Heat kernel estimates for random walks with degenerate weights

Sebastian Andres
joint work with J.-D. Deuschel, M. Slowik
University of Bonn / University of Cologne

September 2nd, 2015

The underlying graph

Let $G=(V, E)$ be an infinite, connected, locally finite graph such that for some $d \geq 2$:

- Volume regularity: For all $x \in V$,

$$
C_{\text {reg }}^{-1} n^{d} \leq|B(x, n)| \leq C_{\text {reg }} n^{d} \quad \forall n \geq N_{1}(x)
$$

with $B(x, n):=\{y: d(x, y) \leq n\}$ ball w.r.t. the graph distance.

- Local Sobolev inequality $\left(S_{1}^{d}\right)$: For all $x \in V$,

$$
\left(\sum_{y \in B(x, n)}|u(y)|^{\frac{d}{d-1}}\right)^{\frac{d-1}{d}} \leq C_{S_{1}} \sum_{\substack{y \forall \in B(x, n) \\\{y, z\} \in E}}|u(y)-u(z)|, \quad \forall n \geq N_{2}(x),
$$

for all $u: V \rightarrow \mathbb{R}$ with supp $u \subset B(x, n)$.
Put weights (or conductances) $\omega_{e} \in(0, \infty)$ on the edges of G.

Random Walk

Choose a 'speed measure' $\pi_{x}(\omega), x \in V$. (How? See next slide...)
For $\omega \in \Omega=(0, \infty)^{E}$ let P_{x}^{ω} be the probability law on $D([0, \infty), V)$ which makes the coordinate process X_{t} a Markov chain starting at x with generator

$$
\mathcal{L}_{\pi} f(x)=\frac{1}{\pi_{x}} \sum_{y \sim x} \omega_{x y}(f(y)-f(x))
$$

Then X is reversible (symmetric) with respect to π. Write

$$
\mu_{x}=\sum_{y \sim x} \omega_{x y}, \quad \nu_{x}=\sum_{y \sim x} \frac{1}{\omega_{x y}}
$$

Example: Random Conductance Model (RCM)

- $G=\left(\mathbb{Z}^{d}, E_{d}\right)$
- $\left(\omega_{e}\right)_{e \in E_{d}}$ stationary ergodic random variables under some probability measure \mathbb{P}.

Choices for the 'speed measure' π

- $\pi_{x}=\mu_{x}=\sum_{y} \omega_{x y}$. This makes the times spent at each site x before a jump i.i.d. $\exp (1)$. Call this the constant speed random walk (CSRW).

Choices for the 'speed measure' π

- $\pi_{x}=\mu_{x}=\sum_{y} \omega_{x y}$. This makes the times spent at each site x before a jump i.i.d. $\exp (1)$. Call this the constant speed random walk (CSRW).
- $\pi_{x}=1$ for all x. This makes the times spent at x i.i.d. $\exp \left(\mu_{x}\right)$. Call this the variable speed random walk (VSRW).

Choices for the 'speed measure' π

- $\pi_{x}=\mu_{x}=\sum_{y} \omega_{x y}$. This makes the times spent at each site x before a jump i.i.d. $\exp (1)$. Call this the constant speed random walk (CSRW).
- $\pi_{x}=1$ for all x. This makes the times spent at x i.i.d. $\exp \left(\mu_{x}\right)$. Call this the variable speed random walk (VSRW).
- For either choice $\pi=\mu$ or $\pi \equiv 1$ define the heat kernel (transition density with respect to π) by

$$
p_{t}^{\omega}(x, y)=\frac{P_{x}^{\omega}\left(X_{t}=y\right)}{\pi_{y}}=p_{t}^{\omega}(y, x)
$$

Choices for the 'speed measure' π

- $\pi_{x}=\mu_{x}=\sum_{y} \omega_{x y}$. This makes the times spent at each site x before a jump i.i.d. $\exp (1)$. Call this the constant speed random walk (CSRW).
- $\pi_{x}=1$ for all x. This makes the times spent at x i.i.d. $\exp \left(\mu_{x}\right)$. Call this the variable speed random walk (VSRW).
- For either choice $\pi=\mu$ or $\pi \equiv 1$ define the heat kernel (transition density with respect to π) by

$$
p_{t}^{\omega}(x, y)=\frac{P_{x}^{\omega}\left(X_{t}=y\right)}{\pi_{y}}=p_{t}^{\omega}(y, x)
$$

- Problem: Gaussian bounds (GB) on $p_{t}^{\omega}(x, y)$, i.e. there exist $N_{x}(\omega)$ such that when $t \geq N_{x}$:

$$
p_{t}^{\omega}(x, y) \leq c_{1} t^{-d / 2} \exp \left(-c_{2} d(x, y)^{2} / t\right), \quad \text { if } t \geq d(x, y)
$$

and similar lower bounds.

Some Results on Gaussian bounds

- "Elliptic": $0<c_{1} \leq \omega_{e} \leq c_{2}<\infty$. Delmotte '99.
- SRW on percolation clusters: Barlow '04, Sapozhnikov '14.

For the RCM with i.i.d. conductances:

- "Bounded below": $\omega_{e} \in[1, \infty)$. Barlow and Deuschel '10 (VSRW).
- "Bounded above" : $\omega_{e} \in[0,1]$ Berger, Biskup, Hoffmann, Kozma '08 showed that sub-Gaussian heat kernel decay can occur, so

Gaussian bounds may fail!

- Boukhadra, Kumagai, Mathieu ('14): Sharp conditions on the tail of the conductances near 0 .

Traps

Gaussian bounds and Harnack inequalities

Theorem (Delmotte '99)

If $0<c_{1} \leq \omega_{e} \leq c_{2}<\infty$ the following are equivalent:

- Gaussian upper and lower bounds on the heat kernel
- Volume doubling and local Poincaré inequality
- Parabolic Harnack inequality

Similar results:

- Grigor'yan '92 and Saloff-Coste '92 on manifolds
- Sturm '96 on Dirichlet spaces
- Barlow, Chen '14: extension of Delmotte's result applicable to random graphs

Parabolic Harnack inequality (CSRW)

Theorem (A., Deuschel, Slowik (2013))

For any ball $B_{n}=B\left(x_{0}, n\right)$ and $t_{0} \geq 0$ let $Q_{n}=\left[t_{0}, t_{0}+n^{2}\right] \times B_{n}$. Suppose that $u>0$ is caloric on Q_{n}, i.e. $\partial_{t} u-\mathcal{L}_{\mu} u=0$ on Q_{n}. Then, for any $p, q \in(1, \infty)$ with

$$
\frac{1}{p}+\frac{1}{q}<\frac{2}{d}
$$

there exists $C_{H}=C_{H}\left(\|\mu\|_{p, B_{n}},\|\nu\|_{q, B_{n}}\right)$ such that

$$
\max _{(t, x) \in Q_{-}} u(t, x) \leq C_{H} \min _{(t, x) \in Q_{+}} u(t, x) .
$$

with $Q_{-}=\left[t_{0}+\frac{1}{4} n^{2}, t_{0}+\frac{1}{2} n^{2}\right] \times B_{n / 2}, Q_{+}=\left[t_{0}+\frac{3}{4} n^{2}, t_{0}+n^{2}\right] \times B_{n / 2}$.

Upper Gaussian estimates for the CSRW

Theorem (A., Deuschel, Slowik (2014))
Let X be the CSRW and let $p, q \in(1, \infty)$ be such that

$$
\frac{1}{p}+\frac{1}{q}<\frac{2}{d} .
$$

Assume that there exists $N_{x}(\omega)$ such that

$$
\bar{\mu}:=\sup _{x \in V} \sup _{n \geq N_{x}}\|\mu\|_{p, B(x, n)}<\infty, \quad \bar{\nu}:=\sup _{x \in V} \sup _{n \geq N_{x}}\|\nu\|_{q, B(x, n)}<\infty .
$$

Then, there exist constants $c_{i}=c_{i}(d, p, q, \bar{\mu}, \bar{\nu})>0$ such that for any t and x with $\sqrt{t} \geq 2\left(N_{x}(\omega) \vee N_{1}(x) \vee N_{2}(x)\right)$ and all $y \in V$,

$$
p_{t}^{\omega}(x, y) \leq c_{1} t^{-d / 2} \exp \left(-c_{2} d(x, y)^{2} / t\right), \quad \text { if } t \geq d(x, y)
$$

Idea of the proof - Davies' method

- For a suitable class of functions $\psi: V \rightarrow \mathbb{R}$ consider
- semigroup $P_{t}^{\psi} f=e^{\psi}\left(P_{t}\left(e^{-\psi} f\right)\right)$
- generator $\mathcal{L}^{\psi} f=e^{\psi}\left(\mathcal{L}_{\mu}\left(e^{-\psi} f\right)\right)$
- Let $u(t, x)$ be the solution of the Cauchy problem

$$
\left\{\begin{array}{l}
\partial_{t} u-\mathcal{L}^{\psi} u=0 \\
u(t=0, \cdot)=e^{\psi} f
\end{array}\right.
$$

If $f=\mathbb{1}_{\{y\}} / \mu_{y}$ then $u(t, x)=e^{\psi(x)} p_{t}^{\omega}(x, y)$.

Idea of the proof - Davies' method

- For a suitable class of functions $\psi: V \rightarrow \mathbb{R}$ consider
- semigroup $P_{t}^{\psi} f=e^{\psi}\left(P_{t}\left(e^{-\psi} f\right)\right)$
- generator $\mathcal{L}^{\psi} f=e^{\psi}\left(\mathcal{L}_{\mu}\left(e^{-\psi} f\right)\right)$
- Let $u(t, x)$ be the solution of the Cauchy problem

$$
\left\{\begin{aligned}
\partial_{t} u-\mathcal{L}^{\psi} u & =0 \\
u(t=0, \cdot) & =e^{\psi} f
\end{aligned}\right.
$$

$$
\text { If } f=\mathbb{1}_{\{y\}} / \mu_{y} \text { then } u(t, x)=e^{\psi(x)} p_{t}^{\omega}(x, y) .
$$

- A-priori estimate

$$
\|u(t, \cdot)\|_{\ell^{2}(V, \mu)} \leq e^{h(\psi) t}\left\|e^{\psi} f\right\|_{\ell^{2}(V, \mu)}
$$

where

$$
h(\psi):=2\left(\cosh \left(\|\nabla \psi\|_{\infty}\right)-1\right)
$$

Maximal inequality via Moser iteration

- For $p, p_{*} \in[1, \infty]$ such that $1 / p+1 / p_{*}=1, \alpha \geq 1, \frac{1}{2} \leq \sigma^{\prime}<\sigma \leq 1$,

$$
\|u\|_{2 \alpha\left(1+\frac{\rho-p_{*}}{\rho}\right), Q_{\sigma^{\prime} n}, \mu} \leq c\left(1 \vee\|\mu\|_{p, B_{n}}\|\nu\|_{q, B_{n}}\right)^{\frac{1}{2 \alpha}}\|u\|_{2 \alpha, Q_{\sigma n}, \mu}
$$

with a constant c (depending on $\|\nabla \psi\|_{\infty}$), provided that

$$
\rho(q, d)-p_{*}>0 \quad \Longleftrightarrow \quad \frac{1}{p}+\frac{1}{q}<\frac{2}{d} .
$$

Maximal inequality via Moser iteration

- For $p, p_{*} \in[1, \infty]$ such that $1 / p+1 / p_{*}=1, \alpha \geq 1, \frac{1}{2} \leq \sigma^{\prime}<\sigma \leq 1$,

$$
\|u\|_{2 \alpha\left(1+\frac{\rho-p_{*}}{\rho}\right), Q_{\sigma^{\prime} n}, \mu} \leq c\left(1 \vee\|\mu\|_{p, B_{n}}\|\nu\|_{q, B_{n}}\right)^{\frac{1}{2 \alpha}}\|u\|_{2 \alpha, Q_{\sigma n}, \mu}
$$

with a constant c (depending on $\|\nabla \psi\|_{\infty}$), provided that

$$
\rho(q, d)-p_{*}>0 \quad \Longleftrightarrow \quad \frac{1}{p}+\frac{1}{q}<\frac{2}{d} .
$$

- Moser iteration gives the maximal inequality

$$
\max _{Q_{n / 2}} u \leq c\left(1 \vee\|\mu\|_{p, B_{n}}\|\nu\|_{q, B_{n}}\right)^{\kappa}\|u\|_{2, Q_{n}, \mu} .
$$

Maximal inequality via Moser iteration

- For $p, p_{*} \in[1, \infty]$ such that $1 / p+1 / p_{*}=1, \alpha \geq 1, \frac{1}{2} \leq \sigma^{\prime}<\sigma \leq 1$,

$$
\|u\|_{2 \alpha\left(1+\frac{\rho-p_{*}}{\rho}\right), Q_{\sigma^{\prime} n}, \mu} \leq c\left(1 \vee\|\mu\|_{p, B_{n}}\|\nu\|_{q, B_{n}}\right)^{\frac{1}{2 \alpha}}\|u\|_{2 \alpha, Q_{\sigma n}, \mu}
$$

with a constant c (depending on $\|\nabla \psi\|_{\infty}$), provided that

$$
\rho(q, d)-p_{*}>0 \quad \Longleftrightarrow \quad \frac{1}{p}+\frac{1}{q}<\frac{2}{d}
$$

- Moser iteration gives the maximal inequality

$$
\max _{Q_{n / 2}} u \leq c\left(1 \vee\|\mu\|_{p, B_{n}}\|\nu\|_{q, B_{n}}\right)^{\kappa}\|u\|_{2, Q_{n}, \mu} .
$$

- By the a-priori estimate

$$
\max _{Q_{n / 2}} u \leq c\left(1 \vee\|\mu\|_{p, B_{n}}\|\nu\|_{q, B_{n}}\right)^{\kappa} e^{h(\psi) n^{2}} n^{-d / 2}\left\|e^{\psi} f\right\|_{\ell^{2}(V, \mu)} .
$$

Finishing the sketch of the proof

- We have

$$
\max _{Q_{n / 2}} u \leq c\left(1 \vee\|\mu\|_{p, B_{n}}\|\nu\|_{q, B_{n}}\right)^{\kappa} e^{h(\psi) n^{2}} n^{-d / 2}\left\|e^{\psi} f\right\|_{\ell^{2}(V, \mu)}
$$

Finishing the sketch of the proof

- We have

$$
\max _{Q_{n / 2}} u \leq c\left(1 \vee\|\mu\|_{p, B_{n}}\|\nu\|_{q, B_{n}}\right)^{\kappa} e^{h(\psi) n^{2}} n^{-d / 2}\left\|e^{\psi} f\right\|_{\ell^{2}(V, \mu)}
$$

- For $t \asymp n^{2}$ large enough this can be written as

$$
\left\|P_{t}^{\psi}\left(e^{\psi} f\right)\right\|_{\ell \infty(V, \mu)} \leq c t^{-d / 4} e^{h(\psi) t}\left\|e^{\psi} f\right\|_{\ell^{2}(V, \mu)}
$$

Finishing the sketch of the proof

- We have

$$
\max _{Q_{n / 2}} u \leq c\left(1 \vee\|\mu\|_{p, B_{n}}\|\nu\|_{q, B_{n}}\right)^{\kappa} e^{h(\psi) n^{2}} n^{-d / 2}\left\|e^{\psi} f\right\|_{\ell^{2}(V, \mu)} .
$$

- For $t \asymp n^{2}$ large enough this can be written as

$$
\left\|P_{t}^{\psi}\left(e^{\psi} f\right)\right\|_{\ell^{\infty}(V, \mu)} \leq c t^{-d / 4} e^{h(\psi) t}\left\|e^{\psi} f\right\|_{\ell^{2}(V, \mu)}
$$

- By duality $\left\|P_{t}^{\psi} g\right\|_{\ell^{2}} \leq c t^{-d / 4} e^{h(\psi) t}\|g\|_{\ell^{1}}$.

Finishing the sketch of the proof

- We have

$$
\max _{Q_{n / 2}} u \leq c\left(1 \vee\|\mu\|_{p, B_{n}}\|\nu\|_{q, B_{n}}\right)^{\kappa} e^{h(\psi) n^{2}} n^{-d / 2}\left\|e^{\psi} f\right\|_{\ell^{2}(V, \mu)} .
$$

- For $t \asymp n^{2}$ large enough this can be written as

$$
\left\|P_{t}^{\psi}\left(e^{\psi} f\right)\right\|_{\ell^{\infty}(V, \mu)} \leq c t^{-d / 4} e^{h(\psi) t}\left\|e^{\psi} f\right\|_{\ell^{2}(V, \mu)}
$$

- By duality $\left\|P_{t}^{\psi} g\right\|_{\ell^{2}} \leq c t^{-d / 4} e^{h(\psi) t}\|g\|_{\ell^{1}}$.
- Choosing $f=\mathbb{1}_{\{y\}} / \mu_{y}$, i.e. $u(t, x)=e^{\psi(x)} p_{t}^{\omega}(x, y)$,

$$
\begin{aligned}
u(t, x) & \leq c t^{-d / 2} e^{2 h(\psi) t} e^{\psi(y)} \\
\Longleftrightarrow p_{t}^{\omega}(x, y) & \leq c t^{-d / 2} e^{\psi(y)-\psi(x)+2 h(\psi) t}
\end{aligned}
$$

Finishing the sketch of the proof

- We have

$$
\max _{Q_{n / 2}} u \leq c\left(1 \vee\|\mu\|_{p, B_{n}}\|\nu\|_{q, B_{n}}\right)^{\kappa} e^{h(\psi) n^{2}} n^{-d / 2}\left\|e^{\psi} f\right\|_{\ell^{2}(V, \mu)} .
$$

- For $t \asymp n^{2}$ large enough this can be written as

$$
\left\|P_{t}^{\psi}\left(e^{\psi} f\right)\right\|_{\ell^{\infty}(V, \mu)} \leq c t^{-d / 4} e^{h(\psi) t}\left\|e^{\psi} f\right\|_{\ell^{2}(V, \mu)}
$$

- By duality $\left\|P_{t}^{\psi} g\right\|_{\ell^{2}} \leq c t^{-d / 4} e^{h(\psi) t}\|g\|_{\ell^{1}}$.
- Choosing $f=\mathbb{1}_{\{y\}} / \mu_{y}$, i.e. $u(t, x)=e^{\psi(x)} p_{t}^{\omega}(x, y)$,

$$
\begin{aligned}
u(t, x) & \leq c t^{-d / 2} e^{2 h(\psi) t} e^{\psi(y)} \\
\Longleftrightarrow p_{t}^{\omega}(x, y) & \leq c t^{-d / 2} e^{\psi(y)-\psi(x)+2 h(\psi) t}
\end{aligned}
$$

- Optimising over ψ yields upper Gaussian estimates.

Finishing the sketch of the proof

- We have

$$
\max _{Q_{n / 2}} u \leq c\left(1 \vee\|\mu\|_{p, B_{n}}\|\nu\|_{q, B_{n}}\right)^{\kappa} e^{h(\psi) n^{2}} n^{-d / 2}\left\|e^{\psi} f\right\|_{\ell^{2}(V, \mu)} .
$$

- For $t \asymp n^{2}$ large enough this can be written as

$$
\left\|P_{t}^{\psi}\left(e^{\psi} f\right)\right\|_{\ell^{\infty}(V, \mu)} \leq c t^{-d / 4} e^{h(\psi) t}\left\|e^{\psi} f\right\|_{\ell^{2}(V, \mu)}
$$

- By duality $\left\|P_{t}^{\psi} g\right\|_{\ell^{2}} \leq c t^{-d / 4} e^{h(\psi) t}\|g\|_{\ell^{1}}$.
- Choosing $f=\mathbb{1}_{\{y\}} / \mu_{y}$, i.e. $u(t, x)=e^{\psi(x)} p_{t}^{\omega}(x, y)$,

$$
\begin{aligned}
u(t, x) & \leq c t^{-d / 2} e^{2 h(\psi) t} e^{\psi(y)} \\
\Longleftrightarrow p_{t}^{\omega}(x, y) & \leq c t^{-d / 2} e^{\psi(y)-\psi(x)+2 h(\psi) t}
\end{aligned}
$$

- Optimising over ψ yields upper Gaussian estimates.
- Advantage: Only balls with one fixed center point x are considered!

VSRW and chemical distance

- Now let X be the VSRW with generator

$$
\mathcal{L} f(x)=\sum_{y \sim x} \omega_{x y}(f(y)-f(x))
$$

- The natural distance associated with X is the chemical distance defined by

$$
d_{\omega}(x, y):=\inf _{\gamma}\left\{\sum_{i=0}^{l_{\gamma}-1} 1 \wedge \omega\left(z_{i}, z_{i+1}\right)^{-1 / 2}\right\}
$$

where the infimum is taken over all paths $\gamma=\left(z_{0}, \ldots, z_{l_{\gamma}}\right)$ connecting x and y.

- Let $\tilde{B}(x, r):=\left\{y \in V: d_{\omega}(x, y) \leq r\right\}$.

Upper Gaussian estimates for the VSRW

Theorem (A., Deuschel, Slowik (2014))

Let X be the VSRW and let $p, q \in(1, \infty)$ be such that

$$
\frac{1}{p-1}+\frac{1}{q}<\frac{2}{d}
$$

Assume that there exists $\tilde{N}_{x}(\omega)$ such that

$$
\bar{\mu}:=\sup _{x \in V} \sup _{n \geq \tilde{N}_{x}}\|\mu\|_{p, \tilde{B}(x, n)}<\infty, \quad \bar{\nu}:=\sup _{x \in V} \sup _{n \geq \tilde{N}_{x}}\|\nu\|_{q, \tilde{B}(x, n)}<\infty .
$$

Then, there exist constants $c_{i}(d, p, q, \bar{\mu}, \bar{\nu})>0$ such that for any t and x with $\sqrt{t} \geq 2\left(\tilde{N}_{x}(\omega) \vee N_{1}(x) \vee N_{2}(x)\right)$ and all $y \in V$,

$$
p_{t}^{\omega}(x, y) \leq c_{1} t^{-d / 2} \exp \left(-c_{2} d_{\omega}(x, y)^{2} / t\right), \quad \text { if } t \geq d_{\omega}(x, y)
$$

