

y ωxy . This makes the times spent at each site x before
a jump i.i.d. exp(1). Call this the constant speed random walk
(CSRW).

πx = 1 for all x . This makes the times spent at x i.i.d. exp(µx). Call
this the variable speed random walk (VSRW).

For either choice π = µ or π ≡ 1 define the heat kernel (transition
density with respect to π) by

pωt (x , y) =
Pω
x (Xt = y)

πy
= pωt (y , x).

Problem: Gaussian bounds (GB) on pωt (x , y), i.e. there exist Nx(ω)
such that when t ≥ Nx :

pωt (x , y) ≤ c1t−d/2 exp(−c2d(x , y)2/t), if t ≥ d(x , y),

and similar lower bounds.
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Some Results on Gaussian bounds
“Elliptic”: 0 < c1 ≤ ωe ≤ c2 <∞. Delmotte ’99.
SRW on percolation clusters: Barlow ’04, Sapozhnikov ’14.

For the RCM with i.i.d. conductances:

“Bounded below”: ωe ∈ [1,∞). Barlow and Deuschel ’10 (VSRW).
“Bounded above”: ωe ∈ [0, 1] Berger, Biskup, Hoffmann, Kozma ’08
showed that sub-Gaussian heat kernel decay can occur, so

Gaussian bounds may fail!

Boukhadra, Kumagai, Mathieu (’14): Sharp conditions on the tail of
the conductances near 0.

Traps

1εx y

ε

x

ε ε

ε

εy1ε
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Gaussian bounds and Harnack inequalities

Theorem (Delmotte ’99)

If 0 < c1 ≤ ωe ≤ c2 <∞ the following are equivalent:

Gaussian upper and lower bounds on the heat kernel

Volume doubling and local Poincaré inequality

Parabolic Harnack inequality

Similar results:

Grigor’yan ’92 and Saloff-Coste ’92 on manifolds

Sturm ’96 on Dirichlet spaces

Barlow, Chen ’14: extension of Delmotte’s result applicable to
random graphs
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Parabolic Harnack inequality (CSRW)

Theorem (A., Deuschel, Slowik (2013))

For any ball Bn = B(x0, n) and t0 ≥ 0 let Qn = [t0, t0 + n2]×Bn. Suppose
that u > 0 is caloric on Qn, i.e. ∂tu − Lµu = 0 on Qn. Then, for any
p, q ∈ (1,∞) with

1

p
+

1

q
<

2

d

there exists CH = CH(‖µ‖p,Bn , ‖ν‖q,Bn) such that

max
(t,x)∈Q−

u(t, x) ≤ CH min
(t,x)∈Q+

u(t, x).

with Q− =
[
t0 + 1

4n2, t0 + 1
2n2
]
× Bn/2, Q+ =

[
t0 + 3

4n2, t0 + n2
]
× Bn/2.
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Upper Gaussian estimates for the CSRW

Theorem (A., Deuschel, Slowik (2014))

Let X be the CSRW and let p, q ∈ (1,∞) be such that

1

p
+

1

q
<

2

d
.

Assume that there exists Nx(ω) such that

µ̄ := sup
x∈V

sup
n≥Nx

‖µ‖p,B(x ,n) <∞, ν̄ := sup
x∈V

sup
n≥Nx

‖ν‖q,B(x ,n) <∞.

Then, there exist constants ci = ci (d , p, q, µ̄, ν̄) > 0 such that for any t
and x with

√
t ≥ 2(Nx(ω) ∨ N1(x) ∨ N2(x)) and all y ∈ V ,

pωt (x , y) ≤ c1 t−d/2 exp
(
− c2d(x , y)2/t

)
, if t ≥ d(x , y).
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Idea of the proof – Davies’ method

For a suitable class of functions ψ : V → R consider
I semigroup Pψ

t f = eψ
(
Pt(e−ψf )

)
I generator Lψf = eψ

(
Lµ(e−ψf )

)
I Let u(t, x) be the solution of the Cauchy problem{

∂tu − Lψu = 0,

u(t = 0, · ) = eψf .

If f = 1l{y}/µy then u(t, x) = eψ(x)pωt (x , y).

A-priori estimate

‖u(t, · )‖`2(V ,µ) ≤ eh(ψ)t ‖eψf ‖`2(V ,µ)

where

h(ψ) := 2
(

cosh(‖∇ψ||∞)− 1
)
.
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Maximal inequality via Moser iteration

For p, p∗ ∈ [1,∞] such that 1/p + 1/p∗ = 1, α ≥ 1, 1
2 ≤ σ

′ < σ ≤ 1,

‖u‖
2α
(
1+

ρ−p∗
ρ

)
,Qσ′n,µ

≤ c (1 ∨ ‖µ‖p,Bn‖ν‖q,Bn)
1
2α ‖u‖2α,Qσn,µ

with a constant c (depending on ‖∇ψ‖∞), provided that

ρ(q, d)− p∗ > 0 ⇐⇒ 1

p
+

1

q
<

2

d
.

Moser iteration gives the maximal inequality

max
Qn/2

u ≤ c (1 ∨ ‖µ‖p,Bn‖ν‖q,Bn)κ ‖u‖2,Qn,µ.

By the a-priori estimate

max
Qn/2

u ≤ c (1 ∨ ‖µ‖p,Bn‖ν‖q,Bn)κ eh(ψ)n
2

n−d/2 ‖eψf ‖`2(V ,µ).

Sebastian Andres HKE for random walks with degenerate weights September 2nd, 2015 10



Maximal inequality via Moser iteration

For p, p∗ ∈ [1,∞] such that 1/p + 1/p∗ = 1, α ≥ 1, 1
2 ≤ σ

′ < σ ≤ 1,

‖u‖
2α
(
1+

ρ−p∗
ρ

)
,Qσ′n,µ

≤ c (1 ∨ ‖µ‖p,Bn‖ν‖q,Bn)
1
2α ‖u‖2α,Qσn,µ

with a constant c (depending on ‖∇ψ‖∞), provided that

ρ(q, d)− p∗ > 0 ⇐⇒ 1

p
+

1

q
<

2

d
.

Moser iteration gives the maximal inequality

max
Qn/2

u ≤ c (1 ∨ ‖µ‖p,Bn‖ν‖q,Bn)κ ‖u‖2,Qn,µ.

By the a-priori estimate

max
Qn/2

u ≤ c (1 ∨ ‖µ‖p,Bn‖ν‖q,Bn)κ eh(ψ)n
2

n−d/2 ‖eψf ‖`2(V ,µ).

Sebastian Andres HKE for random walks with degenerate weights September 2nd, 2015 10



Maximal inequality via Moser iteration

For p, p∗ ∈ [1,∞] such that 1/p + 1/p∗ = 1, α ≥ 1, 1
2 ≤ σ

′ < σ ≤ 1,

‖u‖
2α
(
1+

ρ−p∗
ρ

)
,Qσ′n,µ

≤ c (1 ∨ ‖µ‖p,Bn‖ν‖q,Bn)
1
2α ‖u‖2α,Qσn,µ

with a constant c (depending on ‖∇ψ‖∞), provided that

ρ(q, d)− p∗ > 0 ⇐⇒ 1

p
+

1

q
<

2

d
.

Moser iteration gives the maximal inequality

max
Qn/2

u ≤ c (1 ∨ ‖µ‖p,Bn‖ν‖q,Bn)κ ‖u‖2,Qn,µ.

By the a-priori estimate

max
Qn/2

u ≤ c (1 ∨ ‖µ‖p,Bn‖ν‖q,Bn)κ eh(ψ)n
2

n−d/2 ‖eψf ‖`2(V ,µ).

Sebastian Andres HKE for random walks with degenerate weights September 2nd, 2015 10



Finishing the sketch of the proof

We have

max
Qn/2

u ≤ c (1 ∨ ‖µ‖p,Bn‖ν‖q,Bn)κ eh(ψ)n
2

n−d/2 ‖eψf ‖`2(V ,µ).

For t � n2 large enough this can be written as

‖Pψ
t (eψf )‖`∞(V ,µ) ≤ ct−d/4 eh(ψ)t ‖eψf ‖`2(V ,µ)

By duality ‖Pψ
t g‖`2 ≤ ct−d/4 eh(ψ)t ‖g‖`1 .

Choosing f = 1l{y}/µy , i.e. u(t, x) = eψ(x)pωt (x , y),

u(t, x) ≤ c t−d/2e2h(ψ)teψ(y)

⇐⇒ pωt (x , y) ≤ c t−d/2eψ(y)−ψ(x)+2h(ψ)t

Optimising over ψ yields upper Gaussian estimates.

Advantage: Only balls with one fixed center point x are considered!
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VSRW and chemical distance

Now let X be the VSRW with generator

Lf (x) =
∑
y∼x

ωxy (f (y)− f (x)).

The natural distance associated with X is the chemical distance
defined by

dω(x , y) := inf
γ

{ lγ−1∑
i=0

1 ∧ ω(zi , zi+1)−1/2

}
,

where the infimum is taken over all paths γ = (z0, . . . , zlγ ) connecting
x and y .

Let B̃(x , r) := {y ∈ V : dω(x , y) ≤ r}.
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Upper Gaussian estimates for the VSRW

Theorem (A., Deuschel, Slowik (2014))

Let X be the VSRW and let p, q ∈ (1,∞) be such that

1

p − 1
+

1

q
<

2

d
.

Assume that there exists Ñx(ω) such that

µ̄ := sup
x∈V

sup
n≥Ñx

‖µ‖p,B̃(x ,n) <∞, ν̄ := sup
x∈V

sup
n≥Ñx

‖ν‖q,B̃(x ,n) <∞.

Then, there exist constants ci (d , p, q, µ̄, ν̄) > 0 such that for any t and x
with

√
t ≥ 2(Ñx(ω) ∨ N1(x) ∨ N2(x)) and all y ∈ V ,

pωt (x , y) ≤ c1 t−d/2 exp
(
− c2dω(x , y)2/t

)
, if t ≥ dω(x , y).
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