Long-time Behavior of Lévy-type Processes: Transience, Recurrence and Ergodicity

Nikola Sandrić TU Dresden/University of Zagreb

German-Japanese Conference on Stochastic Analysis and Applications

Sendai, August 31 - September 4, 2015

Outline

- Preliminaries on Lévy-type Processes
- 3 Transience and Recurrence of Lévy-type Processes
- Ergodicity of Lévy-type Processes

An \mathbb{R}^d -valued, $d \ge 1$, Lévy process $(\{L_t\}_{t \ge 0}, \{\mathbb{P}^x\}_{x \in \mathbb{R}^d})$ is said to be transient if

$$\mathbb{E}^{x}\left[\int_{0}^{\infty} \mathbf{1}_{B_{a}(x)}(L_{t})dt\right] < \infty \quad \text{for all } x \in \mathbb{R}^{d} \text{ and all } a > 0,$$

An \mathbb{R}^d -valued, $d \ge 1$, Lévy process $(\{L_t\}_{t \ge 0}, \{\mathbb{P}^x\}_{x \in \mathbb{R}^d})$ is said to be transient if

$$\mathbb{E}^{x}\left[\int_{0}^{\infty} \mathbf{1}_{B_{a}(x)}(L_{t})dt\right] < \infty \quad \text{for all } x \in \mathbb{R}^{d} \text{ and all } a > 0,$$

and recurrent if

$$\mathbb{E}^{x}\left[\int_{0}^{\infty} \mathbf{1}_{B_{a}(x)}(L_{t})dt\right] = \infty \quad \text{for all } x \in \mathbb{R}^{d} \text{ and all } a > 0.$$

An \mathbb{R}^d -valued, $d \ge 1$, Lévy process $(\{L_t\}_{t\ge 0}, \{\mathbb{P}^x\}_{x\in\mathbb{R}^d})$ is said to be transient if

$$\mathbb{E}^{x}\left[\int_{0}^{\infty} \mathbf{1}_{B_{a}(x)}(L_{t})dt\right] < \infty \quad \text{for all } x \in \mathbb{R}^{d} \text{ and all } a > 0,$$

and recurrent if

$$\mathbb{E}^{x}\left[\int_{0}^{\infty} \mathbf{1}_{B_{a}(x)}(L_{t})dt\right] = \infty \quad \text{for all } x \in \mathbb{R}^{d} \text{ and all } a > 0.$$

Every Lévy process is either transient or recurrent.

Equivalently, $\{L_t\}_{t\geq 0}$ is transient if, and only if,

$$\mathbb{P}^{x}\left(\int_{0}^{\infty} 1_{B_{a}(x)}(L_{t})dt < \infty\right) = 1 \quad \text{for all } x \in \mathbb{R}^{d} \text{ and all } a > 0$$

or if, and only if,

$$\mathbb{P}^{x}\left(\lim_{t\to\infty}|L_{t}|=\infty\right)=1\quad\text{for all }x\in\mathbb{R}^{d}.$$

Equivalently, $\{L_t\}_{t\geq 0}$ is transient if, and only if,

$$\mathbb{P}^{x}\left(\int_{0}^{\infty} 1_{B_{a}(x)}(L_{t})dt < \infty\right) = 1 \quad \text{for all } x \in \mathbb{R}^{d} \text{ and all } a > 0$$

or if, and only if,

$$\mathbb{P}^{x}\left(\lim_{t\to\infty}|L_{t}|=\infty\right)=1\quad\text{for all }x\in\mathbb{R}^{d}.$$

Similarly, $\{L_t\}_{t\geq 0}$ is recurrent if, and only if,

$$\mathbb{P}^{x}\left(\int_{0}^{\infty} \mathbf{1}_{B_{a}(x)}(L_{t})dt = \infty\right) = 1 \quad \text{for all } x \in \mathbb{R}^{d} \text{ and all } a > 0$$

or if, and only if,

$$\mathbb{P}^{x}\left(\liminf_{t\to\infty}|L_{t}-x|=\infty\right)=1\quad\text{for all }x\in\mathbb{R}^{d}.$$

Problem: The above characterizations (definitions) are not practical.

Problem: The above characterizations (definitions) are not practical.

Every Lévy process $\{L_t\}_{t\geq 0}$ can be described in terms of its Fourier transform,

$$\mathbb{E}^{x}\left[\boldsymbol{e}^{i\langle\xi,L_{t}-x\rangle}\right] = \boldsymbol{e}^{-t\boldsymbol{q}(\xi)}, \quad t \geq 0, \ x,\xi \in \mathbb{R}^{d},$$

Problem: The above characterizations (definitions) are not practical.

Every Lévy process $\{L_t\}_{t\geq 0}$ can be described in terms of its Fourier transform,

$$\mathbb{E}^{x}\left[\boldsymbol{e}^{i\langle\xi,L_{t}-x\rangle}\right] = \boldsymbol{e}^{-t\boldsymbol{q}(\xi)}, \quad t \geq 0, \ x,\xi \in \mathbb{R}^{d},$$

where the characteristic exponent $q : \mathbb{R}^d \longrightarrow \mathbb{C}$ has the following representation

$$q(\xi) = i\langle \xi, b \rangle + \frac{1}{2} \langle \xi, C\xi \rangle + \int_{\mathbb{R}^d} \left(1 - e^{i\langle \xi, y \rangle} + i\langle \xi, y \rangle \mathbf{1}_{B_1(0)}(y) \right) \nu(dy).$$

Chung-Fuchs criterion: A Lévy process $\{L_t\}_{t\geq 0}$ is transient if, and only if,

 $\int_{B_a(0)} \operatorname{Re}\left(\frac{1}{q(\xi)}\right) d\xi < \infty \quad \text{for some (all)} \quad a > 0.$

Chung-Fuchs criterion: A Lévy process $\{L_t\}_{t\geq 0}$ is transient if, and only if, $\int_{B_a(0)} \operatorname{Re}\left(\frac{1}{q(\xi)}\right) d\xi < \infty \quad \text{for some (all)} \quad a > 0.$

Goal: To extend the Chung-Fuchs criterion on a broader class of processes.

A Feller process $({F_t}_{t\geq 0}, {\mathbb{P}^x}_{x\in\mathbb{R}^d})$ with state space \mathbb{R}^d is a strong Markov process whose associated operator semigroup $\{P_t\}_{t>0}$,

```
P_t f(x) := \mathbb{E}^x [f(F_t)], \quad t \ge 0, \ x \in \mathbb{R}^d, \ f \in B_b(\mathbb{R}^d),
```

enjoys:

- $P_t(C_{\infty}(\mathbb{R}^d)) \subseteq C_{\infty}(\mathbb{R}^d)$ for all $t \ge 0$
- $\lim_{t\to 0} ||P_t f f||_{\infty} = 0$ for all $f \in C_{\infty}(\mathbb{R}^d)$.

A Feller process $({F_t}_{t\geq 0}, {\mathbb{P}^x}_{x\in\mathbb{R}^d})$ with state space \mathbb{R}^d is a strong Markov process whose associated operator semigroup $\{P_t\}_{t>0}$,

 $P_t f(x) := \mathbb{E}^x [f(F_t)], \quad t \ge 0, \ x \in \mathbb{R}^d, \ f \in B_b(\mathbb{R}^d),$

enjoys:

- $P_t(C_{\infty}(\mathbb{R}^d)) \subseteq C_{\infty}(\mathbb{R}^d)$ for all $t \ge 0$
- $\lim_{t\to 0} ||P_t f f||_{\infty} = 0$ for all $f \in C_{\infty}(\mathbb{R}^d)$.

The infinitesimal generator $(\mathcal{A}, \mathcal{D}_{\mathcal{A}})$ of the semigroup $\{P_t\}_{t\geq 0}$ is given by the strong limit

$$\mathcal{A}f := \lim_{t \to 0} \frac{P_t f - f}{t}$$

on the set $\mathcal{D}_{\mathcal{A}} \subseteq C_{\infty}(\mathbb{R}^d)$ of all $f \in C_{\infty}(\mathbb{R}^d)$ for which the above limit exists with respect to $|| \cdot ||_{\infty}$.

Theorem (Courrége 1965)

Let $(\mathcal{A}, \mathcal{D}_{\mathcal{A}})$ be a Feller generator which satisfies

(C1) $C^{\infty}_{c}(\mathbb{R}^{d}) \subseteq \mathcal{D}_{\mathcal{A}}.$

Theorem (Courrége 1965)

Let $(\mathcal{A}, \mathcal{D}_{\mathcal{A}})$ be a Feller generator which satisfies

(C1) $C_c^{\infty}(\mathbb{R}^d) \subseteq \mathcal{D}_{\mathcal{A}}.$

Then $\mathcal{A}|_{\mathcal{C}^\infty_c(\mathbb{R}^d)}$ is a pseudo-differential operator, i.e., it has the representation

$$\mathcal{A}|_{\mathcal{C}^{\infty}_{c}(\mathbb{R}^{d})}f(x) = -\int_{\mathbb{R}^{d}}q(x,\xi)e^{i\langle\xi,x
angle}\hat{f}(\xi)d\xi.$$

Theorem (Courrége 1965)

Let $(\mathcal{A}, \mathcal{D}_{\mathcal{A}})$ be a Feller generator which satisfies

(C1) $C_c^{\infty}(\mathbb{R}^d) \subseteq \mathcal{D}_{\mathcal{A}}.$

Then $\mathcal{A}|_{\mathcal{C}^\infty_c(\mathbb{R}^d)}$ is a pseudo-differential operator, i.e., it has the representation

$$\mathcal{A}|_{\mathcal{C}^{\infty}_{c}(\mathbb{R}^{d})}f(x) = -\int_{\mathbb{R}^{d}}q(x,\xi)e^{i\langle\xi,x
angle}\hat{f}(\xi)d\xi.$$

The function $q : \mathbb{R}^d \times \mathbb{R}^d \longrightarrow \mathbb{C}$ is called the symbol of the pseudo-differential operator. It is measurable and locally bounded in (x, ξ) and continuous negative definite as a function of ξ .

Theorem (continued)

In particular, the function $\xi \mapsto q(x,\xi)$ enjoys the Lévy-Khintchine representation

$$q(x,\xi) = a(x) - i\langle\xi, b(x)\rangle + \frac{1}{2}\langle\xi, C(x)\xi\rangle \\ - \int_{\mathbb{R}^d} \left(e^{i\langle\xi,y\rangle} - 1 - i\langle\xi,y\rangle \mathbf{1}_{B_1(0)}(y)\right)\nu(x,dy).$$

Theorem (continued)

In particular, the function $\xi \mapsto q(x, \xi)$ enjoys the Lévy-Khintchine representation

$$q(x,\xi) = a(x) - i\langle\xi, b(x)\rangle + \frac{1}{2}\langle\xi, C(x)\xi\rangle \\ - \int_{\mathbb{R}^d} \left(e^{i\langle\xi, y\rangle} - 1 - i\langle\xi, y\rangle \mathbf{1}_{B_1(0)}(y)\right) \nu(x, dy).$$

Further, we also assume:

(C2) $||q(\cdot,\xi)||_{\infty} \le c(1+|\xi|^2)$ for some $c \ge 0$,

(C3) q(x,0) = a(x) = 0 for all $x \in \mathbb{R}^d$.

Theorem (continued)

In particular, the function $\xi \mapsto q(x, \xi)$ enjoys the Lévy-Khintchine representation

$$q(x,\xi) = a(x) - i\langle\xi, b(x)\rangle + \frac{1}{2}\langle\xi, C(x)\xi\rangle \\ - \int_{\mathbb{R}^d} \left(e^{i\langle\xi, y\rangle} - 1 - i\langle\xi, y\rangle \mathbf{1}_{B_1(0)}(y)\right) \nu(x, dy).$$

Further, we also assume:

(C2) $||q(\cdot,\xi)||_{\infty} \le c(1+|\xi|^2)$ for some $c \ge 0$,

(C3) q(x,0) = a(x) = 0 for all $x \in \mathbb{R}^d$.

A Feller process satisfying (C1), (C2) and (C3) is called a Lévy-type process.

Nikola Sandrić (TU Dresden/U Zagreb)

Definition

An \mathbb{R}^d -valued, $d \ge 1$, Markov process $(\{M_t\}_{t \ge 0}, \{\mathbb{P}^x\}_{x \in \mathbb{R}^d})$ is called

• irreducible if there exists a σ -finite measure φ on $\mathcal{B}(\mathbb{R}^d)$ such that

$$\varphi(B) > 0 \Longrightarrow \mathbb{E}^{x}\left[\int_{0}^{\infty} 1_{B}(M_{t})dt\right] > 0 \text{ for all } x \in \mathbb{R}^{d}.$$

Definition

An \mathbb{R}^d -valued, $d \ge 1$, Markov process $(\{M_t\}_{t \ge 0}, \{\mathbb{P}^x\}_{x \in \mathbb{R}^d})$ is called

• irreducible if there exists a σ -finite measure φ on $\mathcal{B}(\mathbb{R}^d)$ such that

$$\varphi(B) > 0 \Longrightarrow \mathbb{E}^{x} \left[\int_{0}^{\infty} 1_{B}(M_{t}) dt \right] > 0 \quad \text{for all} \quad x \in \mathbb{R}^{d}.$$

 transient if it is irreducible and if there exists a countable covering {*B_j*}_{*j*∈ℕ} ⊆ *B*(ℝ^d) of ℝ^d such that for each *j* there is a finite constant *C_j* > 0 such that

$$\mathbb{E}^{x}\left[\int_{0}^{\infty} 1_{B_{j}}(M_{t})dt\right] \leq C_{j} \quad \text{for all} \quad x \in \mathbb{R}^{d}$$

Definition (continued)

recurrent if it is irreducible and if

$$\varphi(B) > 0 \Longrightarrow \mathbb{E}^{x} \left[\int_{0}^{\infty} 1_{B}(M_{t}) dt \right] = \infty \text{ for all } x \in \mathbb{R}^{d}.$$

Definition (continued)

recurrent if it is irreducible and if

$$\varphi(B) > 0 \Longrightarrow \mathbb{E}^{x} \left[\int_{0}^{\infty} 1_{B}(M_{t}) dt \right] = \infty \text{ for all } x \in \mathbb{R}^{d}.$$

Theorem (Tweedie 1994)

Every irreducible Markov process is either transient or recurrent.

Definition (continued)

recurrent if it is irreducible and if

$$\varphi(B) > 0 \Longrightarrow \mathbb{E}^{x}\left[\int_{0}^{\infty} 1_{B}(M_{t})dt\right] = \infty \text{ for all } x \in \mathbb{R}^{d}.$$

Theorem (Tweedie 1994)

Every irreducible Markov process is either transient or recurrent.

In the sequel, we consider only the so-called open-set irreducible Markov processes, i.e., Markov processes which admit an irreducibility measure with full support.

Theorem

Let $\{F_t\}_{t\geq 0}$ be an open-set irreducible Lévy-type process. Then, the following properties are equivalent:

(i) $\{F_t\}_{t\geq 0}$ is transient;

(ii) for some $x \in \mathbb{R}^d$ and some open neighborhood $O_x \subseteq \mathbb{R}^d$ of x,

$$\mathbb{E}^{x}\left[\int_{0}^{\infty}\mathbf{1}_{O_{x}}(F_{t})dt\right]<\infty;$$

(iii) for some (all) $x \in \mathbb{R}^d$ and some (all) open bounded set $O \subseteq \mathbb{R}^d$,

$$\mathbb{P}^{x}\left(\int_{0}^{\infty}1_{O}(F_{t})dt=\infty\right)=1;$$

(iv) for some (all) $x \in \mathbb{R}^d$,

$$\mathbb{P}^{x}\left(\lim_{t\to\infty}|F_{t}|=\infty\right)\mathbf{1}.$$

Theorem (continued)

Analogously, the following properties are equivalent:

- (i) $\{F_t\}_{t\geq 0}$ is recurrent;
- (ii) for some (all) $x \in \mathbb{R}^d$,

$$\mathbb{E}^{x}\left[\int_{0}^{\infty}\mathbf{1}_{O_{x}}(F_{t})dt\right]=\infty$$

for all open neighborhoods $O_x \subseteq \mathbb{R}^d$ of x;

(iii) for some (all) $x \in \mathbb{R}^d$ and some (all) open bounded set $O \subseteq \mathbb{R}^d$,

$$\mathbb{P}^{x}\left(\int_{0}^{\infty}1_{O}(F_{t})dt=\infty\right)=1;$$

(iv) for some (all) $x \in \mathbb{R}^d$,

$$\mathbb{P}^{x}\left(\liminf_{t\to\infty}|F_{t}-x|=0\right)=1.$$

Idea of the proof relies on the following computation. For $x \in \mathbb{R}^d$ and $f \in L^1(\mathbb{R}^d)$, $f \ge 0$, we have

$$\mathbb{E}^{x}\left[\int_{0}^{\infty}f(F_{t})dt\right] = \lim_{q \to 0}\mathbb{E}^{x}\left[\int_{0}^{\infty}e^{-qt}f(F_{t})dt\right]$$
$$= \lim_{q \to 0}\int_{0}^{\infty}\int_{\mathbb{R}^{d}}e^{-qt+i\langle\xi,x\rangle}\hat{f}(\xi)\mathbb{E}^{x}\left[e^{i\langle\xi,F_{t}-x\rangle}\right]d\xi dt.$$

Idea of the proof relies on the following computation. For $x \in \mathbb{R}^d$ and $f \in L^1(\mathbb{R}^d)$, $f \ge 0$, we have

$$\mathbb{E}^{x}\left[\int_{0}^{\infty}f(F_{t})dt\right] = \lim_{q \to 0} \mathbb{E}^{x}\left[\int_{0}^{\infty}e^{-qt}f(F_{t})dt\right]$$
$$= \lim_{q \to 0}\int_{0}^{\infty}\int_{\mathbb{R}^{d}}e^{-qt+i\langle\xi,x\rangle}\hat{f}(\xi)\mathbb{E}^{x}\left[e^{i\langle\xi,F_{t}-x\rangle}\right]d\xi dt.$$

We conclude:

- in the case of recurrence, the above computation has to be "*x*-independent"
- $\{F_t\}_{t\geq 0}$ has to be open-set irreducible.

Theorem (Schilling/Wang 2013)

Let $\{F_t\}_{t\geq 0}$ be a Lévy-type process with symbol $q(x,\xi)$ satisfying

$$\sup_{x\in\mathbb{R}^d} |\mathrm{Im}\,q(x,\xi)| \leq c \inf_{x\in\mathbb{R}^d} \mathrm{Re}\,q(x,\xi), \quad \xi\in\mathbb{R}^d,$$

for some $0 \leq c < 1$. Then,

$$\sup_{x\in\mathbb{R}^d}\left|\mathbb{E}^x\left[e^{i\langle\xi,F_t-x\rangle}\right]\right|\leq \exp\left[-\frac{t}{16}\inf_{z\in\mathbb{R}^d}\operatorname{Re} q(z,2\xi)\right],\quad t\geq 0,\ \xi\in\mathbb{R}^d.$$

Theorem

Let $\{F_t\}_{t\geq 0}$ be a Lévy-type process with symbol $q(x,\xi)$. Then, for any $\xi \in \mathbb{R}^d$,

$$\inf_{x \in \mathbb{R}^d} \operatorname{Re} \mathbb{E}^x \left[e^{i\langle \xi, F_t - x \rangle} \right] \ge \exp \left[-4t \sup_{z \in \mathbb{R}^d} |q(z, \xi)| \right], \quad t \in [0, t(\xi)],$$

where $t(\xi) := \frac{\ln 2}{4 \sup_{x \in \mathbb{R}^d} |q(x, \xi)|}.$

Theorem

w

Let $\{F_t\}_{t\geq 0}$ be a Lévy-type process with symbol $q(x,\xi)$. Then, for any $\xi \in \mathbb{R}^d$,

$$\inf_{x \in \mathbb{R}^d} \operatorname{Re} \mathbb{E}^x \left[e^{i\langle \xi, F_t - x \rangle} \right] \ge \exp \left[-4t \sup_{z \in \mathbb{R}^d} |q(z, \xi)| \right], \quad t \in [0, t(\xi)],$$
where $t(\xi) := \frac{\ln 2}{4 \sup_{x \in \mathbb{R}^d} |q(x, \xi)|}.$

Theorem (Schilling/Wang 2013)

Let $\{F_t\}_{t\geq 0}$ be an open-set irreducible Lévy-type process with symbol $q(x,\xi)$ satisfying the sector condition. Then, $\{F_t\}_{t\geq 0}$ is transient if

$$\int_{B_{a}(0)} \frac{d\xi}{\inf_{x \in \mathbb{R}^{d}} \operatorname{Re} q(x,\xi)} < \infty \quad \text{for some } a > 0.$$
 (1)

Theorem

Let $\{F_t\}_{t\geq 0}$ be an open-set irreducible Lévy-type process with symbol $q(x, \xi)$, satisfying

$$\liminf_{\alpha \to 0} \int_{\mathbb{R}^d} \left(\int_{t(\xi)}^{\infty} e^{-\alpha t} \operatorname{Re} \mathbb{E}^0[e^{i\langle \xi, F_t \rangle}] dt \right) \frac{\sin^2\left(\frac{a\xi_1}{2}\right)}{\xi_1^2} \cdots \frac{\sin^2\left(\frac{a\xi_d}{2}\right)}{\xi_d^2} d\xi > -\infty$$

for all a > 0 small enough. Then, $\{F_t\}_{t \ge 0}$ is recurrent if

$$\int_{B_{a}(0)} \frac{d\xi}{\sup_{x \in \mathbb{R}^d} |q(x,\xi)|} = \infty \quad \text{for some } a > 0.$$

(2)

Proposition

Let $\{F_t\}_{t\geq 0}$ be a Lévy-type process with generator $(\mathcal{A}, \mathcal{D}_{\mathcal{A}})$ and symbol $q(x, \xi)$, satisfying:

- (i) $C_c^{\infty}(\mathbb{R}^d)$ is an operator core for $(\mathcal{A}, \mathcal{D}_{\mathcal{A}})$;
- (ii) $q(x,\xi) = q(-x,-\xi)$ for all $x, \xi \in \mathbb{R}^d$;
- (iii) the sector condition holds and $\int_{\mathbb{R}^d} \exp\left[-t \inf_{x \in \mathbb{R}^d} \operatorname{Re} q(x,\xi)\right] d\xi < \infty$ for all t > 0;
- (iv) the corresponding transition density function (which exists due to (iii)) satisfies

$$p(t,0,0) = \sup_{y\in\mathbb{R}^d} p(t,0,y), \quad t>0.$$

Then, $\mathbb{E}^{0}[e^{i\langle\xi,F_{t}\rangle}] \geq 0$ for all $t \geq 0$ and all $\xi \in \mathbb{R}^{d}$.

Theorem

If $d \ge 3$ and

$$\liminf_{|\xi| \to 0} \frac{\inf_{x \in \mathbb{R}^d} \left(\langle \xi, \mathcal{C}(x)\xi \rangle + \int_{\{|y| \le \frac{\pi}{2|\xi|}\}} \langle \xi, y \rangle^2 \nu(x, dy) \right)}{|\xi|^2} > 0,$$

then $q(x,\xi)$ satisfies (1).

Theorem

If $d \ge 3$ and

$$\liminf_{|\xi| \to 0} \frac{\inf_{x \in \mathbb{R}^d} \left(\langle \xi, \mathcal{C}(x)\xi \rangle + \int_{\{|y| \le \frac{\pi}{2|\xi|}\}} \langle \xi, y \rangle^2 \nu(x, dy) \right)}{|\xi|^2} > 0.$$

then $q(x,\xi)$ satisfies (1). If d = 1, 2, $q(x,\xi) = \operatorname{Re} q(x,\xi)$ for all $x, \xi \in \mathbb{R}^d$ and

$$\sup_{\mathbf{x}\in\mathbb{R}^d}\int_{\mathbb{R}^d}|y|^2\nu(x,dy)<\infty,$$

then $q(x,\xi)$ satisfies (2).

Theorem

Let $\{F_t\}_{t\geq 0}$ be a Feller-Dynkin diffusion with symbol given by

$$q(x,\xi)=rac{1}{2}\langle\xi,C(x)\xi
angle.$$

Assume that there exists c > 0 such that

$$\inf_{x\in\mathbb{R}^d}\langle\xi,C(x)\xi\rangle\geq c|\xi|^2,\quad \xi\in\mathbb{R}^d.$$

Theorem

Let $\{F_t\}_{t\geq 0}$ be a Feller-Dynkin diffusion with symbol given by

$$q(x,\xi)=rac{1}{2}\langle\xi,C(x)\xi
angle.$$

Assume that there exists c > 0 such that

$$\inf_{x\in\mathbb{R}^d}\langle\xi,C(x)\xi\rangle\geq c|\xi|^2,\quad\xi\in\mathbb{R}^d.$$

• If $d \ge 3$, then $q(x, \xi)$ satisfies (1).

Theorem

Let $\{F_t\}_{t\geq 0}$ be a Feller-Dynkin diffusion with symbol given by

$$q(x,\xi)=rac{1}{2}\langle\xi,C(x)\xi
angle.$$

Assume that there exists c > 0 such that

$$\inf_{x\in\mathbb{R}^d}\langle\xi, C(x)\xi
angle\geq c|\xi|^2,\quad \xi\in\mathbb{R}^d.$$

• If $d \ge 3$, then $q(x,\xi)$ satisfies (1).

• If d = 1, 2, then $q(x, \xi)$ satisfies (2).

Theorem

Let $\{F_t\}_{t\geq 0}$ be a stable-like process with symbol given by

 $q(x,\xi)=\gamma(x)|\xi|^{\alpha(x)},$

where $\alpha : \mathbb{R}^d \longrightarrow (0, 2)$ and $\gamma : \mathbb{R}^d \longrightarrow (0, \infty)$, $\alpha, \gamma \in C^1_b(\mathbb{R}^d)$, are such that

 $0 < \inf_{x \in \mathbb{R}^d} lpha(x) \le \sup_{x \in \mathbb{R}^d} lpha(x) < 2 \quad ext{and} \quad \inf_{x \in \mathbb{R}^d} \gamma(x) > 0.$

Theorem

Let $\{F_t\}_{t\geq 0}$ be a stable-like process with symbol given by

 $q(x,\xi)=\gamma(x)|\xi|^{\alpha(x)},$

where $\alpha : \mathbb{R}^d \longrightarrow (0, 2)$ and $\gamma : \mathbb{R}^d \longrightarrow (0, \infty)$, $\alpha, \gamma \in C^1_b(\mathbb{R}^d)$, are such that

 $0 < \inf_{x \in \mathbb{R}^d} lpha(x) \le \sup_{x \in \mathbb{R}^d} lpha(x) < 2 \quad ext{and} \quad \inf_{x \in \mathbb{R}^d} \gamma(x) > 0.$

• If $d \ge 2$, then $q(x, \xi)$ satisfies (1).

Theorem

Let $\{F_t\}_{t\geq 0}$ be a stable-like process with symbol given by

 $q(x,\xi)=\gamma(x)|\xi|^{\alpha(x)},$

where $\alpha : \mathbb{R}^d \longrightarrow (0, 2)$ and $\gamma : \mathbb{R}^d \longrightarrow (0, \infty)$, $\alpha, \gamma \in C^1_b(\mathbb{R}^d)$, are such that

$$0 < \inf_{x \in \mathbb{R}^d} \alpha(x) \le \sup_{x \in \mathbb{R}^d} \alpha(x) < 2 \quad \text{and} \quad \inf_{x \in \mathbb{R}^d} \gamma(x) > 0.$$

If d ≥ 2, then q(x, ξ) satisfies (1).
If d = 1 and lim sup_{|x|→∞} α(x) < 1, then q(x, ξ) satisfies (1).

Theorem

Let $\{F_t\}_{t\geq 0}$ be a stable-like process with symbol given by

 $q(x,\xi)=\gamma(x)|\xi|^{\alpha(x)},$

where $\alpha : \mathbb{R}^d \longrightarrow (0, 2)$ and $\gamma : \mathbb{R}^d \longrightarrow (0, \infty)$, $\alpha, \gamma \in C^1_b(\mathbb{R}^d)$, are such that

$$0 < \inf_{x \in \mathbb{R}^d} lpha(x) \le \sup_{x \in \mathbb{R}^d} lpha(x) < 2 \quad ext{and} \quad \inf_{x \in \mathbb{R}^d} \gamma(x) > 0.$$

• If $d \ge 2$, then $q(x, \xi)$ satisfies (1).

• If d = 1 and $\limsup_{|x| \to \infty} \alpha(x) < 1$, then $q(x, \xi)$ satisfies (1).

• If d = 1 and $\liminf_{|x| \to \infty} \alpha(x) \ge 1$, then $q(x, \xi)$ satisfies (2).

In the sequel, we assume d = 1, 2 and $\xi \mapsto q(x, \xi)$ is radial for all $x \in \mathbb{R}^d$. Equivalently,

(i) b(x) = 0 for all $x \in \mathbb{R}^d$;

(ii) C(x) = c(x) for some Borel function $c : \mathbb{R}^d \longrightarrow [0, \infty)$;

(iii) $\nu(x, dy) = \nu(x, Rdy)$ for all $x \in \mathbb{R}^d$ and all rotations R of \mathbb{R}^d .

In the sequel, we assume d = 1, 2 and $\xi \mapsto q(x, \xi)$ is radial for all $x \in \mathbb{R}^d$. Equivalently,

- (i) b(x) = 0 for all $x \in \mathbb{R}^d$;
- (ii) C(x) = c(x)/ for some Borel function $c : \mathbb{R}^d \longrightarrow [0, \infty);$

(iii) $\nu(x, dy) = \nu(x, Rdy)$ for all $x \in \mathbb{R}^d$ and all rotations R of \mathbb{R}^d .

Theorem

Let $\{F_t^1\}_{t\geq 0}$ and $\{F_t^2\}_{t\geq 0}$ be Lévy-type processes with symbols $q_1(x,\xi)$ and $q_2(x,\xi)$ and Lévy measures $\nu_1(x, dy)$ and $\nu_2(x, dy)$.

In the sequel, we assume d = 1, 2 and $\xi \mapsto q(x, \xi)$ is radial for all $x \in \mathbb{R}^d$. Equivalently,

- (i) b(x) = 0 for all $x \in \mathbb{R}^d$;
- (ii) C(x) = c(x)/ for some Borel function $c : \mathbb{R}^d \longrightarrow [0, \infty);$
- (iii) $\nu(x, dy) = \nu(x, Rdy)$ for all $x \in \mathbb{R}^d$ and all rotations R of \mathbb{R}^d .

Theorem

Let $\{F_t^1\}_{t\geq 0}$ and $\{F_t^2\}_{t\geq 0}$ be Lévy-type processes with symbols $q_1(x,\xi)$ and $q_2(x,\xi)$ and Lévy measures $\nu_1(x, dy)$ and $\nu_2(x, dy)$. If there exists a rotation *R* of \mathbb{R}^d such that

$$\sup_{x\in\mathbb{R}^d}\int_0^\infty y^2|\nu_1(x,dy)-\nu_2(Rx,dy)|<\infty,$$

then $q_1(x,\xi)$ satisfies (1) (resp. (2)) if, and only if, $q_2(x,\xi)$ satisfies (1) (resp. (2)).

Theorem

Let $\{F_t\}_{t\geq 0}$ be a Lévy-type process with symbol $q(x,\xi)$ and Lévy measure $\nu(x, dy)$.

Theorem

Let $\{F_t\}_{t\geq 0}$ be a Lévy-type process with symbol $q(x,\xi)$ and Lévy measure $\nu(x, dy)$. Then, for arbitrary $\rho > 0$,

$$\int_{\rho}^{\infty} \left(r^{d-1} \sup_{x \in \mathbb{R}^d} \int_0^r y \nu(x, B_y^c(0)) dy \right)^{-1} dr = \infty$$
(3)

implies (2),

Theorem

Let $\{F_t\}_{t\geq 0}$ be a Lévy-type process with symbol $q(x,\xi)$ and Lévy measure $\nu(x, dy)$. Then, for arbitrary $\rho > 0$,

$$\int_{\rho}^{\infty} \left(r^{d-1} \sup_{x \in \mathbb{R}^d} \int_0^r y \nu(x, B_y^c(0)) dy \right)^{-1} dr = \infty$$
(3)

implies (2), and (1) implies

$$\int_{\rho}^{\infty} \left(r^{d-1} \inf_{x \in \mathbb{R}^d} \int_0^r y \nu(x, B_y^c(0)) dy \right)^{-1} dr < \infty$$
(4)

for all $\rho > 0$ large enough.

Theorem

Let $\{F_t\}_{t\geq 0}$ be a Lévy-type process with symbol $q(x,\xi)$ and Lévy measure $\nu(x, dy)$. Then, for arbitrary $\rho > 0$,

$$\int_{\rho}^{\infty} \left(r^{d-1} \sup_{x \in \mathbb{R}^d} \int_0^r y \nu(x, B_y^c(0)) dy \right)^{-1} dr = \infty$$
 (3)

implies (2), and (1) implies

$$\int_{\rho}^{\infty} \left(r^{d-1} \inf_{x \in \mathbb{R}^d} \int_0^r y \nu(x, B_y^c(0)) dy \right)^{-1} dr < \infty$$
(4)

for all $\rho > 0$ large enough. In addition, if there exists $y_0 \ge 0$ such that $y \mapsto \nu(x, B_y^c(0))$ is convex on (y_0, ∞) , then (1) holds true if, and only if, (4) holds true, and (2) holds true if, and only if, (3) holds true.

Theorem

Under the assumptions of the previous theorem, $q(x,\xi)$ satisfies (1) if for some $\rho \ge y_0$,

$$\int_{\rho}^{\infty} \frac{dr}{r^{2d+1} \inf_{x \in \mathbb{R}} n(x,r)} < \infty,$$

where $n : \mathbb{R} \times \mathbb{R} \longrightarrow [0, \infty)$ is a Borel function such that $\nu(x, dy) = n(x, |y|) dy$ on $\mathcal{B}(B^c_{y_0}(0))$ and $y \longmapsto n(x, y)$ is nonincreasing on (y_0, ∞) for all $x \in \mathbb{R}^d$.

Theorem

Under the assumptions of the previous theorem, $q(x,\xi)$ satisfies (1) if for some $\rho \ge y_0$,

$$\int_{0}^{\infty} \frac{dr}{r^{2d+1} \inf_{x \in \mathbb{R}} n(x,r)} < \infty,$$

where $n : \mathbb{R} \times \mathbb{R} \longrightarrow [0, \infty)$ is a Borel function such that $\nu(x, dy) = n(x, |y|) dy$ on $\mathcal{B}(B^c_{y_0}(0))$ and $y \longmapsto n(x, y)$ is nonincreasing on (y_0, ∞) for all $x \in \mathbb{R}^d$.

Theorem

Let $\{F_t^1\}_{t\geq 0}$ and $\{F_t^2\}_{t\geq 0}$ be Lévy-type processes with symbols $q_1(x,\xi)$ and $q_2(x,\xi)$ and Lévy measures $\nu_1(x, dy)$ and $\nu_2(x, dy)$.

Theorem

Under the assumptions of the previous theorem, $q(x,\xi)$ satisfies (1) if for some $\rho \ge y_0$,

$$\int_{\rho}^{\infty} \frac{dr}{r^{2d+1} \inf_{x \in \mathbb{R}} n(x,r)} < \infty,$$

where $n : \mathbb{R} \times \mathbb{R} \longrightarrow [0, \infty)$ is a Borel function such that $\nu(x, dy) = n(x, |y|) dy$ on $\mathcal{B}(B^c_{y_0}(0))$ and $y \longmapsto n(x, y)$ is nonincreasing on (y_0, ∞) for all $x \in \mathbb{R}^d$.

Theorem

Let $\{F_t^1\}_{t\geq 0}$ and $\{F_t^2\}_{t\geq 0}$ be Lévy-type processes with symbols $q_1(x,\xi)$ and $q_2(x,\xi)$ and Lévy measures $\nu_1(x, dy)$ and $\nu_2(x, dy)$. Assume that there exists $y_0 \geq 0$ such that

• $y \mapsto \nu_1(x, B_v^c(0))$ is convex on (y_0, ∞) for all $x \in \mathbb{R}^d$;

• $\nu_1(x, B_y^c(0)) \ge \nu_2(x, B_y^c(0))$ for all $y \ge y_0$ and all $x \in \mathbb{R}^d$.

Theorem (continued)

Then, for all a > 0 small enough,

$$\int_{B_{a}(0)}rac{d\xi}{\inf_{x\in\mathbb{R}^d}q_2(x,\xi)}<\infty$$

implies

$$\int_{B_a(0)} \frac{d\xi}{\inf_{x \in \mathbb{R}^d} q_1(x,\xi)} < \infty,$$

Theorem (continued)

Then, for all a > 0 small enough,

$$\int_{B_a(0)} \frac{d\xi}{\inf_{x\in \mathbb{R}^d} q_2(x,\xi)} < \infty$$

implies

$$\int_{B_a(0)} \frac{d\xi}{\inf_{x\in\mathbb{R}^d} q_1(x,\xi)} < \infty,$$

and, for all a > 0,

$$\int_{B_a(0)} \frac{d\xi}{\sup_{x \in \mathbb{R}^d} q_1(x,\xi)} = \infty$$

implies

$$\int_{B_a(0)} \frac{d\xi}{\sup_{x \in \mathbb{R}^d} q_2(x,\xi)} = \infty.$$

Let $(\Omega, \mathcal{F}, \{\mathbb{P}^x\}_{x \in \mathbb{R}^d}, \{\mathcal{F}_t\}_{t \ge 0}, \{\theta_t\}_{t \ge 0}, \{M_t\}_{t \ge 0})$ be a Markov process on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$.

Let $(\Omega, \mathcal{F}, \{\mathbb{P}^x\}_{x \in \mathbb{R}^d}, \{\mathcal{F}_t\}_{t \ge 0}, \{\theta_t\}_{t \ge 0}, \{M_t\}_{t \ge 0})$ be a Markov process on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$. A σ -finite Borel measure $\pi(dx)$ is called invariant for $\{M_t\}_{t \ge 0}$ if

$$\int_{\mathbb{R}^d} \mathbb{P}^x(M_t \in B) \pi(dx) = \pi(B), \quad t \ge 0, \ B \in \mathcal{B}(\mathbb{R}^d).$$

Let $(\Omega, \mathcal{F}, \{\mathbb{P}^x\}_{x \in \mathbb{R}^d}, \{\mathcal{F}_t\}_{t \ge 0}, \{\theta_t\}_{t \ge 0}, \{M_t\}_{t \ge 0})$ be a Markov process on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$. A σ -finite Borel measure $\pi(dx)$ is called invariant for $\{M_t\}_{t \ge 0}$ if

$$\int_{\mathbb{R}^d} \mathbb{P}^x(M_t \in B) \pi(dx) = \pi(B), \quad t \ge 0, \ B \in \mathcal{B}(\mathbb{R}^d).$$

A set $B \in \mathcal{F}$ is said to be shift-invariant if $\theta_t^{-1}B = B$ for all $t \ge 0$. The shift-invariant σ -algebra \mathcal{I} is a collection of all such shift-invariant sets.

Let $(\Omega, \mathcal{F}, \{\mathbb{P}^x\}_{x \in \mathbb{R}^d}, \{\mathcal{F}_t\}_{t \ge 0}, \{\theta_t\}_{t \ge 0}, \{M_t\}_{t \ge 0})$ be a Markov process on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$. A σ -finite Borel measure $\pi(dx)$ is called invariant for $\{M_t\}_{t \ge 0}$ if

$$\int_{\mathbb{R}^d} \mathbb{P}^x(M_t \in B) \pi(dx) = \pi(B), \quad t \ge 0, \ B \in \mathcal{B}(\mathbb{R}^d).$$

A set $B \in \mathcal{F}$ is said to be shift-invariant if $\theta_t^{-1}B = B$ for all $t \ge 0$. The shift-invariant σ -algebra \mathcal{I} is a collection of all such shift-invariant sets.

Definition

A Markov proocess $\{M_t\}_{t\geq 0}$ is said to be ergodic if it possesses an invariant probability measure $\pi(dx)$ and if \mathcal{I} is trivial with respect to $\mathbb{P}^{\pi}(d\omega)$.

Definition

A Markov process $\{M_t\}_{t\geq 0}$ is said to be strongly ergodic if it possesses an invariant probability measure $\pi(dx)$ and if

$$\lim_{t\to\infty} ||\mathbb{P}^{x}(M_t\in \cdot)-\pi(\cdot)||_{TV}=0, \quad x\in \mathbb{R}^d.$$

Definition

A Markov process $\{M_t\}_{t\geq 0}$ is said to be strongly ergodic if it possesses an invariant probability measure $\pi(dx)$ and if

$$\lim_{t\to\infty} ||\mathbb{P}^{x}(M_t\in \cdot)-\pi(\cdot)||_{TV}=0, \quad x\in \mathbb{R}^d.$$

Theorem (Azéma/Kaplan-Duflo/Revuz 1967)

Every recurrent Markov process possesses a unique (up to constant multiplies) invariant measure.

Definition

A Markov process $\{M_t\}_{t\geq 0}$ is said to be strongly ergodic if it possesses an invariant probability measure $\pi(dx)$ and if

$$\lim_{t\to\infty} ||\mathbb{P}^{x}(M_t\in\cdot)-\pi(\cdot)||_{TV}=0, \quad x\in\mathbb{R}^d.$$

Theorem (Azéma/Kaplan-Duflo/Revuz 1967)

Every recurrent Markov process possesses a unique (up to constant multiplies) invariant measure.

A recurrent Markov process which possesses a finite invariant measure is called positive recurrent, otherwise it is called null recurrent.

Theorem

Let $\{F_t\}_{t\geq 0}$ be an open-set irreducible Lévy-type process. Then the following properties are equivalent:

- $\{F_t\}_{t\geq 0}$ is positive recurrent;
- $\{F_t\}_{t\geq 0}$ is ergodic;
- $\{F_t\}_{t\geq 0}$ is strongly ergodic.

Theorem

Let $\{F_t\}_{t\geq 0}$ be an open-set irreducible Lévy-type process. Then the following properties are equivalent:

- $\{F_t\}_{t\geq 0}$ is positive recurrent;
- $\{F_t\}_{t\geq 0}$ is ergodic;
- $\{F_t\}_{t\geq 0}$ is strongly ergodic.

Theorem (Behme/Schnurr 2014)

Let $\{F_t\}_{t\geq 0}$ be a Lévy-type processes with generator $(\mathcal{A}, \mathcal{D}_{\mathcal{A}})$ and symbol $q(x, \xi)$. Assume that $C_c^{\infty}(\mathbb{R}^d)$ is an operator core for $(\mathcal{A}, \mathcal{D}_{\mathcal{A}})$. Then, a probability measure $\pi(dx)$ on $\mathcal{B}(\mathbb{R}^d)$ is invariant for $\{F_t\}_{t\geq 0}$ if, and only if,

$$\int_{\mathbb{R}^d} e^{i\langle \xi, x \rangle} q(x,\xi) \pi(dx) = 0, \quad \xi \in \mathbb{R}^d.$$

References

- J. Azéma, M. Kaplan-Duflo and D. Revuz. Mesure invariante sur les classes récurrentes des processus de Markov. Z. Wahrsch. verw. Gebiete 8:157–181, 1967.
- A. Behme and A. Schnurr. A criterion for invariant measures of Itô processes based on the symbol. Bernoulli 21(3):1697-1718, 2015.
- N. Sandrić. *Long-time behavior for a class of Feller processes.* To appear in: Trans. Amer. Math. Soc., 2015.
- N. Sandrić. On recurrence and transience of two-dimensional Lévy and Lévy-type processes. Preprint, 2015.
- R. L. Schilling and J. Wang. Some theorems on Feller processes: transience, local times and ultracontractivity. Trans. Amer. Math. Soc., 365(6):3255-3286, 2013.
- R. L. Tweedie. Topological conditions enabling use of Harris methods in discrete and continuous time. Acta Appl. Math., 34(1-2):175-188, 1994.

Thank you for your attention!