W-entropy formulas and rigidity theorems on Wasserstein space over Riemannian manifolds

Xiangdong Li

Academy of Mathematics and Systems Science
Chinese Academy of Sciences
Joint work with
Songzi Li
Fudan University and Université Paul Sabatier
German-Japanese Conference on Stochastic Analysis and Applications
Sendai, August 31-September 4, 2015

Outline

(9) Perelman's W-entropy for Ricci flow
(2) W-entropy for heat equation of Witten Laplacian

- Case of $C D(0, m)$
- Case of $C D(K, m)$
- Case of $C D(K, \infty)$
- Time dependent case
(3) W-entropy formula for geodesic flow on Wasserstein space

4 W-entropy for Langevin deformation on Wasserstein space

Perelman's W-entropy

Let M be a compact manifold, $(g(t), f(t), \tau(t), t \in[0, T])$ be such that

$$
\begin{aligned}
\partial_{t} g & =-2 \text { Ric }, \\
\partial_{t} f & =-\Delta f+|\nabla f|^{2}-R+\frac{n}{2 \tau}, \\
\partial_{t} \tau & =-1 .
\end{aligned}
$$

In 2002, Perelman introduced the W-entropy for the Ricci flow as

$$
\mathcal{W}(g, f, \tau)=\int_{M}\left[\tau\left(R+|\nabla f|^{2}\right)+f-n\right] \frac{e^{-f}}{(4 \pi \tau)^{n / 2}} d v
$$

and proved that

$$
\frac{d}{d t} \mathcal{W}(g, f, \tau)=2 \tau \int_{M}\left|R i c+\nabla^{2} f-\frac{g}{2 \tau}\right|^{2} \frac{e^{-f}}{(4 \pi \tau)^{n / 2}} d v
$$

In particular, $\mathcal{W}(g, f, \tau)$ is nondecreasing in time and the monotonicity is strict unless that (M, g) is a shrinking Ricci soliton

$$
\text { Ric }+\nabla^{2} f=\frac{g}{2 \tau} .
$$

Ni's W-entropy formula for Laplace Beltrami

Recall Ni's W-entropy formula for the heat equation $\partial_{t} u=\Delta u$.

Theorem (Ni 2005)

Let (M, g) be a compact Riemannian manifold with a fixed metric. Let

$$
u=\frac{e^{-f}}{(4 \pi t)^{n / 2}}
$$

be a positive solution of

$$
\partial_{t} u=\Delta u .
$$

Let

$$
W(u, t)=\int_{M}\left(t|\nabla f|^{2}+f-n\right) \frac{e^{-f}}{(4 \pi t)^{n / 2}} d v .
$$

Then

$$
\frac{d}{d t} W(u, t)=-2 \int_{M} t\left(\left|\nabla^{2} f-\frac{g}{2 t}\right|^{2}+\operatorname{Ric}(\nabla f, \nabla f)\right) \frac{e^{-f}}{(4 \pi t)^{n / 2}} d v .
$$

In particular, if Ric ≥ 0, then $W(u, t)$ is decreasing in time t.

Outline

Perelman's W-entropy for Ricci flow

(2) W-entropy for heat equation of Witten Laplacian

- Case of $C D(0, m)$
- Case of $C D(K, m)$
- Case of $C D(K, \infty)$
- Time dependent case
(3) W-entropy formula for geodesic flow on Wasserstein space

4 W-entropy for Langevin deformation on Wasserstein space

W-entropy for Witten Laplacian

Let M be a complete Riemannian manifold, $\phi \in C^{2}(M), d \mu=e^{-\phi} d v$. The Witten Laplacian is defined by

$$
L=\Delta-\nabla \phi \cdot \nabla .
$$

For all $u, v \in C_{0}^{\infty}(M)$, we have

$$
\int_{M}\langle\nabla u, \nabla v\rangle d \mu=-\int_{M} L u v d \mu=\int_{M} u L v d \mu
$$

The Bakry-Emery Ricci curvature associated with L is defined by

$$
\operatorname{Ric}(L)=\operatorname{Ric}+\nabla^{2} \phi
$$

and the m-dimensional Bakry-Emery Ricci curvature associated with L is defined by

$$
\operatorname{Ric}_{m, n}(L)=R i c+\nabla^{2} \phi-\frac{\nabla \phi \otimes \nabla \phi}{m-n}
$$

Entropy for Witten Laplacian

Let u be a positive solution to the heat equation

$$
\partial_{t} u=L u .
$$

Let

$$
\operatorname{Ent}(u)=-\int_{M} u \log u d \mu
$$

Then, when M is compact or complete and with bounded geometry condition, it is well known that

$$
\begin{aligned}
\frac{d}{d t} \operatorname{Ent}(u(t)) & =\int_{M} \frac{|\nabla u|^{2}}{u} d \mu \\
\frac{d^{2}}{d t^{2}} \operatorname{Ent}(u(t)) & =-2 \int_{M}\left[\left|\nabla^{2} \log u\right|^{2}+\operatorname{Ric}(L)(\nabla \log u, \nabla \log u)\right] u d \mu
\end{aligned}
$$

Thus, if $\operatorname{Ric}(L) \geq K$, then

$$
\frac{d^{2}}{d t^{2}} \operatorname{Ent}(u(t)) \leq-2 K \frac{d}{d t} \operatorname{Ent}(u(t)) .
$$

W-entropy formula for the Witten Laplacian

Let u be a positive solution of the heat equation $\partial_{t} u=L u$. Let

$$
H_{m}(u, t):=-\int_{M} u \log u d \mu-\frac{m}{2}(\log (4 \pi t)+1) .
$$

The Gaussian heat kernel on \mathbb{R}^{m} is given by

$$
u_{m}(x, t)=\frac{e^{\frac{-|x|^{2}}{4 t}}}{(4 \pi t)^{\frac{m}{2}}}
$$

and its Boltzmann entropy is given by

$$
H\left(u_{m}, t\right)=-\int_{\mathbb{R}^{m}} \log u_{m}(x) u_{m}(x) d x=\frac{m}{2}(\log (4 \pi t)+1) .
$$

Hence

$$
H_{m}(u, t)=H(u, t)-H\left(u_{m}, t\right)
$$

is the difference of the Boltzmann entropy for $\partial_{t} u=L u$ on (M, μ) and the Boltzmann entropy for $\partial_{t} u=\Delta u$ on $\left(\mathbb{R}^{m}, d x\right)$. [Li2012]

Li-Yau Harnack inequality

Recall the Li-Yau Harnack inequality for Witten Laplacian.

Theorem (Li JMPA2005, Math Ann2012)

Let M be a complete Riemannian manifold with Ric $_{m, n}(L) \geq 0$. Let u be a positive solution to the heat equation

$$
\partial_{t} u=L u
$$

Then the Li-Yau Harnack inequality holds

$$
\frac{|\nabla u|^{2}}{u^{2}}-\frac{L u}{u} \leq \frac{m}{2 t}
$$

i.e.,

$$
L \log u+\frac{m}{2 t} \geq 0
$$

Thus, under the condition $\operatorname{Ric}_{m, n}(L) \geq 0$,

$$
\frac{d}{d t} H_{m}(u, t)=\int_{M}\left(\frac{|\nabla u|^{2}}{u^{2}}-\frac{n}{2 t}\right) u d \mu=-\int_{M}\left(L \log u+\frac{m}{2 t}\right) u d \mu \leq 0
$$

W-entropy for the Witten Laplacian

Theorem (Li Math Ann2012, S. Li-Li PJM2015)

Let M be a compact or complete Riemannian manifold with bounded geometry condition. Let $u=\frac{e^{-t}}{(4 \pi t)^{m / 2}}$ be a positive solution of $\partial_{t} u=L u$. Define

$$
W(u, t):=\frac{d}{d t}\left(t H_{m}(u, t)\right) .
$$

Then

$$
W(u, t)=\int_{M}\left(t|\nabla f|^{2}+f-m\right) \frac{e^{-f}}{(4 \pi t)^{m / 2}} d \mu,
$$

and

$$
\begin{aligned}
\frac{d W(u, t)}{d t}= & -2 \int_{M}\left(t\left|\nabla^{2} f-\frac{g}{2 t}\right|^{2}+\operatorname{Ric}_{m, n}(L)(\nabla f, \nabla f)\right) u d \mu \\
& -\frac{2}{m-n} \int_{M} t\left(\nabla \phi \cdot \nabla f+\frac{m-n}{2 t}\right)^{2} u d \mu .
\end{aligned}
$$

Warped product approach to W-entropy formula

Let $\widetilde{M}=M \times N$. Define

$$
\tilde{g}=g_{M} \oplus e^{-\frac{\phi}{m-n}} g_{N}
$$

Applying Ni's W-entropy formula to the heat equation on $(\widetilde{M}, \widetilde{g})$

$$
\partial_{t} u=\Delta_{\tilde{M}} u
$$

S. Li and Li (PJM2015) gave a new proof of the W-entropy formula for the Witten Laplacian, and proved the following

Proposition (S. Li-Li, PJM2015)

$$
\left|\widetilde{\nabla}^{2} f--\frac{\tilde{g}}{2 \tau}\right|^{2}=\left|\nabla^{2} f-\frac{g}{2 \tau}\right|^{2}+\frac{2}{m-n}\left(\nabla \phi \cdot \nabla f+\frac{m-n}{2 \tau}\right)^{2} .
$$

This gives a natural geometric interpretation for (RHS) in the W-entropy formula of the Witten Laplacian using the warped product metric.

A rigidity theorem for Perelman's W-entropy

Note that, under the assumption $\operatorname{Ric}_{m, n}(L) \geq 0$, we have

$$
\begin{aligned}
\frac{d \mathcal{W}}{d t}=0 & \Longleftrightarrow\left\{\begin{array}{l}
\nabla_{i j}^{2} f=\frac{g_{i j}}{2 t}, \quad \forall i, j=1, \ldots, n, \\
R i c_{m, n}(L)(\nabla f, \nabla f)=0, \\
\nabla \phi \cdot \nabla f+\frac{m-n}{2 t}=0,
\end{array}\right. \\
& \Longrightarrow\left\{\begin{array}{l}
\operatorname{Ri} c_{m, n}(L)(\log u, \log u)=0, \\
L \log u+\frac{m}{2 t}=0
\end{array}\right.
\end{aligned}
$$

This is the case when

$$
M=\mathbb{R}^{n}, \quad m=n, \quad \phi(x)=C, \quad u(x, t)=\frac{e^{-\frac{|x|^{2}}{4 t}}}{(4 \pi t)^{n / 2}}
$$

Question

Can we prove a rigidity theorem for the W-entropy under the condition Ric $_{m, n}(L) \geq 0$ on n-dimensional complete Riemannian manifolds?

A rigidity theorem for Perelman's W-entropy

The following result gives an affirmative answer to the above question.

Theorem (Li Math Ann2012)
Under the same condition as above theorem, $\operatorname{Ric}_{m, n}(L) \geq 0$. Then

$$
\exists t=t_{0}>0 \text { such that } \frac{d \mathcal{W}}{d t}=0
$$

if and only if for all $t>0$, and $x \in M$,

$$
M=\mathbb{R}^{n}, \quad m=n, \quad \phi(x)=C, \quad u(x, t)=\frac{e^{-\frac{|x|^{2}}{4 t}}}{(4 \pi t)^{n / 2}} .
$$

Open problem

The above results hold in the case of $C D(0, m)$. After I proved the above results in 2009, many people in probability community and in geometry community asked me the following

Problem
 What happens in the case of $C D(K, m)$ or $C D(K, \infty)$?

Problem

What happens in the cae of time dependent metrics and potentials ?

Outline

(1) Perelman's W-entropy for Ricci flow
(2) W-entropy for heat equation of Witten Laplacian

- Case of $C D(0, m)$
- Case of $C D(K, m)$
- Case of $C D(K, \infty)$
- Time dependent case
(3) W-entropy formula for geodesic flow on Wasserstein space

4 W-entropy for Langevin deformation on Wasserstein space

LYH Harnack inequality for Witten Laplacian

Theorem (S. Li-L. 2014)

Let M be a complete Riemannian manifold, $\phi \in C^{2}(M)$. Suppose that there exists a constant $K \geq 0$ such that

$$
\operatorname{Ric}_{m, n}(L) \geq-K
$$

Let u be a positive solution of $\partial_{t} u=L u$. Then the Li-Yau-Hamilton Harnack inequality holds

$$
\frac{\partial_{t} u}{u}-e^{-2 K t} \frac{|\nabla u|^{2}}{u^{2}}+e^{2 K t} \frac{m}{2 t} \geq 0
$$

In particular, if $K=0$, i.e., Ric $_{m, n}(L) \geq 0$, then the Li-Yau Harnack inequality holds

$$
\frac{\partial_{t} u}{u}-\frac{|\nabla u|^{2}}{u^{2}}+\frac{m}{2 t} \geq 0 .
$$

W-entropy and Harnack inequality

Let

$$
H_{m, K}(u, t)=\operatorname{Ent}(u(t))-\operatorname{Ent}\left(u_{m, K}(t)\right)
$$

where $u_{m, K}(t)$ is the density of the Gaussian distribution $N\left(0, \sigma_{K}^{2}(t)\right)$ on \mathbb{R}^{m}, i.e.,

$$
u_{m, K}(t, x)=\frac{1}{\left(4 \pi \sigma_{K}^{2}(t)\right)^{m / 2}} \exp \left(-\frac{\|x\|^{2}}{4 \sigma_{K}^{2}(t)}\right) .
$$

Note that

$$
\operatorname{Ent}\left(u_{m, K}(t)\right)=\frac{m}{2}\left(\log \left(4 \pi \sigma_{K}^{2}(t)\right)+1\right)
$$

By direct calculation, we have

$$
\frac{d}{d t} H_{m, K}(u, t)=\int_{M}\left[\frac{|\nabla u|^{2}}{u^{2}}-m \frac{d}{d t} \log \sigma_{K}(t)\right] u d \mu
$$

W-entropy and Harnack inequality

Suppose that we can prove the following Harnack inequality

$$
\frac{|\nabla u|^{2}}{u^{2}}-\alpha_{K}(t) \frac{\partial_{t} u}{u} \leq m \beta_{K}(t)
$$

Taking $\sigma_{K}(t) \in C([0, \infty), \mathbb{R})$ be such that

$$
\frac{d}{d t} \log \sigma_{K}(t)=\beta_{K}(t)
$$

Then

$$
\frac{d}{d t} H_{m, K}(u, t)=\int_{M}\left[\frac{|\nabla u|^{2}}{u^{2}}-\alpha_{K}(t) \frac{\partial_{t} u}{u}-m \beta_{K}(t)\right] u d \mu \leq 0 .
$$

W-entropy and Harnack inequality

In the case $C D(-K, m)$ holds, the Hamilton's Harnack inequality

$$
\frac{|\nabla u|^{2}}{u^{2}}-\alpha(t) \frac{\partial_{t} u}{u} \leq m \beta(t)
$$

holds with

$$
\alpha(t)=e^{2 K t}, \quad \beta(t)=\frac{e^{4 K t}}{2 t}
$$

Thus, under $C D(-K, m)$, we have

$$
\frac{d}{d t} H_{m, K}(u, t)=\int_{M}\left[\frac{|\nabla u|^{2}}{u^{2}}-\frac{m}{2 t} e^{4 K t}-e^{2 K t} \frac{\partial_{t} u}{u}\right] u d \mu .
$$

Proposition (S. Li-Li arxiv204)

Under the $C D(-K, m)$ condition, i.e., $\operatorname{Ric}_{m, n}(L) \geq-K$, we have

$$
\frac{d}{d t} H_{K, m}(u, t) \leq 0
$$

W-entropy formula for Hamilton's Harnack quantity

Theorem (S. Li-Li arxiv2014)

Define

$$
W_{m, K}(u, t)=\frac{d}{d t}\left(t H_{m, K}(u, t)\right) .
$$

Under the bounded geometry condition, we have

$$
\begin{aligned}
\frac{d}{d t} W_{m, K}(u, t)= & -2 t \int_{M}\left|\nabla^{2} \log u+\left(\frac{K}{2}+\frac{1}{2 t}\right) g\right|^{2} u d \mu \\
& -2 t \int_{M}\left(R i c_{m, n}(L)+K g\right)(\nabla \log u, \nabla \log u) u d \mu \\
& -\frac{2 t}{m-n} \int_{M}\left|\nabla \phi \cdot \nabla \log u-\frac{(m-n)(1+K t)}{2 t}\right|^{2} u d \mu \\
& -\frac{m}{2 t}\left[e^{4 K t}(1+4 K t)-(1+K t)^{2}\right] .
\end{aligned}
$$

Monotonicity and rigidity theorem

Theorem (S. Li-Li arxiv2014)

Assume that $\operatorname{Ric}_{m, n}(L) \geq-K$, then for all $t \geq 0$,

$$
\frac{d}{d t} W_{m, K}(u, t) \leq-\frac{m}{2 t}\left[e^{4 K t}(1+4 K t)-(1+K t)^{2}\right] .
$$

Moreover, the equality holds at some $t=t_{0}>0$ if and only if

$$
\begin{aligned}
R i c_{m, n}(L) & =-K g \\
2 \nabla^{2} f & =\left(\frac{1}{t}+K\right) g \\
\nabla \phi \cdot \nabla f & =-\frac{(m-n)(1+K t)}{2 t}
\end{aligned}
$$

W-entropy formula for Hamilton's Harnack quantity

The above result is new even in the non weighted case.

Theorem (S. Li-Li arxiv2014)

Under the bounded geometry condition, we have

$$
\begin{aligned}
\frac{d}{d t} W_{n, K}(u, t)= & -2 t \int_{M}\left|\nabla^{2} \log u+\left(\frac{K}{2}+\frac{1}{2 t}\right) g\right|^{2} u d \mu \\
& -2 t \int_{M}(R i c+K g)(\nabla \log u, \nabla \log u) u d \mu \\
& -\frac{n}{2 t}\left[e^{4 K t}(1+4 K t)-(1+K t)^{2}\right]
\end{aligned}
$$

In particular, if Ric $\geq-K$, then for all $t \geq 0$,

$$
\frac{d}{d t} W_{n, K}(u, t) \leq-\frac{n}{2 t}\left[e^{4 K t}(1+4 K t)-(1+K t)^{2}\right] .
$$

Moreover, the equality holds at some time $t=t_{0}>0$ if and only if

$$
\text { Ric }=-K g, \quad 2 \nabla^{2} f=\left(\frac{1}{t}+K\right) g .
$$

W-entropy formula under $C D(-K, m)$

By chaining the comparable model, we can obtain the following

Theorem (S. Li-Li PJM2015)

Under bounded geometry condition, define

$$
W_{m, K}(u, t)=\int_{M}\left[t|\nabla f|^{2}+f-m\left(1+\frac{K t}{2}\right)\right] u d \mu
$$

Then

$$
\begin{aligned}
\frac{d}{d t} W_{m, K}(u, t)= & -2 t \int_{M}\left|\nabla^{2} f-\left(\frac{1}{2 t}+\frac{K}{2}\right) g\right|^{2} u d \mu \\
& -2 t \int_{M}\left(R i c_{m, n}(L)+K g\right)(\nabla f, \nabla f) u d \mu \\
& -\frac{2 t}{m-n} \int_{M}\left|\nabla \phi \cdot \nabla f-(m-n)\left(\frac{1}{2 t}+\frac{K}{2}\right)\right|^{2} u d \mu .
\end{aligned}
$$

This extends a previous result due to J . Li and Xu (AIM2010) for the case $L=\Delta$ and $m=n$.

Monotonicity and rigidity theorem

Theorem (S. Li-Li PJM 2015)

Suppose that Ric $c_{m, n}(L) \geq-K$. Then

$$
\frac{d}{d t} W_{m, K}(u, t) \leq 0
$$

Moreover, the equality holds at some time $t=t_{0}>0$ if and only if

$$
\begin{aligned}
\operatorname{Ric}_{m, n}(L) & =-K g \\
2 \nabla^{2} f & =\left(\frac{1}{t}+K\right) g \\
\nabla \phi \cdot \nabla f & =(m-n)\left(\frac{1}{2 t}+\frac{K}{2}\right)
\end{aligned}
$$

Thus, (M, g, ϕ) is a quasi-Einstein manifold, and the potential f satisfies the soliton equation

$$
\operatorname{Ric}_{m, n}(L)+2 \nabla^{2} f=\frac{g}{t}
$$

Outline

(1) Perelman's W-entropy for Ricci flow
(2) W-entropy for heat equation of Witten Laplacian

- Case of $C D(0, m)$
- Case of $C D(K, m)$
- Case of $C D(K, \infty)$
- Time dependent case
(3) W-entropy formula for geodesic flow on Wasserstein space

4 W-entropy for Langevin deformation on Wasserstein space

The optimal Hamilton Harnack inequality

Theorem (Li 2013 arxiv SPA2015)

Let M be a complete Riemannian manifold. Suppose that there exists a constant $K \geq 0$ such that

$$
\operatorname{Ric}(L) \geq-K
$$

Let u be a positive and bounded solution to the heat equation

$$
\partial_{t} u=L u,
$$

Then, the optimal Hamilton Harnack inequality holds

$$
|\nabla \log u|^{2} \leq \frac{2 K}{e^{2 K t}-1} \log (A / u)
$$

where $A=\sup \{u(t, x): x \in M, t \geq 0\}$.

The Hamilton Harnack inequality

Corollary (Li 2013arxiv SPA2015)

Let M be a complete Riemannian manifold. Suppose that there exists a constant $K \geq 0$ such that

$$
\operatorname{Ric}(L) \geq-K
$$

Let u be a positive and bounded solution to the heat equation

$$
\partial_{t} u=L u,
$$

The Hamilton Harnack inequality holds

$$
|\nabla \log u|^{2} \leq\left(\frac{1}{t}+2 K\right) \log (A / u)
$$

The W-entropy formula for $C D(K, \infty)$ case

Theorem (S. Li-L. arxiv2014)

Let $u(\cdot, t)=P_{t} f$ be a positive solution to the heat equation $\partial_{t} u=L u$ with $u(\cdot, 0)=f \geq 0$. Suppose Ric $+\nabla^{2} \phi \geq K$, where $K \in \mathbb{R}$. Let

$$
H_{K}(f, t)=D_{K}(t) \int_{M}\left(P_{t}(f \log f)-P_{t} f \log P_{t} f\right) d \mu
$$

where $D_{K}(t)=\frac{K}{1-e^{-2 k t}}$. Then, for all $t>0, \frac{d}{d t} H_{K}(f, t) \leq 0$, and

$$
\frac{d^{2}}{d t^{2}} H_{K}(t)+2 K \operatorname{coth}(K t) \frac{d}{d t} H_{K}(t) \leq-2 D_{K}(t) \int_{M}\left|\nabla^{2} \log P_{t} f\right|^{2} P_{t} f d \mu
$$

Moreover, the equality holds if and only if (M, g, ϕ) is a Ricci soliton

$$
R i c+\nabla^{2} \phi=K g
$$

The W-entropy formula for $C D(K, \infty)$ case

Theorem (S. Li-L. arxiv2014)
Define the W-entropy by the revised Boltzmann entropy formula

$$
W_{K}(f, t)=H_{K}(f, t)+\frac{\sinh (2 K t)}{2 K} \frac{d}{d t} H_{K}(f, t) .
$$

Then, for all $K \in \mathbb{R}$, and for all $t>0$, we have

$$
\begin{aligned}
& \frac{d}{d t} W_{K}(f, t)+\frac{e^{2 K t}+1}{2} \int_{M}\left|\nabla^{2} \log P_{t} f\right|^{2} P_{t} f d \mu \\
& \quad=-\frac{e^{2 K t}+1}{2} \int_{M}(\operatorname{Ric}(L)-K)\left(\nabla \log P_{t} f, \nabla \log P_{t} f\right) P_{t} f d \mu .
\end{aligned}
$$

In particular, if $\operatorname{Ric}(L) \geq K$, then

$$
\frac{d}{d t} W_{K}(f, t)+\frac{e^{2 K t}+1}{2} \int_{M}\left|\nabla^{2} \log P_{t} f\right|^{2} P_{t} f d \mu \leq 0, \quad \forall t>0 .
$$

Moreover, the equality holds if and only if Ric $+\nabla^{2} \phi=K g$.

Outline

Perelman's W-entropy for Ricci flow

(2) W-entropy for heat equation of Witten Laplacian

- Case of $C D(0, m)$
- Case of $C D(K, m)$
- Case of $C D(K, \infty)$
- Time dependent case
(3) W-entropy formula for geodesic flow on Wasserstein space

4 W-entropy for Langevin deformation on Wasserstein space

Logarithmic Sobolev inequalities

Let M be a complete Riemannian manifold equipped with a family of time dependent metrics $g(t)$ and potentials $\phi(t)$.

Let

$$
L=\Delta_{g(t)}-\nabla_{g(t)} \phi(t) \cdot \nabla_{g(t)}
$$

be the time dependent Witten Laplacian on $(M, g(t), \phi(t))$.
Let $u(\cdot, t)=P_{t} f$ be a positive solution to the heat equation

$$
\partial_{t} u=L u,
$$

with the initial condition $u(\cdot, 0)=f$, where $f \geq 0$ is a measurable function on M.

Logarithmic Sobolev inequalities

Theorem (S. Li-L. 2014)

Let M be a complete Riemannian manifold equipped with a K-super Perelman Ricci flow

$$
\frac{1}{2} \frac{\partial g}{\partial t}+\operatorname{Ric}(L) \geq-K
$$

where $K \geq 0$ is a constant independent of $t \in[0, T], f \geq 0$. Then, the following logarithmic Sobolev inequality holds

$$
P_{t}(f \log f)-P_{t} f \log P_{t} f \leq \frac{e^{2 K t}-1}{2 K} P_{t}\left(\frac{|\nabla f|^{2}}{f}\right), \quad \forall t \in[0, T],
$$

and the reversal logarithmic Sobolev inequality holds

$$
\frac{\left|\nabla P_{t} f\right|^{2}}{P_{t} f} \leq \frac{2 K}{1-e^{-2 K t}}\left(P_{t}(f \log f)-P_{t} f \log P_{t} f\right), \quad \forall t \in[0, T]
$$

The optimal Hamilton Harnack inequality

Theorem (S. Li-L. 2014)

Let M be a complete Riemannian manifold. Suppose that there exists a constant $K \geq 0$ such that

$$
\frac{1}{2} \frac{\partial g}{\partial t}+\operatorname{Ric}(L) \geq-K
$$

Let u be a positive and bounded solution to the heat equation

$$
\partial_{t} u=L u,
$$

Then, the optimal Hamilton Harnack inequality holds

$$
|\nabla \log u|^{2} \leq \frac{2 K}{e^{2 K t}-1} \log (A / u)
$$

where $A=\sup \{u(t, x): x \in M, t \geq 0\}$.

The optimal Hamilton Harnack inequality

Corollary (S. Li-L. 2014)

Let M be a complete Riemannian manifold. Suppose that there exists a constant $K \geq 0$ such that

$$
\frac{1}{2} \frac{\partial g}{\partial t}+\operatorname{Ric}(L) \geq-K
$$

Let u be a positive and bounded solution to the heat equation

$$
\partial_{t} u=L u,
$$

The Hamilton Harnack inequality holds

$$
|\nabla \log u|^{2} \leq\left(\frac{1}{t}+2 K\right) \log (A / u)
$$

Harnack inequality for time dependent Witten Laplacian

Theorem (S. Li-L. 2014)

Let M be a compact Riemannian manifold, $\phi \in C^{2}(M)$. Suppose that there exists a constant $K \geq 0$ such that

$$
\frac{1}{2} \frac{\partial g}{\partial t}+R i c_{m, n}(L) \geq-K
$$

Let u be a positive solution of $\partial_{t} u=L u$. Then

$$
\frac{\partial_{t} u}{u}-e^{-2 K t} \frac{|\nabla u|^{2}}{u^{2}}+e^{2 K t} \frac{m}{2 t} \geq 0 .
$$

In particular, if $K=0$, i.e., $\frac{1}{2} \frac{\partial g}{\partial t}+R i c_{m, n}(L) \geq 0$, then the $L i-Y a u$ Harnack inequality holds

$$
\frac{\partial_{t} u}{u}-\frac{|\nabla u|^{2}}{u^{2}}+\frac{m}{2 t} \geq 0
$$

W-entropy for time dependent Witten Laplacian

Theorem (S. Li-Li PJM2015)

Let M be a compact manifold, $\{g(t), \phi(t), t \in[0, T]\}$ satisfies

$$
\frac{\partial \phi}{\partial t}=\frac{1}{2} \operatorname{Tr} \frac{\partial g}{\partial t} .
$$

Let

$$
u(x, t)=\frac{e^{-f(x, t)}}{(4 \pi t)^{m / 2}}
$$

be the solution of the heat equation $\partial_{t} u=L u$. Then

$$
\begin{aligned}
\frac{d \mathcal{W}(u, t)}{d t}= & -2 \int_{M} t\left[\left|\nabla^{2} f-\frac{g}{2 t}\right|^{2}+\left(\frac{1}{2} \frac{\partial g}{\partial t}+R i c_{m, n}(L)\right)(\nabla f, \nabla f)\right] u d \mu \\
& -\frac{2}{m-n} \int_{M} t\left(\nabla \phi \cdot \nabla f+\frac{m-n}{2 t}\right)^{2} u d \mu .
\end{aligned}
$$

W-entropy formula on Perelman's super m-Ricci flow

Corollary (S. Li-Li PJM2015)

Let M be a compact manifold. Suppose that $g(t)$ is a Perelman's super m-Ricci flow

$$
\frac{1}{2} \frac{\partial g}{\partial t}+R i c_{m, n}(L) \geq 0,
$$

and $f(t)$ satisfies the conjugate equation

$$
\frac{\partial \phi}{\partial t}=\frac{1}{2} \operatorname{Tr} \frac{\partial g}{\partial t} .
$$

Let u be a positive solution of the heat equation $\partial_{t} u=L u$. Then

$$
\frac{d W(u, t)}{d t} \leq 0
$$

W-entropy formula for geodesic flow on Wasserstein space

Let M be a compact or complete Riemannian manifold, $\phi \in C^{2}(M)$. Consider the geodesic flow on the Wasserstein space over (M, μ) equipped with Otto's infinite dimensional Riemannian metric

$$
\begin{array}{r}
\frac{\partial \rho}{\partial t}+\nabla_{\phi}^{*}(\rho \nabla f)=0 \\
\frac{\partial f}{\partial t}+\frac{1}{2}|\nabla f|^{2}=0 .
\end{array}
$$

Let

$$
H_{m}(\rho, t):=-\int_{M} \rho \log \rho d \mu-\frac{m}{2}\left(\log \left(4 \pi t^{2}\right)+1\right)
$$

and define the W-entropy for the Witten Laplacian by

$$
W(\rho, t):=\frac{d}{d t}\left(t H_{m}(\rho, t)\right)
$$

W-entropy formula along the optimal transportation

Theorem (S. Li-X.D. Li 2012, 2015)

Let M be a compact (or complete) Riemannian manifold, $(\rho(t), f(t))$ be the smooth solution to the above equations (with suitable growth condition). Then

$$
\begin{aligned}
\frac{d W(\rho, t)}{d t}= & -\int_{M} t\left[\left|\nabla^{2} f-\frac{g}{t}\right|^{2}+\operatorname{Ric}_{m, n}(L)(\nabla f, \nabla f)\right] \rho d \mu \\
& -\frac{1}{m-n} \int_{M} t\left(\nabla f \cdot \nabla \phi+\frac{m-n}{t}\right)^{2} \rho d \mu
\end{aligned}
$$

The rigidity model is $N\left(0, t^{2}\right)$ on $M=\mathbb{R}^{n}$, i.e., $m=n$, and

$$
\bar{\rho}(t)=\frac{1}{\left(4 \pi t^{2}\right)^{m / 2}} e^{-\frac{|x|^{2}}{4 t^{2}}}, \quad \bar{f}(t)=\frac{|x|^{2}}{2 t^{2}}
$$

Lott-Villani's theorem

As a corollary of our W-entropy formula on the Wasserstein space, we can recapture the following result due to Lott-Villani.

Theorem (Lott-Villani Ann. Math. 2009, Lott 2009)

Let M be a compact Riemannian manifold. Suppose Ric ≥ 0. Then

$$
t \operatorname{Ent}(\rho(t))+n t \log t
$$

is convex along the geodesic $(\rho(t), f(t))$ on $\left(P_{2}(M), d v\right)$.

Langevin deformation on Wasserstein space

Problem
 How to explain this similarity between the W-entropy formula for the Witten Laplacian and for the optimal transport problem ?

- The vanishing viscosity limit using the Cole-Hopf transformation does not provide a good answer to this problem.
- Inspired by J.-M. Bismut's work, S. Li and Li (2013) introduced a deformation of geometric flows on the Wasserstein space, which interpolates the heat equation on the underlying manifold M, and the geodesic flow on the Wasserstein space over M.
- A discussion with C. Villani on 31 May 2013.

Interpolation between geodesics and gradient flow

Our work is based on the following well-known observation, inspired by J-M. Bismut's work on the deformation of the Witten Laplacian and geodesic flow on the cotangent bundle,

Proposition (S. Li-Li 2013)

Let M be a complete Riemannian manifold, $V \in C^{2}(M)$. Let $\left(\rho_{t}, v_{t}\right)$ be defined as follows

$$
\begin{aligned}
\dot{\rho} & =\frac{v}{c} \\
\dot{v} & =-\frac{v}{c^{2}}+\frac{\nabla V(\rho)}{c} .
\end{aligned}
$$

Then ρ_{t} satisfies the Langevin equation

$$
c^{2} \ddot{\rho}=-\dot{\rho}+\nabla V(\rho) .
$$

Interpolation between geodesics and gradient flow

Now in the Wasserstein space $\mathcal{P}_{2}(M, \mu)$ over M, define

$$
H(\rho, \dot{\rho})=\frac{1}{2}\|\dot{\rho}\|^{2}+\int_{M} \rho \log \rho d \mu .
$$

Inspired by J.-M. Bismut, S. Li and Li (2013) introduced the following geometric flows on $\mathcal{P}_{2}(M, \mu)$:

$$
v=-c \nabla_{\mu}^{*} \cdot(\rho \nabla \phi)
$$

This yields

$$
\begin{aligned}
\partial_{t} \rho+\nabla_{\mu}^{*} \cdot(\rho \nabla \phi) & =0, \\
c^{2}\left(\partial_{t} \phi+\frac{1}{2}|\nabla \phi|^{2}\right) & =-\phi+\log \rho+1 .
\end{aligned}
$$

When $c=0, \phi=\log \rho+1, \rho$ satisfies the backward heat equation

$$
\partial_{t} \rho=-L \rho,
$$

and when $c=\infty,(\rho, \phi)$ is a geodesic flow on $P_{2}(M, \mu)$

$$
\begin{aligned}
\partial_{t} \rho+\nabla_{\mu}^{*} \cdot(\rho \nabla \phi) & =0, \\
\partial_{t} \phi+\frac{1}{2}|\nabla \phi|^{2} & =0 .
\end{aligned}
$$

Link with compressible Euler equation with damping

Let $u=\nabla \phi$, then u satisfies the compressible Euler equation with damping

$$
\partial_{t} u+u \cdot \nabla u=-\frac{1}{c^{2}} u+\frac{1}{c^{2}} \nabla \log \rho .
$$

Theorem (S. Li-Li 2015)

Let M be a compact Riemannian manifold, $\rho_{0}>0, \phi_{0} \in C^{\infty}(M)$. Then the Cauchy problem to the Langevin deformation flow equation has a unique local smooth solution $(\rho(t), \phi(t))$ on $[0, T] \times M$ with initial data (ρ_{0}, ϕ_{0}).

Theorem (S. Li-Li 2015)

Let M be a compact Riemannian manifold. Then for small initial data (ρ_{0}, ϕ_{0}) (in suitable Sobolev norm), there is a unique global smooth solution to the Cauchy problem of the Langevin deformation flow equation.

Interpolation between geodesics and gradient flow

Theorem (S. Li-Li 2013)

For $c \in[0, \infty)$, we have
$\frac{d^{2}}{d t^{2}} H(\rho, \dot{\rho})=2 \int_{M}\left[c^{-2}\left|\nabla \phi-\rho^{-1} \phi\right|^{2}+|H e s s \phi|^{2}+\left(\right.\right.$ Ric $\left.\left.+\nabla^{2} f\right)(\nabla \phi, \nabla \phi)\right] \rho d \mu$.
When $c=0, \phi=\log \rho+1, \partial_{t} \rho=-L \rho$, and

$$
\frac{d^{2}}{d t^{2}} \operatorname{Ent}(\rho(t))=2 \int_{M}\left[|\operatorname{Hess} \phi|^{2}+\left(\operatorname{Ric}+\nabla^{2} f\right)(\nabla \phi, \nabla \phi)\right] \rho d \mu
$$

When $\boldsymbol{c}=\infty,(\rho, \phi)$ is a geodesic flow on $P_{2}(M, \mu)$, and

$$
\frac{d^{2}}{d t^{2}} \operatorname{Ent}(\rho(t))=\int_{M}\left[|\operatorname{Hess} \phi|^{2}+\left(\operatorname{Ric}+\nabla^{2} f\right)(\nabla \phi, \nabla \phi)\right] \rho d \mu
$$

W-entropy formula for deformation of flows

Problem (S. Li-Li 2013)

Can we prove an analogue of the W-entropy formula for the deformation flow, and prove a rigidity theorem under suitable curvature-dimension condition?

Theorem (S. Li-Li 2015)

For any $c>0$, we have

$$
\begin{aligned}
\left(\frac{d^{2}}{d t^{2}}+\frac{1}{c^{2}} \frac{d}{d t}\right) \operatorname{Ent}(\rho(t))=\int_{M}\left[|\operatorname{Hess} \phi|^{2}\right. & +\operatorname{Ric}(L)(\nabla \phi, \nabla \phi)] \rho d \mu \\
& +\frac{1}{c^{2}} \int_{M} \frac{|\nabla \rho|^{2}}{\rho} d \mu . \\
\left(\frac{d^{2}}{d t^{2}}+\frac{2}{c^{2}} \frac{d}{d t}\right) H(\rho(t), \phi(t))=\int_{M}\left[|\operatorname{Hess} \phi|^{2}\right. & +\operatorname{Ric}(L)(\nabla \phi, \nabla \phi)] \rho d \mu \\
& +\frac{2}{c^{2}} \int_{M} \frac{|\nabla \rho|^{2}}{\rho} d \mu .
\end{aligned}
$$

W-entropy formula for deformation of flows

Theorem (S. Li-Li 2015)

Define

$$
\begin{aligned}
W_{H, c}(t) & =H(\rho(t), \phi(t))+\frac{c^{2}\left(1-e^{\frac{2 t}{c^{2}}}\right.}{2} \frac{d}{d t} H(\rho(t), \phi(t)), \\
W_{c}(t) & =\operatorname{Ent}(\rho(t))+c^{2}\left(1-e^{\frac{t}{c^{2}}}\right) \frac{d}{d t} \operatorname{Ent}(\rho(t)) .
\end{aligned}
$$

Note that, as $c \rightarrow \infty, c^{2}\left(1-e^{\frac{t}{c^{2}}}\right) \rightarrow t$. Then

$$
\begin{aligned}
\frac{d}{d t} W_{H, c}(t) & =\left(1-e^{\frac{2 t}{c^{2}}}\right) \int_{M} \frac{|\nabla \rho|^{2}}{\rho} d \mu+\int_{M}\left[|\operatorname{Hess} \phi|^{2}+\operatorname{Ric}(L)(\nabla \phi, \nabla \phi)\right] \rho d \mu, \\
\frac{d}{d t} W_{c}(t) & =\left(1-e^{\frac{t}{c^{2}}}\right) \int_{M} \frac{|\nabla \rho|^{2}}{\rho} d \mu+\int_{M}\left[|\operatorname{Hess} \phi|^{2}+\operatorname{Ric}(L)(\nabla \phi, \nabla \phi)\right] \rho d \mu .
\end{aligned}
$$

In particular, if $\operatorname{Ric}(L) \geq 0$, then for all $c>0$, we have

$$
\frac{d}{d t} W_{H, c}(t) \leq 0, \quad \frac{d}{d t} W_{c}(t) \leq 0, \quad \forall t \geq 0
$$

The model: deformation of flows on $P_{2}\left(\mathbb{R}^{m}, d x\right)$

Let $V(u)=-\frac{1}{2} \log u, u>0$. Then $V^{\prime}(u)=-\frac{1}{2 U}$. Consider the Newton-Langevin equation on $T^{*} \mathbb{R}^{+}=\mathbb{R}^{+} \times \mathbb{R}$

$$
c^{2}(\ddot{u}+\dot{u})=-\frac{1}{2 u} .
$$

Note that $V(u)=-\frac{1}{2} \log u$ is locally Lipschitz on $(0,+\infty)$. By Picard theorem, for any given $T>0$, and for given $u(T)>0$ and $\dot{u}(T) \in \mathbb{R}$, there exists a unique solution $u(t)$ on an interval $[T-\delta, T]$ for some $\delta>0$.
Let $\beta:[T-\delta, T] \rightarrow \mathbb{R}$ be a smooth solution to the followings ODE

$$
c^{2} \dot{\beta}+\beta=-m \log u-\frac{m}{2} \log (4 \pi)+1
$$

The model on $P_{2}\left(\mathbb{R}^{m}, d x\right)$

Theorem (S. Li-Li 2014)

Let $\alpha(t)=\frac{u^{\prime}}{u}$ and define

$$
\begin{aligned}
\phi_{m}(x, t) & =\frac{\alpha(t)}{2}\|x\|^{2}+\beta(t), \\
\rho_{m}(x, t) & =\frac{1}{\left(4 \pi u^{2}(t)\right)^{m / 2}} e^{-\frac{\|x\|^{2}}{4 u^{2}(t)}} .
\end{aligned}
$$

Then (ρ_{m}, ϕ_{m}) is a solution of the equations of the deformation flow on

$$
\begin{aligned}
\partial_{t} \rho+\operatorname{div}(\rho \nabla \phi) & =0, \\
c^{2}\left(\partial_{t} \phi+\frac{1}{2}|\nabla \phi|^{2}\right) & =-\phi+\log \rho+1 .
\end{aligned}
$$

By calculation, we have

$$
\operatorname{Ent}\left(\rho_{m}(t)\right)=-\frac{m}{2}\left[1+\log \left(4 \pi u^{2}(t)\right)\right]
$$

W-entropy formula for deformation of flows

Let $m>n,(\rho(t), \phi(t))$ be the deformation of flows on $T^{*} P_{2}(M, \mu)$

$$
\begin{aligned}
\partial_{t} \rho+\nabla_{\mu}^{*} \cdot(\rho \nabla \phi) & =0, \\
c^{2}\left(\partial_{t} \phi+\frac{1}{2}|\nabla \phi|^{2}\right) & =-\phi+\log \rho+1 .
\end{aligned}
$$

Define

$$
H_{m}(\rho(t))=\operatorname{Ent}(\rho(t))-\operatorname{Ent}\left(\rho_{m}(t)\right) .
$$

Theorem (S. Li-Li 2015)

$$
\begin{aligned}
& \frac{d^{2}}{d t^{2}} H_{m}(\rho(t))+\left(2 \alpha(t)+\frac{1}{c^{2}}\right) \frac{d}{d t} H_{m}(\rho(t)) \\
&=\int_{M}\left[|\operatorname{Hess} \phi-\alpha(t) g|^{2}+\operatorname{Ric}_{m, n}(L)(\nabla \phi, \nabla \phi)\right] \rho d \mu \\
& \quad+(m-n) \int_{M}\left|\alpha(t)+\frac{\nabla \phi \cdot \nabla f}{m-n}\right|^{2} \rho d \mu+\frac{1}{c^{2}} \int_{M} \frac{|\nabla \rho|^{2}}{\rho} d \mu .
\end{aligned}
$$

W-entropy formula for deformation of flows

In case $m=n, f=0$, let $(\rho(t), \phi(t))$ be solution to

$$
\begin{aligned}
\partial_{t} \rho+\nabla \cdot(\rho \nabla \phi) & =0, \\
c^{2}\left(\partial_{t} \phi+\frac{1}{2}|\nabla \phi|^{2}\right) & =-\phi+\log \rho+1 .
\end{aligned}
$$

Define

$$
H_{n}(\rho(t))=\operatorname{Ent}(\rho(t))-\operatorname{Ent}\left(\rho_{n}(t)\right) .
$$

Theorem (S. Li-Li 2015)

$$
\begin{aligned}
& \frac{d^{2}}{d t^{2}} H_{n}(\rho(t))+\left(2 \alpha(t)+\frac{1}{c^{2}}\right) \frac{d}{d t} H_{n}(\rho(t)) \\
= & \int_{M}\left[|\operatorname{Hess} \phi-\alpha(t) g|^{2}+\operatorname{Ric}(\nabla \phi, \nabla \phi)\right] \rho d v+\frac{1}{c^{2}} \int_{M} \frac{|\nabla \rho|^{2}}{\rho} d v .
\end{aligned}
$$

W-entropy formula for deformation of flows

Note that, on $M=\mathbb{R}^{n}$, the model $\left(\rho_{n}, \phi_{n}\right)$ on $\left(P_{2}\left(\mathbb{R}^{n}\right), d x\right)$

$$
\begin{aligned}
\phi_{n}(x, t) & =\frac{\alpha(t)}{2}\|x\|^{2}+\beta(t), \\
\rho_{n}(x, t) & =\frac{1}{\left(4 \pi u^{2}(t)\right)^{n / 2}} e^{-\frac{\|x\|^{2}}{4 u^{2}(t)}} .
\end{aligned}
$$

satisfies

$$
\operatorname{Hess} \phi_{n}=\alpha(t) g
$$

Moreover

$$
\frac{d^{2}}{d t^{2}} H_{n}\left(\rho_{n}(t)\right)+\left(2 \alpha(t)+\frac{1}{c^{2}}\right) \frac{d}{d t} H_{n}\left(\rho_{n}(t)\right)=\frac{1}{c^{2}} \int_{M} \frac{\left|\nabla \rho_{n}\right|^{2}}{\rho_{n}} d v .
$$

Thus, (ρ_{n}, ϕ_{n}) gives the rigidity model for the entropy inequality.

W-entropy formula for deformation of flows

Let us introduce the W-entropy be such that

$$
\frac{d W}{d t}(\rho(t))=\frac{d^{2}}{d t^{2}} H(\rho(t))+\left(2 \alpha(t)+\frac{1}{c^{2}}\right) \frac{d}{d t} H(\rho(t))-\frac{1}{c^{2}} \int_{M} \frac{|\nabla \rho|^{2}}{\rho} d v .
$$

By calculation, we have

$$
\frac{d}{d t} W\left(\rho_{n}(t)\right)=-n \alpha^{2}(t) .
$$

In view of this, the above theorem is equivalent to the following comparison theorem

$$
\frac{d}{d t}\left(W(\rho(t))-W\left(\rho_{n}(t)\right)\right)=\int_{M}\left[|\operatorname{Hess} \phi-\alpha(t) g|^{2}+\operatorname{Ric}(\nabla \phi, \nabla \phi)\right] \rho d v .
$$

Thus, if Ric ≥ 0, then

$$
\frac{d}{d t}\left(W(\rho(t)) \geq \frac{d}{d t} W\left(\rho_{n}(t)\right)\right), \quad \forall t>0 .
$$

Moreover, if one can extend this to complete Riemannian manifolds, then the equality holds at some $t=t_{0}>0$ if and only if

$$
M=\mathbb{R}^{n}, \quad \rho=\rho_{n}, \quad \phi=\phi_{n} .
$$

Thank you!

