Stochastic Newton equation with absorbing area

Song Liang

University of Tsukuba

Aug. 31 - Sep. 4, 2015, Tohoku University
$\boldsymbol{X}_{\boldsymbol{t}}^{\boldsymbol{\lambda}}, \boldsymbol{V}_{\boldsymbol{t}}^{\boldsymbol{\lambda}} \in \mathrm{R}$: position and velocity of a particle at time \boldsymbol{t}.

$$
\left\{\begin{array}{l}
d X_{t}^{\lambda}=V_{t}^{\lambda} d t \\
d V_{t}^{\lambda}=-b V_{t}^{\lambda} d t-\lambda \nabla g\left(X_{t}^{\lambda}\right) d t+\sigma\left(X_{t}^{\lambda}\right) d B_{t} \\
\left(X_{0}^{\lambda}, V_{0}^{\lambda}\right)=\left(X_{0}, V_{0}\right) \tag{0.1}
\end{array}\right.
$$

with
$b>0$: constant (coefficient of friction),
$\boldsymbol{\lambda} \geq$ 1: parameter (later, $\boldsymbol{\lambda} \rightarrow \infty$),
$g \in C_{0}^{\infty}(\mathbf{R} ; \mathbf{R}):$ potential function,
$\sigma \in C^{\infty}(\mathbf{R} ; R)$, positive uniformly
($\boldsymbol{X}_{\mathbf{O}}, \boldsymbol{V}_{\mathbf{O}}$): initial condition, $\left|\boldsymbol{X}_{\mathbf{O}}\right|$ big enough.
"Hamiltonian $H(x, v)=\frac{1}{2}|v|^{2}+\boldsymbol{\lambda} g(x) "+$ friction + randomized
Problem: Behavior of the particle as $\boldsymbol{\lambda} \rightarrow \infty$.

Motivation (reason for $\boldsymbol{\lambda} \rightarrow \infty$): Mechanical model of Brownian motion. Massive particle(s) in an ideal gas environment.
The Newtonian system with Hamiltonian: $\boldsymbol{H}=$
$\sum_{i=1}^{N} \frac{1}{2} M_{i}\left|V_{i}\right|^{2}+\sum_{(x, v)} \frac{1}{2} m|v|^{2}+\sum_{i=1}^{N} \sum_{(x, v)} U_{i}\left(X_{i}-x\right)$.
equivalently, (totally deterministic as long as the initial condition is given)

$$
\left\{\begin{array}{l}
\frac{d}{d t} X_{i}(t, \omega)=V_{i}(t, \omega), \quad i=1, \cdots, N \\
M_{i} \frac{d}{d t} V_{i}(t, \omega)=-\int_{R^{d} \times R^{d}} \mu_{\omega}(d x, d v) \\
\quad \cdot \nabla U_{i}\left(X_{i}(t, \omega)-x(t, x, v, \omega)\right) \\
\left(X_{i}(0, \omega), V_{i}(0, \omega)\right)=\left(X_{i}, 0, V_{i, 0}\right) \\
\frac{d}{d t} x(t, x, v, \omega)=v(t, x, v, \omega) \\
m \frac{d}{d t} v(t, x, v, \omega)=-\sum_{i=1}^{N} \nabla U_{i}\left(x(t, x, v, \omega)-X_{i}(t, \omega)\right) \\
(x(0, x, v, \omega), v(0, x, v, \omega))=(x, v)
\end{array}\right.
$$

with initial condition $(x, v):$ Poisson point process, v and the density $\sim m^{-1 / 2}$,
Aim: Behavior of the massive particle(s) when $\boldsymbol{m} \rightarrow \mathbf{0}$.
$\boldsymbol{P}_{\boldsymbol{m}}(d \omega)$: (probability on $\operatorname{Con} f\left(\mathbf{R}^{d} \times \mathrm{R}^{d}\right)$),
the Poisson point process with intensity $\boldsymbol{\lambda}_{\boldsymbol{m}}$,
$\lambda_{m}(d x, d v)=m^{\frac{d-1}{2}} \rho\left(\frac{m}{2}|v|^{2}+\sum_{i=1}^{N} U_{i}\left(x-X_{i, 0}\right)\right) d x d v$,
then (Kusuoka-L. (2010))

$$
M_{i} V_{i}(t \wedge \sigma)
$$

\approx initial + martingale + differentiable term

$$
-m^{-1 / 2} \int_{0}^{t \wedge \sigma} \nabla_{i} \tilde{U}(\vec{X}(s)) d s
$$

with \mid the jump of the martingale term $\mid \leq C m^{1 / 2}$.
\widetilde{U} : new potential for \vec{X}, (with no light particles as mediates)

Let $\boldsymbol{r}_{\mathbf{3}}>\mathbf{0}: \boldsymbol{g}(\boldsymbol{x})=\mathbf{0}\left(\forall|\boldsymbol{x}| \geq \boldsymbol{r}_{3}\right)$.
\rightarrow In the domain $|x|>r_{3}, \lambda$ has no effect
\rightarrow In the limit $\boldsymbol{\lambda} \rightarrow \infty$, we get the same SDE:

$$
\left\{\begin{array}{l}
d X_{t}^{\lambda}=V_{t}^{\lambda} d t \\
d V_{t}^{\lambda}=-b V_{t}^{\lambda} d t+\sigma\left(X_{t}^{\lambda}\right) d B_{t}
\end{array}\right.
$$

The behavior at $\left|\boldsymbol{X}_{\boldsymbol{t}}\right|=\boldsymbol{r}_{3}$ (and $V_{t} \cdot \boldsymbol{X}_{\boldsymbol{t}}<0$):
(i) if $\exists \varepsilon_{0}>0$ s.t., $g(x)>0$ for $|x| \in\left(r_{3}-\varepsilon_{0}, r_{3}\right)$
$\rightarrow \boldsymbol{g}$ gives a repulsion
\rightarrow after $\boldsymbol{\lambda} \rightarrow \infty$, we get a reflective diffusion
\rightarrow Kusuoka (2004)
(ii) In this talk: $\boldsymbol{g}(\boldsymbol{x})<\mathbf{0}$ right after entered $|\boldsymbol{x}| \leq \boldsymbol{r}_{\mathbf{3}}$:
$\rightarrow \boldsymbol{g}$ gives an attraction
\rightarrow after $\boldsymbol{\lambda} \rightarrow \infty,\left|\boldsymbol{V}_{\boldsymbol{t}}\right|$ becomes ∞.

$$
\begin{aligned}
& \exists r_{1} \in\left(0, r_{3}\right) \text { s.t. } \\
& g(x)<0\left(x \in\left(r_{1}, r_{3}\right)\right) \\
& g\left(r_{1}\right)=0 \\
& g^{\prime}\left(r_{1}\right)<0 .
\end{aligned}
$$

Related result: L. (2013):
the same potential (i.e., attracting) but with relative efficacy
\rightarrow resulting in a stochastic process with two phases: a diffusion phase (for $\left|X_{t}\right| \geq r_{3}$) and a uniform motion phase (for $\left.\left|\boldsymbol{X}_{t}\right| \in\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{3}\right)\right)$.

In this talk: without relative efficacy
(In the limit $\boldsymbol{\lambda} \rightarrow \infty$),

- V_{t} becomes ∞ right after it enters the domain $\left|X_{t}\right| \in\left(r_{1}, r_{3}\right)$,
- it could then never leave this domain. Indeed, let $H_{t}^{\lambda}:=\frac{1}{2}\left|V_{t}^{\lambda}\right|^{2}+\lambda g\left(X_{t}^{\lambda}\right)$, then by Ito's formula,

$$
d H_{t}^{\lambda}=-b\left|V_{t}^{\lambda}\right|^{2} d t+V_{t}^{\lambda} \sigma\left(X_{t}^{\lambda}\right) d t+\frac{1}{2} \sigma^{2}\left(X_{t}^{\lambda}\right) d t
$$

hence $\boldsymbol{H}_{\boldsymbol{t}}^{\boldsymbol{\lambda}}$ becomes negative before its first hitting time to $\boldsymbol{r}_{\boldsymbol{1}}$.
So it is meaningless to consider the limit behavior of $\boldsymbol{X}_{t}^{\boldsymbol{\lambda}}$ itself.

For any $f \in C_{b}(R)$, let

$$
Y_{t}^{f, \lambda}:=\int_{0}^{t} f\left(X_{s}^{\lambda}\right) d s
$$

(Since \boldsymbol{f} is bounded, $\left\{\right.$ the distribution of $\left.\left\{Y_{t}^{f, \lambda} ; t \geq 0\right\} ; \lambda \geq 1\right\}$ is tight).

Aim: The limit of the distribution of $\left\{Y_{t}^{f, \lambda} ; t \in[0, \infty)\right\}$ as
$\boldsymbol{\lambda} \rightarrow \infty$.
W.I.o.g., let $X_{0}=r_{3}$ and $V_{0}<0$.

A related known result (Sugiyama): $g(x)=a x^{2}(a>0)$, i.e.,

$$
\left\{\begin{array}{l}
d X_{t}^{\lambda}=V_{t}^{\lambda} d t \\
d V_{t}^{\lambda}=-b V_{t}^{\lambda} d t-2 \lambda a X_{t}^{\lambda} d t+\sigma\left(X_{t}^{\lambda}\right) d B_{t}, \\
\left(X_{0}^{\lambda}, V_{0}^{\lambda}\right)=\left(x_{0}, v_{0}\right),
\end{array}\right.
$$

Then

$$
\boldsymbol{X}_{\boldsymbol{t}}^{\boldsymbol{\lambda}}=\cdots,(3 \text { lines }) \quad \boldsymbol{V}_{\boldsymbol{t}}^{\boldsymbol{\lambda}}=\cdots,(5 \text { lines })
$$

so for any $T>0$ and $f \in C_{b}^{1}(R)$,

$$
\begin{aligned}
& \lim _{\lambda \rightarrow \infty} E\left[\mid \int_{0}^{T} f\left(X_{t}^{\lambda}\right) d t\right. \\
& \left.\left.-2 \int_{-x_{0}}^{x} \int_{0}^{\frac{\log x_{0}-\log |x|}{b} \wedge \frac{T}{2}} f(x) h(u, x) d u d x \right\rvert\,\right]=0
\end{aligned}
$$

here

$$
h(u, x)=\frac{1}{\pi \sqrt{x_{0}^{2} e^{-2 b u}-x^{2}}}
$$

Consider the non-random case:

$$
\left\{\begin{array}{l}
d x_{t}^{\lambda}=v_{t}^{\lambda} d t \\
d v_{t}^{\lambda}=-b v_{t}^{\lambda} d t-\lambda \nabla g\left(x_{t}^{\lambda}\right) d t \\
\left(x_{0}^{\lambda}, v_{0}^{\lambda}\right)=\left(r_{3}, v\right)
\end{array}\right.
$$

with $\boldsymbol{v}<\mathbf{0}$.
Same as the random case, the particle could never leave ($\boldsymbol{r}_{1}, \boldsymbol{r}_{3}$).
Problem: The range of the particle.
Let

$$
h_{t}^{\lambda}:=\frac{1}{2}\left|v_{t}^{\lambda}\right|^{2}+\lambda g\left(x_{t}^{\lambda}\right), \quad j_{t}^{\lambda}:=\lambda^{-1} h_{t}^{\lambda}
$$

Then $j_{t}:=\lim _{\boldsymbol{\lambda} \rightarrow \infty} \boldsymbol{j}_{\boldsymbol{t}}^{\boldsymbol{\lambda}}$ gives us the range of the particle (of the limit process) around time t.

Assume that g in $\left(r_{1}, r_{3}\right)$ is single-well, i.e., $\exists r_{2} \in\left(r_{1}, r_{3}\right)$, s.t.,

- $\left.g(x)\right|_{x \in\left(r_{1}, r_{2}\right)}$ is strictly decreasing (write the inverse: $g^{-1,1}$),
- $\left.g(x)\right|_{x \in\left(r_{2}, r_{3}\right)}$ is strictly increasing (write the inverse: $g^{-1,2}$)
+ some technical condition.
Then
- $\boldsymbol{j}_{\boldsymbol{t}}<\mathbf{0}$ for any $\boldsymbol{t}>\mathbf{0}$,
- $d j_{t}=-2 b\left(j_{t}-A^{g} g\left(j_{t}\right)\right) d t, j_{0}=0$, with

$$
\begin{gathered}
A^{g} f(x):=\frac{S_{f}(j)}{S_{1}(j)}, \quad x \in\left(-\|g\|_{\infty}, 0\right), \\
S_{f}(j):=S_{f}^{g}(j):=\sqrt{2} \int_{g^{-1,1}(j)}^{g^{-1,2}(j)} \frac{f(y)}{\sqrt{j-g(y)}} d y .
\end{gathered}
$$

Idea: balance of "time for each trip" and "decay of energy during each trip"

Come back to the random case.
Let

$$
J_{t}^{\lambda}:=\lambda^{-1} H_{t}^{\lambda}=\frac{1}{2} \lambda^{-1}\left|V_{t}^{\lambda}\right|^{2}+g\left(X_{t}^{\lambda}\right)
$$

$\left(J_{t}:=\lim _{\lambda \rightarrow \infty} J_{t}^{\lambda}\right.$ gives us the range of the particle (of the limit process) around time \boldsymbol{t}).

Theorem. Under the above assumptions, for any $f \in C_{b}(R)$, we have that when $\boldsymbol{\lambda} \rightarrow \infty,\left\{\left(J_{t}^{\boldsymbol{\lambda}}, \boldsymbol{Y}_{t}^{f, \boldsymbol{\lambda}}\right) ; \boldsymbol{t} \in[0, \infty)\right\}$ converge to $\left\{\left(j_{t}, \int_{0}^{t} A^{g} f\left(j_{s}\right) d s\right) ; t \in[0, \infty)\right\}$ weakly in $(W, d i s t)$. Here $W=C\left([0, \infty) ; \mathbf{R}^{2}\right)$ and for $\forall w_{1}, w_{2} \in W$, $\operatorname{dist}\left(w_{1}, w_{2}\right)=\sum_{n=1}^{\infty} 2^{-n}\left(1 \wedge\left[\max _{t \in[0, n]}\left|w_{1}(t)-w_{2}(t)\right|\right]\right)$.
Remark: Non-random limit ONLY for $d=1$
For $d \geq 2$: same limit for $\left|X_{t}\right|$, but random limit for the direction

Open problem. In our (motivating) mechanical model of Brownian Motion: Is b negative-definite?

The corresponding "limit" generator

$$
\begin{aligned}
& L_{1}=\frac{1}{2} \sum_{k_{1}, k_{2}=1}^{N} \sum_{l_{1}, l_{2}=1}^{d} a_{k_{1} l_{1}, k_{2} l_{2}}(\vec{X}) \frac{\partial^{2}}{\partial V_{k_{1}}^{l_{1}} \partial V_{k_{2}}^{l_{2}}}+ \\
& \sum_{k_{1}, k_{2}=1}^{N} \sum_{l_{1}, l_{2}=1}^{d} b_{k_{1} l_{1}, k_{2} l_{2}}(\vec{X}) V_{k_{2}}^{l_{2}} \frac{\partial}{\partial V_{k_{1}}^{l_{1}}}+ \\
& \sum_{k=1}^{N} \sum_{i=1}^{d} V_{k}^{i} \frac{\partial}{\partial X_{k}^{i}},
\end{aligned}
$$

with

$$
\begin{gathered}
\int_{E}\left(\int_{-\infty}^{\infty} \nabla^{2} U_{i}\left(\psi^{0}(t, x, v, \vec{X})-X_{i}\right) z(t, x, v, \vec{X}, \vec{V},-t) d t\right) \\
\quad \times \rho\left(\frac{1}{2}|v|^{2}\right) \nu(d x, d v)=\sum_{\ell=1}^{d} \sum_{j=1}^{N} b_{i \cdot ; j \ell}(\vec{X}) V_{j}^{\ell} \\
E=\left\{(x, v) \in R^{d} \times\left(R^{d} \backslash\{0\}\right) ; x \cdot v=0\right\}
\end{gathered}
$$

$z(t ; x, v, \vec{X}, \vec{V}, a) \in \mathrm{R}^{\boldsymbol{d}}$ denotes the solution of the following standard differential equation.

$$
\left\{\begin{array}{l}
\frac{d^{2}}{d t^{2}} Z(t)=-\sum_{i=1}^{N} \nabla^{2} U_{i}\left(\psi^{0}(t, x, v, \vec{X})-X_{i}\right)\left(Z(t)-(t+a) V_{i}\right) \\
\lim _{t \rightarrow-\infty} Z(t)=\lim _{t \rightarrow-\infty} \frac{d}{d t} Z(t)=0
\end{array}\right.
$$

(we have that $z(t ; x, v, \vec{X}, \vec{V}, a)$ is a linear function of $\vec{V})$.

$$
\begin{aligned}
& \psi(t, x, v ; \vec{X}):=\lim _{s \rightarrow \infty} \varphi(t+s, x-s v, v ; \vec{X}) \\
&\left\{\begin{array}{l}
\frac{d}{d t} \varphi^{0}(t, x, v ; \vec{X}) \\
\left\{\begin{array}{l}
\frac{d}{d t} \varphi^{1}(t, x, v ; \vec{X}) \\
\varphi^{1}(t, \vec{X}) \\
\left(\varphi^{0}(0, x, v ; \vec{X}), \varphi^{1}(0, x, v ; \vec{X})\right)=(x, v)
\end{array}\right.
\end{array} . \begin{array}{l}
\text { } \nabla U_{i=1}\left(\varphi^{0}(t, x, v ; \vec{X})-\right.
\end{array}\right.
\end{aligned}
$$

An important estimate for the proof: $\exists C>0$, st.,

$$
E\left[\sup _{t \in[0, T]}\left|V_{t}^{\lambda}\right|^{4}\right]^{1 / 4} \leq C \lambda^{\frac{1}{2}}, \quad \lambda \geq 1
$$

Proof. By Ito's formula,

$$
\begin{aligned}
& d H_{t}^{\lambda}=-b\left|V_{t}^{\lambda}\right|^{2} d t+V_{t}^{\lambda} \sigma\left(X_{t}^{\lambda}\right) d B_{t}+\frac{1}{2} \sigma\left(X_{t}^{\lambda}\right)^{2} d t, \text { so } \\
&\left|V_{t}^{\lambda}\right|^{2}=2 H_{t}^{\lambda}-2 \lambda g\left(X_{t}^{\lambda}\right) \\
& \leq 2 H_{0}+2 \int_{0}^{t} V_{s}^{\lambda} \sigma\left(X_{s}^{\lambda}\right) d B_{s}+T\|\sigma\|_{\infty}^{2}+2 \lambda\|g\|_{\infty}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& E\left[\sup _{t \in[0, T]}\left|V_{t}^{\lambda}\right|^{4}\right] \\
\leq & 2\left(C_{1}+C_{2} \lambda\right)^{2}+2 E\left[\sup _{t \in[0, T]}\left(2 \int_{0}^{t} V_{s}^{\lambda} \sigma\left(X_{s}^{\lambda}\right) d B_{s}\right)^{2}\right] \\
\leq & 2\left(C_{1}+C_{2} \lambda\right)^{2}+32\|\sigma\|_{\infty}^{2} T E\left[\sup _{t \in[0, T]}\left|V_{t}^{\lambda}\right|^{4}\right]^{1 / 2} .
\end{aligned}
$$

In general, for any $\boldsymbol{c}_{\mathbf{1}}, \boldsymbol{c}_{\mathbf{2}} \in \mathbf{R}^{+}$, we have that

$$
x^{2} \leq c_{1}+c_{2} x \Rightarrow x \leq \frac{c_{2}+\sqrt{c_{2}^{2}+4 c_{1}}}{2} \leq c_{2}+\sqrt{c_{1}}
$$

Therefore, we get that

$$
\begin{aligned}
& E\left[\sup _{t \in[0, T]}\left|V_{t}^{\lambda}\right|^{4}\right]^{1 / 2} \\
\leq & 32\|\sigma\|_{\infty}^{2} T+\sqrt{2\left(C_{1}+C_{2} \lambda\right)^{2}} \\
= & 32\|\sigma\|_{\infty}^{2} T+\sqrt{2} C_{1}^{\prime}+C_{2}^{\prime} \lambda
\end{aligned}
$$

for any $\boldsymbol{\lambda} \geq 1$.
Q.E.D.

Main idea for the dealing with randomness:

- For any $\{M(t)\}_{t \geq 0}$: continuous martingale, $\exists\{W(t)\}_{t \geq 0}$: BM, s.t., $M(t)=W\left(\langle M, M\rangle_{t}\right)$.
- For any standard $\mathrm{BM}\left\{\overline{\boldsymbol{B}}_{\boldsymbol{t}}\right\}_{\boldsymbol{t} \geq \mathbf{0}}$, we have the following:
(i) $\lim _{a \rightarrow \infty} P\left(\left\{\inf _{u \geq 0}\left(\varepsilon u+\bar{B}_{t}\right)<-a\right\}\right)=0$ for any $\varepsilon>0$,
(ii) $\lim _{a \rightarrow \infty} P\left(\left\{\bar{B}_{s}-\varepsilon s \geq 0\right.\right.$ for some $\left.\left.s \geq a\right\}\right)=0$ for any $\varepsilon>0$,
(iii) $P\left(\limsup _{\varepsilon \rightarrow 0}\left\{\sup _{0 \leq s \leq t+s \leq T, t \leq \varepsilon} \frac{\left|\bar{B}_{t+s}-\bar{B}_{s}\right|}{\sqrt{2 \varepsilon \log c 1 \varepsilon}}\right\}=\right.$ $1)=1$.

Thank you!

