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Xλ
t , V

λ
t ∈ R: position and velocity of a particle at time t.
dXλ

t = V λt dt

dV λt = −bV λt dt − λ∇g(Xλ
t )dt + σ(Xλ

t )dBt,

(Xλ
0 , V λ0 ) = (X0, V0),

(0.1)
with

b > 0: constant (coefficient of friction),

λ ≥ 1: parameter (later, λ → ∞),

g ∈ C∞
0 (R; R): potential function,

σ ∈ C∞(R; R), positive uniformly

(X0, V0): initial condition, |X0| big enough.

“Hamiltonian H(x, v) = 1
2 |v|

2 + λg(x)” + friction + randomized

Problem: Behavior of the particle as λ → ∞.



Motivation (reason for λ → ∞): Mechanical model of Brownian motion.
Massive particle(s) in an ideal gas environment.
The Newtonian system with Hamiltonian: H =∑N
i=1

1
2
Mi|Vi|

2 +
∑

(x,v)
1
2
m|v|2 +

∑N
i=1

∑
(x,v) Ui(Xi − x).

equivalently, (totally deterministic as long as the initial condition is given)



d
dt
Xi(t, ω) = Vi(t, ω), i = 1, · · · , N,

Mi
d
dt
Vi(t, ω) = −

∫
Rd×Rd

µω(dx, dv)

·∇Ui(Xi(t, ω) − x(t, x, v, ω)),

(Xi(0, ω), Vi(0, ω)) = (Xi,0, Vi,0),

d
dt
x(t, x, v, ω) = v(t, x, v, ω),

m d
dt
v(t, x, v, ω) = −

∑N
i=1 ∇Ui(x(t, x, v, ω) −Xi(t, ω)),

(x(0, x, v, ω), v(0, x, v, ω)) = (x, v).

with initial condition (x, v): Poisson point process, v and the density ∼ m−1/2 ,

Aim: Behavior of the massive particle(s) when m → 0.



Pm(dω): (probability onConf(Rd × Rd)),

the Poisson point process with intensity λm ,

λm(dx, dv) = m
d−1

2 ρ
(
m
2

|v|2 +
∑N
i=1 Ui(x−Xi,0)

)
dxdv,

then (Kusuoka-L. (2010))

MiVi(t ∧ σ)

≈ initial + martingale + differentiable term

−m−1/2
∫ t∧σ

0
∇iŨ(X⃗(s))ds,

with |the jump of the martingale term| ≤ Cm1/2 .

Ũ : new potential for X⃗, (with no light particles as

mediates)



Let r3 > 0: g(x) = 0(∀|x| ≥ r3).

→ In the domain |x| > r3, λ has no effect

→ In the limit λ → ∞, we get the same SDE:{
dXλ

t = V λt dt

dV λt = −bV λt dt + σ(Xλ
t )dBt,

The behavior at |Xt| = r3 (and Vt · Xt < 0):

(i) if ∃ε0 > 0 s.t., g(x) > 0 for |x| ∈ (r3 − ε0, r3)

→ g gives a repulsion

→ after λ → ∞, we get a reflective diffusion

→ Kusuoka (2004)

(ii) In this talk: g(x) < 0 right after entered |x| ≤ r3:

→ g gives an attraction

→ after λ → ∞, |Vt| becomes ∞.



∃r1 ∈ (0, r3) s.t.,

g(x) < 0(x ∈ (r1, r3)),

g(r1) = 0,

g′(r1) < 0.

Related result: L. (2013):

the same potential (i.e., attracting) but with relative efficacy

→ resulting in a stochastic process with two phases: a diffusion

phase (for |Xt| ≥ r3) and a uniform motion phase (for

|Xt| ∈ (r1, r3)).

In this talk: without relative efficacy



(In the limit λ → ∞),

• Vt becomes ∞ right after it enters the domain |Xt| ∈ (r1, r3),

• it could then never leave this domain.

Indeed, let Hλ
t := 1

2 |V
λ
t |2 + λg(Xλ

t ), then by Ito’s formula,

dH
λ
t = −b|V λt |2dt + V

λ
t σ(X

λ
t )dt +

1

2
σ

2
(X

λ
t )dt,

hence Hλ
t becomes negative before its first hitting time to r1.

So it is meaningless to consider the limit behavior of Xλ
t itself.



For any f ∈ Cb(R), let

Y
f,λ
t :=

∫ t

0

f(X
λ
s )ds

(Since f is bounded,
{

the distribution of
{
Y f,λt ; t ≥ 0

}
;λ ≥ 1

}
is

tight).

Aim: The limit of the distribution of {Y f,λt ; t ∈ [0,∞)} as

λ → ∞.

W.l.o.g., letX0 = r3 and V0 < 0.



A related known result (Sugiyama): g(x) = ax2 (a > 0), i.e.,


dXλt = V λt dt

dV λt = −bV λt dt− 2λaXλt dt + σ(Xλt )dBt,

(Xλ0 , V
λ
0 ) = (x0, v0),

Then

X
λ
t = · · · , (3 lines) V

λ
t = · · · , (5 lines)

so for any T > 0 and f ∈ C1
b (R),

lim
λ→∞

E
[∣∣∣ ∫ T

0
f(X

λ
t )dt

−2

∫ x0
−x0

∫ log x0−log |x|
b

∧T
2

0
f(x)h(u, x)dudx

∣∣∣] = 0,

here

h(u, x) =
1

π
√
x20e

−2bu − x2
.



Consider the non-random case:
dxλt = vλt dt,

dvλt = −bvλt dt − λ∇g(xλt )dt,

(xλ0 , vλ0 ) = (r3, v),

with v < 0.

Same as the random case, the particle could never leave (r1, r3).

Problem: The range of the particle.

Let

h
λ
t :=

1

2
|vλt |

2
+ λg(x

λ
t ), j

λ
t := λ

−1
h
λ
t .

Then jt := limλ→∞ jλt gives us the range of the particle (of the limit

process) around time t.



Assume that g in (r1, r3) is single-well, i.e., ∃r2 ∈ (r1, r3), s.t.,

• g(x)
∣∣∣
x∈(r1,r2)

is strictly decreasing (write the inverse: g−1,1),

• g(x)
∣∣∣
x∈(r2,r3)

is strictly increasing (write the inverse: g−1,2)

+ some technical condition.

Then

• jt < 0 for any t > 0,

• djt = −2b
(
jt − Agg(jt)

)
dt, j0 = 0, with

A
g
f(x) :=

Sf (j)

S1(j)
, x ∈ (−∥g∥∞, 0),

Sf (j) := S
g
f
(j) :=

√
2

∫ g−1,2(j)

g−1,1(j)

f(y)√
j − g(y)

dy.

Idea: balance of “time for each trip” and “decay of energy during each trip”



Come back to the random case.

Let

J
λ
t := λ

−1
H
λ
t =

1

2
λ

−1|V λt |2 + g(X
λ
t ).

(Jt := limλ→∞ Jλt gives us the range of the particle (of the limit

process) around time t).

Theorem. Under the above assumptions, for any f ∈ Cb(R), we have

that when λ → ∞,
{
(Jλt , Y f,λt ); t ∈ [0,∞)

}
converge to

{(jt,
∫ t
0
Agf(js)ds); t ∈ [0,∞)} weakly in (W,dist).

HereW = C([0,∞); R2) and for ∀w1, w2 ∈ W ,

dist(w1, w2) =
∑∞
n=1 2−n

(
1 ∧

[
maxt∈[0,n] |w1(t) −w2(t)|

])
.

Remark: Non-random limit ONLY for d = 1

For d ≥ 2: same limit for |Xt|, but random limit for the direction



Open problem. In our (motivating) mechanical model

of Brownian Motion: Is b negative-definite?
The corresponding “limit” generator

L1 = 1
2

∑N
k1,k2=1

∑d
l1,l2=1 ak1l1,k2l2

(X⃗) ∂2

∂V
l1
k1
∂V

l2
k2

+

∑N
k1,k2=1

∑d
l1,l2=1 bk1l1,k2l2

(X⃗)V
l2
k2

∂

∂V
l1
k1

+

∑N
k=1

∑d
i=1 V

i
k

∂

∂Xi
k

,

with ∫
E

( ∫ ∞

−∞
∇2

Ui(ψ
0(t, x, v, X⃗) −Xi)z(t, x, v, X⃗, V⃗ ,−t)dt

)

×ρ(
1

2
|v|2)ν(dx, dv) =

d∑
ℓ=1

N∑
j=1

bi·;jℓ(X⃗)V
ℓ
j .

E =
{
(x, v) ∈ R

d × (R
d \ {0}); x · v = 0

}
,



z(t; x, v, X⃗, V⃗ , a) ∈ Rd denotes the solution of the following standard differential equation.

 d2

dt2
Z(t) = −

∑N
i=1 ∇2Ui(ψ

0(t, x, v, X⃗) −Xi)(Z(t) − (t + a)Vi),

limt→−∞ Z(t) = limt→−∞
d
dt
Z(t) = 0.

(we have that z(t; x, v, X⃗, V⃗ , a) is a linear function of V⃗ ).

ψ(t, x, v; X⃗) := lim
s→∞φ(t + s, x− sv, v; X⃗),



d

dt
φ
0
(t, x, v; X⃗) = φ

1
(t, x, v; X⃗)

d

dt
φ
1
(t, x, v; X⃗) = −

N∑
i=1

∇Ui(φ
0
(t, x, v; X⃗) −Xi)

(φ
0
(0, x, v; X⃗), φ

1
(0, x, v; X⃗)) = (x, v).



An important estimate for the proof: ∃C > 0, s.t.,

E
[

sup
t∈[0,T ]

|V λt |4
]1/4

≤ Cλ
1
2 , λ ≥ 1.

Proof. By Ito’s formula,

dHλt = −b|V λt |2dt + V λt σ(Xλt )dBt + 1
2
σ(Xλt )2dt, so

|V λt |2 = 2H
λ
t − 2λg(X

λ
t )

≤ 2H0 + 2

∫ t
0
V
λ
s σ(X

λ
s )dBs + T∥σ∥2

∞ + 2λ∥g∥∞.

Therefore,

E
[

sup
t∈[0,T ]

|V λt |4
]

≤ 2
(
C1 + C2λ

)2
+ 2E

[
sup

t∈[0,T ]

(
2

∫ t
0
V
λ
s σ(Xλs )dBs

)2]

≤ 2
(
C1 + C2λ

)2
+ 32∥σ∥2

∞TE
[

sup
t∈[0,T ]

|V λt |4
]1/2

.



In general, for any c1, c2 ∈ R+ , we have that

x
2 ≤ c1 + c2x ⇒ x ≤

c2 +
√
c22 + 4c1

2
≤ c2 +

√
c1.

Therefore, we get that

E
[

sup
t∈[0,T ]

|V λt |4
]1/2

≤ 32∥σ∥2
∞T +

√
2
(
C1 + C2λ

)2
= 32∥σ∥2

∞T +
√

2C
′
1 + C

′
2λ

for any λ ≥ 1.

Q.E.D.



Main idea for the dealing with randomness:

• For any {M(t)}t≥0: continuous martingale, ∃{W (t)}t≥0:

BM, s.t., M(t) = W
(
⟨M,M⟩t

)
.

• For any standard BM
{
Bt

}
t≥0

, we have the following:

(i) lima→∞ P
({

infu≥0(εu + Bt) < −a
})

= 0 for any ε > 0,

(ii) lima→∞ P
({
Bs − εs ≥ 0 for some s ≥ a

})
= 0 for any ε > 0,

(iii) P
(
lim supε→0

{
sup0≤s≤t+s≤T,t≤ε

|Bt+s−Bs|√
2ε log c1ε

}
=

1
)

= 1.



Thank you!


