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The underlying graph

Let G = (V, E) be an infinite, connected, locally finite graph such that for
some d > 2:

@ Volume regularity: For all x € V,

Cooan? < |B(x,n)| < Ciegn? Vn > Ni(x),

reg

with B(x, n) := {y : d(x,y) < n} ball w.r.t. the graph distance.
o Local Sobolev inequality (S{): For all x € V,

d—1
e
(z \u(y)\f’l) <G Y ) uD) e M),
yEB(x,n) yVzeB(x,n)
{y.z}€E

for all u: V — R with suppu C B(x, n).
Put weights (or conductances) w, € (0,00) on the edges of G.
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Random Walk
Choose a ‘speed measure’ my(w), x € V. (How? See next slide...)

For w € Q = (0,00)E let P¥ be the probability law on D([0, 00), V) which
makes the coordinate process X; a Markov chain starting at x with
generator

Lof() = = 3 (F(Y) — 7).
y~x

Then X is reversible (symmetric) with respect to 7. Write

Ux = way, Uy = i

yrox yrx

Example: Random Conductance Model (RCM)
o G = (29 Ey)

® (we)ecE, stationary ergodic random variables under some probability
measure P.
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Choices for the ‘speed measure’ 7

0 My = lix = Zy Wxy. This makes the times spent at each site x before
a jump i.i.d. exp(1). Call this the constant speed random walk
(CSRW).
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Choices for the ‘speed measure’ 7

O My = lix = Zy Wxy. This makes the times spent at each site x before
a jump i.i.d. exp(1). Call this the constant speed random walk
(CSRW).

e 7, =1 for all x. This makes the times spent at x i.i.d. exp(suy). Call
this the variable speed random walk (VSRW).
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Choices for the ‘speed measure’ 7

® Tx = [ix = ), Wxy. This makes the times spent at each site x before
a jump i.i.d. exp(1). Call this the constant speed random walk
(CSRW).

e 7, =1 for all x. This makes the times spent at x i.i.d. exp(suy). Call
this the variable speed random walk (VSRW).

@ For either choice m = p or m = 1 define the heat kernel (transition
density with respect to ) by

PY(X, = y
pe(x,y) = X(ﬂ_t) = p(y, x).
y
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Choices for the ‘speed measure’ 7

® Tx = [ix = ), Wxy. This makes the times spent at each site x before
a jump i.i.d. exp(1). Call this the constant speed random walk
(CSRW).

e 7, =1 for all x. This makes the times spent at x i.i.d. exp(suy). Call
this the variable speed random walk (VSRW).

@ For either choice m = p or m = 1 define the heat kernel (transition
density with respect to ) by
PR(Xe=y)

= pt(y,x).
Ty

pe(x,y) =

e Problem: Gaussian bounds (GB) on p¥(x, y), i.e. there exist Ny(w)
such that when t > N,:

Py (x,y) < at™ P exp(—cad(x, y)*/t), if £ > d(x,y),

and similar lower bounds.
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Some Results on Gaussian bounds

e “Elliptic’: 0 < 1 € we < ¢ < 00. Delmotte '99.
@ SRW on percolation clusters: Barlow '04, Sapozhnikov '14.

For the RCM with i.i.d. conductances:
e "Bounded below”: we € [1,00). Barlow and Deuschel '10 (VSRW).
e “Bounded above’: w, € [0, 1] Berger, Biskup, Hoffmann, Kozma '08
showed that sub-Gaussian heat kernel decay can occur, so
Gaussian bounds may fail!
e Boukhadra, Kumagai, Mathieu ('14): Sharp conditions on the tail of
the conductances near 0.

Traps

€

€
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Gaussian bounds and Harnack inequalities

Theorem (Delmotte '99)

If0 < ¢ <we < ¢ < 00 the following are equivalent:
@ Gaussian upper and lower bounds on the heat kernel
o Volume doubling and local Poincaré inequality
@ Parabolic Harnack inequality

Similar results:

@ Grigor'yan '92 and Saloff-Coste '92 on manifolds
@ Sturm '96 on Dirichlet spaces

@ Barlow, Chen '14: extension of Delmotte's result applicable to
random graphs
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Parabolic Harnack inequality (CSRW)

Theorem (A., Deuschel, Slowik (2013))

For any ball B, = B(xp, n) and tg > 0 let Q, = [to, to + n?] x B,. Suppose
that u > 0 is caloric on Qp, i.e. Oru — L,u =0 on Q,. Then, for any
p,q € (1,00) with

1+1<2
p q d

there exists Cy = Cu(||pllp,B,, |V]lq.8,) Such that

max u(t,x) < Cg min u(t,x).
(% UBx) < G in, ul(tx)

with Q_ = [to + 31, to + 5n%] X B,jo, Qp = [to + 3n%, to + n?] x By .
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Upper Gaussian estimates for the CSRW

Theorem (A., Deuschel, Slowik (2014))
Let X be the CSRW and let p,q € (1,00) be such that

1,1 2
p q d

Assume that there exists Ny(w) such that

ft = sup SUP HNHp,B(xn 00, = Sup sup ||V||q B(x,n) < Q.
xeV n> x€V n> Ny

Then, there exist constants ¢; = c¢i(d, p, q, [i,7) > 0 such that for any t
and x with \/t > 2(Ny(w) V Ni(x) V Na(x)) and all y € V,

pe(x,y) < at ¥ exp(— cd(x,y)?/t),  ift>d(x.y).
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Idea of the proof — Davies’ method

@ For a suitable class of functions ¢ : V — R consider
» semigroup P{f = e (Pe(e¥f))
> generator LYf = eV (L, (e ¥f))
> Let u(t, x) be the solution of the Cauchy problem
Ou—L%u = 0,
u(t=0,-) = e¥f.

If f =1,y /py then u(t,x) = e¥™p2(x,y).
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Idea of the proof — Davies’ method

@ For a suitable class of functions ¢ : V — R consider
» semigroup P{f = e (Pe(e¥f))
> generator LYf = eV (L, (e ¥f))
> Let u(t, x) be the solution of the Cauchy problem

Ou—L%u = 0,
u(t=0,-) = e¥f.

If f =1,y /py then u(t,x) = e¥™p2(x,y).

@ A-priori estimate
lut, ey < e flew.
where

h(1) == 2(cosh([[Ve)]|oo) — 1).
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Maximal inequality via Moser iteration
@ For p,p. € [1,00] such that 1/p+1/p, =1, a > 1, % <o <o<1,
1
[l 1 ) S €Y Wil ) 0o
with a constant ¢ (depending on ||V#||), provided that
1 1 2

g,d)—p« >0 —= -+ —-< .
r(q,d) T 3
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Maximal inequality via Moser iteration

@ For p,p. € [1,00] such that 1/p+1/p, =1, a > 1, % <o <o<1,
1
ol (4, 029 0 < €Y il ez
P yYoln

with a constant ¢ (depending on ||V#||), provided that

1 1 2
g,d)—p« >0 —= -+ —-< -
r(q,d) T 3

@ Moser iteration gives the maximal inequality

maxu < c(1V |u
Qn/2

BVl 4.8,)" ull2, @ p-
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Maximal inequality via Moser iteration

@ For p,p. € [1,00] such that 1/p+1/p, =1, a > 1, % <o <o<1,
1
ol (4, 029 0 < €Y il ez
P yYoln

with a constant ¢ (depending on ||V#||), provided that

1 1 2
p(g,d) —p. >0 — -+ =< .
p q d

@ Moser iteration gives the maximal inequality

maxu < c(1V |u
Qn/2

BVl 4.8,)" ull2, @ p-

@ By the a-priori estimate

® WM n=d/2 |60 f|| a0y .

maxu < ¢ (1V [4lp.s, ¥lq5,)

n/2
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Finishing the sketch of the proof
o We have

maxu < c(1V |u * eI =92 [l £y -

n/2

P,Bn ||V q,Bn)
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Finishing the sketch of the proof
o We have

rgaxu <c(1V|u w gh¥)n* p=d/2 ||ewf||£2(V,u

n/2

P,Bn ||V qun)

).
@ For t =< n? large enough this can be written as

||P;p(e¢f)||eoo(v,u) <t O 20y )

Sebastian Andres HKE for random walks with degenerate weights September 2nd, 2015 11



Finishing the sketch of the proof
o We have

rgaxu <c(1V|u " hlw)n p=d/2 ||ewf||£2(V,u

n/2

P,Bn ||V qun)

).
@ For t = n? large enough this can be written as
||P;p(e¢f)||eoo(v,u) <t O 20y )

e By duality ||P;l’g||gz < ct= 4 et g
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Finishing the sketch of the proof
o We have

* W =121V f |l oy,

P,Bn ||V qun)

maxu < c(lV .
n <c(lVip )

n/2
@ For t = n? large enough this can be written as
||P;p(e¢f)||zoo(v,u) <t O 20y )
o By duality [|P{ glle < ct=4/* ") g1,
o Choosing f = 1y,1/y, i.e. u(t,x) = e p(x, y),

u(t,x) < ct~9/2e2h(W)t b (y)

= p¥(x,y) < ct™ 2 —vl)+2h(¥)t
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Finishing the sketch of the proof
o We have

* W =121V f |l oy,

P,Bn ||V qun)

maxu < c(lV .
n <c(lVip )

n/2
@ For t = n? large enough this can be written as
||P;p(e¢f)||ew(v,u) <t O 20y )
o By duality [|P{ glle < ct=4/* ") g1,
o Choosing f = 1y,1/y, i.e. u(t,x) = e p(x, y),

u(t, x) < c t~9/2e2h(@)tgu(y)
= p¥(x,y) < ct™ 2 —vl)+2h(¥)t

@ Optimising over v yields upper Gaussian estimates.
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Finishing the sketch of the proof
o We have

* W =121V f |l oy,

P,Bn ||V qun)

maxu < c(lV .
n <c(lVip )

n/2
@ For t = n? large enough this can be written as
||P§p(ewf)||eoo(v,u) <t O 20y )
o By duality [|P{ glle < ct=4/* ") g1,
o Choosing f = 1y,1/y, i.e. u(t,x) = e p(x, y),

u(t, x) < c t~9/2e2h(@)tgu(y)
= p¥(x,y) < ct™ 2 —vl)+2h(¥)t

@ Optimising over 9 yields upper Gaussian estimates.
@ Advantage: Only balls with one fixed center point x are considered!
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VSRW and chemical distance

@ Now let X be the VSRW with generator

LX) =D wy(fly) = F(x).

y~x

@ The natural distance associated with X is the chemical distance

defined by
ly—1
dw(Xv.y) := inf { Z IA w(ziyzi-l-l)_l/z}a
T i
where the infimum is taken over all paths v = (2, ..., z,) connecting
x and y.

o Let B(x,r):={y €V :d,(x,y) <r}.
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Upper Gaussian estimates for the VSRW

Theorem (A., Deuschel, Slowik (2014))
Let X be the VSRW and let p,q € (1,00) be such that

1 1 2

p—1 q d
Assume that there exists Ny(w) such that

B = sup sup ||l & < o0 v = sup sup [[v|, = 09
x€V >R, PG ’ x€V n>fy 8o

Then, there e{ist constants c;(d, p, q, fi,7) > 0 such that for any t and x
with \/t > 2(Ny(w) V Ni(x) V Na(x)) and all y € V,

pe(x,y) < at ¥ exp(— cdu(x,¥)?/t),  ift>du(x,y).
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