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Preliminaries

Basic materials and problem

o {X:} : transient symmetric a-stable process on R (0 < a < 2)
e (£,F) : Dirichlet form associated with {X;} on L?(R9)

0420"2|'(d+7“)

Ad
2 = — 20— dxdy, Ada=—po 2
(U, U) /]Rdx]Rd(U(y) U(X)) |X 7y‘d+a xay, d, 7('d/2|_(]_ — %)

p(t,x,y): transition density function E,[f(X;)] = / p(t,x,y)f(y)dy
Rd

G(x,y): Green kernel G(x,y) :/ p(t,x,y)dt
0

@ 4: positive Radon smooth measure on R? in a certain class
AL PCAF in the Revuz correspondence with 1

Schrédinger form: £ (u, u) = E(u, u) — / uidp
Rd

Feynman-Kac functional: E,[exp(A})] = / p"(t,x,y)dy
RY

Problem
What is the large time asymptotic behavior of the Feynman-Kac functional like?
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Preliminaries

Green tightness and comparison with a Dirichlet form

Definition
A positive Radon smooth measure p is Green-tight if it satisfies

imsup [ Glylu(dy) =0, lim sup [ Glxy)u(dy) =0
[x—y|<a ly[>R

a—0 XERY R—o00 xERd
Definition

Spectral bottom of the time-changed process by u

>1 (subcritical)
A(p) == inf {E(u, u) ‘ ue ]-'e,/ vidp = 1} =1 (critical)
d
* <1 (supercritical)

where F, is the extended Dirichlet space.
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preceding results

Preceding result -subcritical case-

Equivalent conditions (Takeda 2006)
@ Subcriticality of u i.e. inf {E(U, u) ‘ TRS fe,/ vdu = 1} >1
R

o Gaugeability of Feynman-Kac semigroup i.e. sup E,[exp(AL)] < oo
x€ERd

Theorem 1 (W. 2012) -Stability of fundamental solution-
Suppose the positive Green-tight measure p is of 0-order finite energy integral, i.e.

././[r:{dxkd G(x,y)p(dx)p(dy) < oo.

pH(t, x,y) satisfies c1p(t, x,y) < p(t,x,y) < cp(t, x,y) iff p is subcritical.

a (Tohoku University) Large time FK-functional September 1st, 2015 4 /21



Background of the problem

If w is critical or supercritical,
p*(t, x, y) has different estimate from that of p(t, x, y).

The exact behavior of p#(t,x, y) for critical u
3-dimensional Brownian motion Grigor'yan (2006), Takeda (2007)

C Vit Vi Ix — y|?
Y2 -~ _
PExY) = 57 <”1+x|)<”1+y>ex"( T

The Feynman-Kac functional E,[exp(A})] = / pH(t,x,y)dy
Rd

@ u is subcritical iff Ey[exp(AL)] < oo.

If 4 is not subcritical, how the Feynman-Kac functional diverges as t — oo 7
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preceding results

Preceding result -supercritical case-

Equivalent conditions (Takeda and Tsuchida 2007)

@ Supercriticality of p i.e. inf {E(U, u) ’ ue ]:e,/ vdy = 1} <1
Rd

@ Positivity of the spectral bottom for the Schrodinger operator i.e.

C(u) =— inf{g(ua u) — /Rd vidp ’ ueF, | uv?(x)dx= 1} > 0.

Rd

Via Fukushima's ergodic theorem,
Ex[exp(AL)] ~ crh(x)exp(C(u)t) (t — oo) (Takeda 2008)

where h(x) is the eigenfunction corresponding to the eigenvalue —C(u)
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Centre of today's talk

Preceding result -critical case-

If p is critical, C(p) = 0.

Theorem 2 (Simon 1981, Cranston and Molchanov et al. 2009)
Suppose {X;} is transient Brownian motion on R? and y = V - m for
V e CO(RY).

crh(x)tz (d =3)
E,[exp(AL)] ~ ¢ ch(x)t/logt (d = 4)
csh(x)t (d >5)

t A
where A} = / V(Xs)ds and h(x) satisfies <2 + V) h=0.
0

Brownian motion is regarded as 2-stable process.
What happens if {X;} is the rotationally invariant a-stable process?
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Growth order of the Feynman-Kac functional

Theorem 3 (Takeda and W. 2014)

Suppose {X;} is a transient symmetric a-stable process on R and Green-tight
measure ;1 has compact support. Then,

al(2)sin((4 — ) d
E[exp(AL)] ~ Qlif,jr)fg(r((i, ) <:7)h0)> ho(x)et Tt (1< d/a<2)

Ma+1) t
E,[exp(AL)] ~ ho(x
oA ~ St

(d/a=2)

Bufeo(A)] ~ (i)t (dfa > 2)

where ho(x) is the ground state of £/ and (u, hg) = / ho(x)p(dx).
Jre
Remark

@ By Takeda and Tsuchida (2007), ho(x) < 1 A |x|*~¢9.

@ Recently, this result has been extended to the measure of 0-order finite
energy integral.
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Outline of the proof

Methods for proof -difference between Theorems 2 and 3-

Asymptotic expansion for -order resolvent kernel or corresponding operator

@ Brownian motion : Hankel function

@ «-stable process: Direct calculation using

-1
(t,x,y) = (2971 T d-1 « £ x =yl
p(t, x,y — ey

and property of the function g(w).

Functional space and operators

@ Simon: p=V-m Ksf(x)= / Gs(x, Y)WV (y)f(y)dy
perturbation theory for operators in L>°(RY) — ambiguous !!
e Cranston, Molchanov et al : [2 _(R?), Cexp(R?) etc. — too complicated !!

o Takeda-W. : L?(u) where F is compactly embedded
— Based on Dirichlet form theory of the time-changed process.
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Outline of the proof

Outline of the proof of Theorem 3

@ Time changed process and Dirichlet form theory
Compactness of the Green operator on L?(Y, i), where Y is the support of .

Gsf(x / Ga(x, y)f(y)u(dy)
@ Resolvent equation and Orthogonal decomposition

Ghn=(1-Gp) (Gsp) = (1 —v5) (s, Gap)uhs + Ry

~g: Principal eigenvalue of Gg, hg: Principal eigenfunction with ||hgl,, = 1.
o Calculation of v applying perturbation theory for compact operators

t
o Tauberian theorem : Ggu (8 — 0) / pluds (t — 00)
0

Eulesa(A)] = P10 =1+ [ plu(x)ds
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Outline of the proof

Killed processes and Time changed processes

@ symmetric a-stable process: M =(Q,.7, %, {X:},{Px})
o [-killed process (8 > 0): M? = (Q,.7, %, {X:}, {P2})
Here P2(A) = e PP (N), A€ Z;

Dirichlet form: Eg(u, u) = E(u, u) + u?(x)m(dx).

o Time changed process of M” by p: M =(Q,7, 7, {X.}, {P2})
Support of AY : Y :={x€RY|P(T =0)=0}, T =inf{t|A} >0}
Time change: 7, = {s > 0| A¢ >t}

\

Dirichlet form on L2(Y; p): (€8, FP)

Fr={ypel®>(Y;p)|Jue Flp=uon Y} FI:Eg-completion of F
E0(w,9) = Eg(Hyu, Hyu),  Hyu(x) = E{[u(X,,)] = Ex[e™ " u(X,, )]

We denote by Hg the corresponding generator, i.e. E8(u,v) = (Hpu, v),.
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Outline of the proof

Compactness of the Green operator Gg

Green operator of MP#: Ggf(x) = / Ga(x,y)f(Y)u(dy) f€L*(Y,p)
Y

Lemma 1 Gp is a compact operator on L2(Y, p1).

(Outline of proof)

° / Pdp < ||Gplleo€(u,u), u€ F. (Stollmann and Voigt 1996)
Rd

o F2 is compactly embedded into L2(R?, 11). (Takeda and Tsuchida 2007)
o F7is a Hilbert space w.r.t. £7 and compactly embedded into L2(Y, ).

vp: Principal eigenvalue of Gg, hg: Gghg = vyghg and ||hg||, = 1.

Identification of u € F2 and 1 € F#
o Restriction map r : F# — FF r(u) = uly
o Extension map e : 8 — F8 e(y) = Hyu,
In particular, the principal eigenfunction hg satisfies

e(hs)(x) = — /Y G, y)hs (y)u(dy)

VB

(v =u€ FP prae onY)
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Outline of the proof

Ground state and behavior of eigenfunction

Lemma 2 /ymow =10 =1and hg — ho (L?(u)-strongly and £-weakly).
—
(Outline of the proof)
@ A\g: minimum eigenvalue of Hg / v5 = )\gl . principal eigenvalue of Gg

Y Rd
o {u,} : approximation sequence for hy € F. with |u,|, = 1.

o sup E(hg,hg) < sup Ep(hp, hg) = sup Ag <A\
0<B<1 0<8<1 0<8<1

3ho s.t. hg, — hy E-weakly and L2(R9, u)-strongly.
E(ho, ho) < liminf&(hg,, hg,) < lim Ag, = lim Ag  (Banach-Steinhaus)
k—o0 k—o0 B—0

A, = Ep(hg,, hp,) < Ep(up, up) = B“_njo g < E(up, up) — E(ho, ho).

o hg=hoand \g = lim As.
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Outline of the proof

Orthogonal decomposition

Lemma 3 By the resolvent equation and orthogonal decomposition for Gg,

Ghn=(1-Gs) " Gop = (1 =) (Gap, hp)hs + Rs,
It follows that Rz € F. and sup £(Rg, Rg) < oc.
B2>0

(Outline of proof)
° gg:=(1—Ps)Gpu  Psf = (f, hg)uhg
@ \j: the second smallest eigenvalue of Hg Mg < A and A\g < .

o0

Es(Rs, Rs) = E°(Rs, Rg) = (HpRs, Rs),. :/

A
\ md(b—xgﬁvgﬂ)

’
B
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Outline of the proof

Asymptotic expansion of resolvent kernel

o l<d/a<?2
21—d7T1—g
Gs(x:y) = 6(0Y) = Cr Ay ain((d/a = D))
0 < Es(x,y) < aflx —y[*~?

d_
B+ Eg(x.y)

o d/a=2
G e 2O S g 4 E
,B(Xv)/)* (va)_mﬁ Ogﬁ + B(X7}/)
|Es(x,y)| < B(L+ |log|x — y[| + B]x — y[¥)
o d/a>?2
GB(ny):G(X;y)_B/O tp(t7x7y)dt+E,3(X7}/)
apa-t (2 < d/a<3)
0< Eg(x,y) < qafP(l+]log|x =yl +Blx —y|*) (d/a=3)
afPlx -y (d/a>3)
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Outline of the proof

Asymptotic expansion of 3

If v has compact support, we can apply the expansion directly to Gg.
(Example for 1 < d/a < 2)

Go(x,y) = G(x,y) — B>t + Eg(x,y),  Es(x,y) < afx — y|>*~?
Gaf(x / Gs(x, y)f(y)u(dy), Gp=Go— CoﬁgADl + D,

The operator norm of D5 is less than ;3 and D; is a bounded operator.
. d
We can apply one-order perturbation theory for Gy — cgB="1D

Lemma 4 The principal eigenvalue 3 satisfies
ol—d - 174(\f Who)z

ol (4)sin((Z — 1)m)(+/Vho,v/Vho)

217d7T 2(\/*7 \/Vh0)2

T T T (1 a)(VVho, Vo)

=7 — (Ao, ho) ) a
Y8 =0 (AMWho,AﬂWho)ﬁ+ (B), (d/a>2)
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Outline of the proof

Behavior of Ggu as # — 0 -weak convergence-

G =(1—5)""(Gsh, hs)uhs + Rs, 21%55(’?&7 Rg) < oc.
Recalling that hg — hy £E-weakly by Lemma 2, we have

1 (1<d/a<?)
ks Gl — CyolGopt, ho)uho  E-weakly ks =4 Blogp™t (d/a=2)
B (d/a>2)

By Stollmann and Voigt (1996), / uPdv < ||Gr|oo&(u, u) for Green-tight v.
R

In particular, £-weakly convergence implies L2(v)-weakly one and

ks Gl — Cy o {Gopt, ho)uho  L?(v)-weakly
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Outline of the proof

From weakly-convergence to strongly-convergence

ka Gl — Cg o (Gopt, ho)uho  L?(v)-weakly

If y(R?) < 00,1 € L3(v) and (v, kg G} ) — Cg 3(Gopt, ho)u (v, ho).
(v, ks GE ) = kg (v, GE ) = kﬁ/ e Py, phu)dt — C;;(Gou, ho) (v, ho)
0
In particular, for v(dy) = p“(e, x, y)m(dy), we have (v, hg) = hg and

o0
ks / e Pt u(x)dt = CrE(Gopts ho)uho(x) = 0
0

By the Tauberian theorem,
1 t

T PReds = (Caal (0 n )7 (Gon ho)uhol) € oc
1/t JO

Ki/(t4e)
kl/t

€
— 1 and / pt p(x)dt < oo imply the main result.
0
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Extension to non-compact measure

Extension to non-compact measure

Lemma 1

Green operator of M%# is given by Gsf(x) = / Ga(x, y)f(y)u(dy).
1%

Gp is a compact operator on L2(Y, ).

Lemma 2

Let g be the principal eigenvalue of Gg and denote by hg the corresponding

eigenfunction. ﬂlimowg =9 =1and hg — hy (L?(u)-strongly and E-weakly).
—

Lemma 3 Consider the orthogonal decomposition
Ghu=(1-Gs) " Gap = (1 —3) " (Gap, hs)uhs + Rs.
Rs € Fe and sup E(Rz, Rg) < oo if u is of 0-order finite energy integral.
B82>0

Lemma 4 (Modification Needed !!)
For the expansion of Gg(x, y), the error term Eg(x,y) may diverge as
|x — y| — oo and we cannot obtain the asymptotic expansion of Gz directly.
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Extension to non-compact measure

Modification of Lemma 4

o Upper estimate for Gg(x,y)

Gs(x,y) (x,y € Ke={x||x| <R}

s /K Glayluldy) <e Gilxy) = {G(X y)  (otherwise)

xER?

Consider the principal eigenvalue of G5f(x / G5(x, y)f(y)u(dy)

o Lower estimate for Gg(x,y)

ol—d 1-¢
(d/2) sin((d/a — 1))

1-d —4
Mo+ )B|0gﬂ —ap (d/a=2)

Go(x,y) > G(x,y) — A /0 to(t,x,y)dt  (d/a>2).

Gs(x,y) = G(x,y) — el (1< dfa<?2)

Ga(x,y) > G(x,y) —

Lower estimate for (Gghg, hy),, for ground state hg(x)

1—
Lemma 4 3Cyy >0 st lim b= Cha

B—0 kﬂ
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Thank you for your attention !!
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