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Perelman’s W -entropy
Let M be a compact manifold, (g(t), f (t), τ(t), t ∈ [0,T ]) be such that

∂tg = −2Ric,

∂t f = −∆f + |∇f |2 − R +
n
2τ
,

∂tτ = −1.

In 2002, Perelman introduced the W -entropy for the Ricci flow as

W(g, f , τ) =

∫
M

[
τ(R + |∇f |2) + f − n

] e−f

(4πτ)n/2 dv ,

and proved that

d
dt
W(g, f , τ) = 2τ

∫
M

∣∣∣Ric +∇2f − g
2τ

∣∣∣2 e−f

(4πτ)n/2 dv .

In particular,W(g, f , τ) is nondecreasing in time and the monotonicity
is strict unless that (M,g) is a shrinking Ricci soliton

Ric +∇2f =
g
2τ
.



Ni’s W -entropy formula for Laplace Beltrami
Recall Ni’s W -entropy formula for the heat equation ∂tu = ∆u.

Theorem (Ni 2005)
Let (M,g) be a compact Riemannian manifold with a fixed metric. Let

u =
e−f

(4πt)n/2

be a positive solution of
∂tu = ∆u.

Let

W (u, t) =

∫
M

(
t |∇f |2 + f − n

) e−f

(4πt)n/2 dv .

Then

d
dt

W (u, t) = −2
∫

M
t
(∣∣∣∇2f − g

2t

∣∣∣2 + Ric(∇f ,∇f )

)
e−f

(4πt)n/2 dv .

In particular, if Ric ≥ 0, then W (u, t) is decreasing in time t.
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W -entropy for Witten Laplacian

Let M be a complete Riemannian manifold, φ ∈ C2(M), dµ = e−φdv .
The Witten Laplacian is defined by

L = ∆−∇φ · ∇.

For all u, v ∈ C∞0 (M), we have∫
M
〈∇u,∇v〉dµ = −

∫
M

Luvdµ =

∫
M

uLvdµ.

The Bakry-Emery Ricci curvature associated with L is defined by

Ric(L) = Ric +∇2φ,

and the m-dimensional Bakry-Emery Ricci curvature associated with
L is defined by

Ricm,n(L) = Ric +∇2φ− ∇φ⊗∇φ
m − n

.



Entropy for Witten Laplacian
Let u be a positive solution to the heat equation

∂tu = Lu.

Let

Ent(u) = −
∫

M
u log udµ.

Then, when M is compact or complete and with bounded geometry
condition, it is well known that

d
dt

Ent(u(t)) =

∫
M

|∇u|2

u
dµ,

d2

dt2 Ent(u(t)) = −2
∫

M
[|∇2 log u|2 + Ric(L)(∇ log u,∇ log u)]udµ.

Thus, if Ric(L) ≥ K , then

d2

dt2 Ent(u(t)) ≤ −2K
d
dt

Ent(u(t)).



W -entropy formula for the Witten Laplacian

Let u be a positive solution of the heat equation ∂tu = Lu. Let

Hm(u, t) := −
∫

M
u log udµ− m

2
(log(4πt) + 1) .

The Gaussian heat kernel on Rm is given by

um(x , t) =
e
−|x|2

4t

(4πt) m
2

and its Boltzmann entropy is given by

H(um, t) = −
∫
Rm

log um(x)um(x)dx =
m
2

(log(4πt) + 1) .

Hence
Hm(u, t) = H(u, t)− H(um, t)

is the difference of the Boltzmann entropy for ∂tu = Lu on (M, µ) and
the Boltzmann entropy for ∂tu = ∆u on (Rm,dx). [Li2012]



Li-Yau Harnack inequality
Recall the Li-Yau Harnack inequality for Witten Laplacian.

Theorem (Li JMPA2005, Math Ann2012)
Let M be a complete Riemannian manifold with Ricm,n(L) ≥ 0. Let u
be a positive solution to the heat equation

∂tu = Lu.

Then the Li-Yau Harnack inequality holds

|∇u|2

u2 − Lu
u
≤ m

2t
,

i.e.,
L log u +

m
2t
≥ 0.

Thus, under the condition Ricm,n(L) ≥ 0,

d
dt

Hm(u, t) =

∫
M

(
|∇u|2

u2 − n
2t

)
udµ = −

∫
M

(
L log u +

m
2t

)
udµ ≤ 0.



W -entropy for the Witten Laplacian

Theorem (Li Math Ann2012, S. Li-Li PJM2015)
Let M be a compact or complete Riemannian manifold with bounded
geometry condition. Let u = e−f

(4πt)m/2 be a positive solution of
∂tu = Lu. Define

W (u, t) :=
d
dt

(tHm(u, t)).

Then

W (u, t) =

∫
M

(
t |∇f |2 + f −m

) e−f

(4πt)m/2 dµ,

and

dW (u, t)
dt

= −2
∫

M

(
t
∣∣∣∇2f − g

2t

∣∣∣2 + Ricm,n(L)(∇f ,∇f )

)
udµ

− 2
m − n

∫
M

t
(
∇φ · ∇f +

m − n
2t

)2

udµ.



Warped product approach to W -entropy formula

Let M̃ = M × N. Define

g̃ = gM ⊕ e−
φ

m−n gN .

Applying Ni’s W -entropy formula to the heat equation on (M̃, g̃)

∂tu = ∆M̃u,

S. Li and Li (PJM2015) gave a new proof of the W -entropy formula for
the Witten Laplacian, and proved the following

Proposition (S. Li-Li, PJM2015)

∣∣∣∣∇̃2f −− g̃
2τ

∣∣∣∣2 =
∣∣∣∇2f − g

2τ

∣∣∣2 +
2

m − n

(
∇φ · ∇f +

m − n
2τ

)2

.

This gives a natural geometric interpretation for (RHS) in the
W -entropy formula of the Witten Laplacian using the warped product
metric.



A rigidity theorem for Perelman’s W -entropy

Note that, under the assumption Ricm,n(L) ≥ 0, we have

dW
dt

= 0 ⇐⇒


∇2

ij f =
gij
2t , ∀i , j = 1, . . . ,n,

Ricm,n(L)(∇f ,∇f ) = 0,
∇φ · ∇f + m−n

2t = 0,

=⇒
{

Ricm,n(L)(log u, log u) = 0,
L log u + m

2t = 0.

This is the case when

M = Rn, m = n, φ(x) = C, u(x , t) =
e−
|x|2

4t

(4πt)n/2 .

Question
Can we prove a rigidity theorem for the W-entropy under the condition
Ricm,n(L) ≥ 0 on n-dimensional complete Riemannian manifolds?



A rigidity theorem for Perelman’s W -entropy

The following result gives an affirmative answer to the above
question.

Theorem (Li Math Ann2012)
Under the same condition as above theorem, Ricm,n(L) ≥ 0. Then

∃t = t0 > 0 such that
dW
dt

= 0,

if and only if for all t > 0, and x ∈ M,

M = Rn, m = n, φ(x) = C, u(x , t) =
e−
|x|2

4t

(4πt)n/2 .



Open problem

The above results hold in the case of CD(0,m). After I proved
the above results in 2009, many people in probability
community and in geometry community asked me the following

Problem
What happens in the case of CD(K ,m) or CD(K ,∞) ?

Problem
What happens in the cae of time dependent metrics and
potentials ?
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LYH Harnack inequality for Witten Laplacian

Theorem (S. Li-L. 2014)
Let M be a complete Riemannian manifold, φ ∈ C2(M).Suppose that
there exists a constant K ≥ 0 such that

Ricm,n(L) ≥ −K .

Let u be a positive solution of ∂tu = Lu. Then the Li-Yau-Hamilton
Harnack inequality holds

∂tu
u
− e−2Kt |∇u|2

u2 + e2Kt m
2t
≥ 0.

In particular, if K = 0, i.e., Ricm,n(L) ≥ 0, then the Li-Yau Harnack
inequality holds

∂tu
u
− |∇u|2

u2 +
m
2t
≥ 0.



W -entropy and Harnack inequality

Let

Hm,K (u, t) = Ent(u(t))− Ent(um,K (t))

where um,K (t) is the density of the Gaussian distribution N(0, σ2
K (t))

on Rm, i.e.,

um,K (t , x) =
1

(4πσ2
K (t))m/2

exp
(
− ‖x‖

2

4σ2
K (t)

)
.

Note that

Ent(um,K (t)) =
m
2
(
log(4πσ2

K (t)) + 1
)
.

By direct calculation, we have

d
dt

Hm,K (u, t) =

∫
M

[
|∇u|2

u2 −m
d
dt

logσK (t)
]

udµ.



W -entropy and Harnack inequality

Suppose that we can prove the following Harnack inequality

|∇u|2

u2 − αK (t)
∂tu
u
≤ mβK (t).

Taking σK (t) ∈ C([0,∞),R) be such that

d
dt

logσK (t) = βK (t).

Then

d
dt

Hm,K (u, t) =

∫
M

[
|∇u|2

u2 − αK (t)
∂tu
u
−mβK (t)

]
udµ ≤ 0.



W -entropy and Harnack inequality

In the case CD(−K ,m) holds, the Hamilton’s Harnack inequality

|∇u|2

u2 − α(t)
∂tu
u
≤ mβ(t)

holds with

α(t) = e2Kt , β(t) =
e4Kt

2t
.

Thus, under CD(−K ,m), we have

d
dt

Hm,K (u, t) =

∫
M

[
|∇u|2

u2 − m
2t

e4Kt − e2Kt ∂tu
u

]
udµ.

Proposition (S. Li-Li arxiv204)
Under the CD(−K ,m) condition, i.e., Ricm,n(L) ≥ −K , we have

d
dt

HK ,m(u, t) ≤ 0.



W -entropy formula for Hamilton’s Harnack quantity

Theorem (S. Li-Li arxiv2014)
Define

Wm,K (u, t) =
d
dt

(tHm,K (u, t)).

Under the bounded geometry condition, we have

d
dt

Wm,K (u, t) = −2t
∫

M

∣∣∣∣∇2 log u +

(
K
2

+
1
2t

)
g
∣∣∣∣2 udµ

−2t
∫

M
(Ricm,n(L) + Kg)(∇ log u,∇ log u)udµ

− 2t
m − n

∫
M

∣∣∣∣∇φ · ∇ log u − (m − n)(1 + Kt)
2t

∣∣∣∣2 udµ

−m
2t
[
e4Kt (1 + 4Kt)− (1 + Kt)2] .



Monotonicity and rigidity theorem

Theorem (S. Li-Li arxiv2014)
Assume that Ricm,n(L) ≥ −K , then for all t ≥ 0,

d
dt

Wm,K (u, t) ≤ −m
2t
[
e4Kt (1 + 4Kt)− (1 + Kt)2] .

Moreover, the equality holds at some t = t0 > 0 if and only if

Ricm,n(L) = −Kg,

2∇2f =

(
1
t

+ K
)

g,

∇φ · ∇f = − (m − n)(1 + Kt)
2t

.



W -entropy formula for Hamilton’s Harnack quantity
The above result is new even in the non weighted case.

Theorem (S. Li-Li arxiv2014)
Under the bounded geometry condition, we have

d
dt

Wn,K (u, t) = −2t
∫

M

∣∣∣∣∇2 log u +

(
K
2

+
1
2t

)
g
∣∣∣∣2 udµ

−2t
∫

M
(Ric + Kg)(∇ log u,∇ log u)udµ

− n
2t
[
e4Kt (1 + 4Kt)− (1 + Kt)2] .

In particular, if Ric ≥ −K , then for all t ≥ 0,

d
dt

Wn,K (u, t) ≤ − n
2t
[
e4Kt (1 + 4Kt)− (1 + Kt)2] .

Moreover, the equality holds at some time t = t0 > 0 if and only if

Ric = −Kg, 2∇2f =

(
1
t

+ K
)

g.



W -entropy formula under CD(−K ,m)

By chaining the comparable model, we can obtain the following

Theorem (S. Li-Li PJM2015)
Under bounded geometry condition, define

Wm,K (u, t) =

∫
M

[
t |∇f |2 + f −m

(
1 +

Kt
2

)]
udµ.

Then

d
dt

Wm,K (u, t) = −2t
∫

M

∣∣∣∣∇2f −
(

1
2t

+
K
2

)
g
∣∣∣∣2 udµ

−2t
∫

M
(Ricm,n(L) + Kg) (∇f ,∇f )udµ

− 2t
m − n

∫
M

∣∣∣∣∇φ · ∇f − (m − n)

(
1
2t

+
K
2

)∣∣∣∣2 udµ.

This extends a previous result due to J. Li and Xu (AIM2010) for the
case L = ∆ and m = n.



Monotonicity and rigidity theorem

Theorem (S. Li-Li PJM 2015)
Suppose that Ricm,n(L) ≥ −K . Then

d
dt

Wm,K (u, t) ≤ 0.

Moreover, the equality holds at some time t = t0 > 0 if and only if

Ricm,n(L) = −Kg,

2∇2f =

(
1
t

+ K
)

g,

∇φ · ∇f = (m − n)

(
1
2t

+
K
2

)
.

Thus, (M,g, φ) is a quasi-Einstein manifold, and the potential f
satisfies the soliton equation

Ricm,n(L) + 2∇2f =
g
t
.
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The optimal Hamilton Harnack inequality

Theorem (Li 2013 arxiv SPA2015)
Let M be a complete Riemannian manifold. Suppose that there exists
a constant K ≥ 0 such that

Ric(L) ≥ −K .

Let u be a positive and bounded solution to the heat equation

∂tu = Lu,

Then, the optimal Hamilton Harnack inequality holds

|∇ log u|2 ≤ 2K
e2Kt − 1

log(A/u).

where A = sup{u(t , x) : x ∈ M, t ≥ 0}.



The Hamilton Harnack inequality

Corollary (Li 2013arxiv SPA2015)
Let M be a complete Riemannian manifold. Suppose that there exists
a constant K ≥ 0 such that

Ric(L) ≥ −K .

Let u be a positive and bounded solution to the heat equation

∂tu = Lu,

The Hamilton Harnack inequality holds

|∇ log u|2 ≤
(

1
t

+ 2K
)

log(A/u).



The W -entropy formula for CD(K ,∞) case

Theorem (S. Li-L. arxiv2014)
Let u(·, t) = Pt f be a positive solution to the heat equation ∂tu = Lu
with u(·,0) = f ≥ 0. Suppose Ric +∇2φ ≥ K , where K ∈ R. Let

HK (f , t) = DK (t)
∫

M
(Pt (f log f )− Pt f log Pt f )dµ,

where DK (t) = K
1−e−2Kt . Then, for all t > 0, d

dt HK (f , t) ≤ 0, and

d2

dt2 HK (t) + 2K coth(Kt)
d
dt

HK (t) ≤ −2DK (t)
∫

M
|∇2 log Pt f |2Pt fdµ.

Moreover, the equality holds if and only if (M,g, φ) is a Ricci soliton

Ric +∇2φ = Kg.



The W -entropy formula for CD(K ,∞) case

Theorem (S. Li-L. arxiv2014)
Define the W-entropy by the revised Boltzmann entropy formula

WK (f , t) = HK (f , t) +
sinh(2Kt)

2K
d
dt

HK (f , t).

Then, for all K ∈ R, and for all t > 0, we have

d
dt

WK (f , t) +
e2Kt + 1

2

∫
M
|∇2 log Pt f |2Pt fdµ

= −e2Kt + 1
2

∫
M

(Ric(L)− K )(∇ log Pt f ,∇ log Pt f )Pt fdµ.

In particular, if Ric(L) ≥ K , then

d
dt

WK (f , t) +
e2Kt + 1

2

∫
M
|∇2 log Pt f |2Pt fdµ ≤ 0, ∀t > 0.

Moreover, the equality holds if and only if Ric +∇2φ = Kg.
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Logarithmic Sobolev inequalities

Let M be a complete Riemannian manifold equipped with a
family of time dependent metrics g(t) and potentials φ(t).

Let
L = ∆g(t) −∇g(t)φ(t) · ∇g(t)

be the time dependent Witten Laplacian on (M,g(t), φ(t)).

Let u(·, t) = Pt f be a positive solution to the heat equation

∂tu = Lu,

with the initial condition u(·,0) = f , where f ≥ 0 is a measurable
function on M.



Logarithmic Sobolev inequalities

Theorem (S. Li-L. 2014)
Let M be a complete Riemannian manifold equipped with a K -super
Perelman Ricci flow

1
2
∂g
∂t

+ Ric(L) ≥ −K .

where K ≥ 0 is a constant independent of t ∈ [0,T ], f ≥ 0. Then, the
following logarithmic Sobolev inequality holds

Pt (f log f )− Pt f log Pt f ≤
e2Kt − 1

2K
Pt

(
|∇f |2

f

)
, ∀t ∈ [0,T ],

and the reversal logarithmic Sobolev inequality holds

|∇Pt f |2

Pt f
≤ 2K

1− e−2Kt (Pt (f log f )− Pt f log Pt f ) , ∀t ∈ [0,T ].



The optimal Hamilton Harnack inequality

Theorem (S. Li-L. 2014)
Let M be a complete Riemannian manifold. Suppose that there exists
a constant K ≥ 0 such that

1
2
∂g
∂t

+ Ric(L) ≥ −K .

Let u be a positive and bounded solution to the heat equation

∂tu = Lu,

Then, the optimal Hamilton Harnack inequality holds

|∇ log u|2 ≤ 2K
e2Kt − 1

log(A/u).

where A = sup{u(t , x) : x ∈ M, t ≥ 0}.



The optimal Hamilton Harnack inequality

Corollary (S. Li-L. 2014)
Let M be a complete Riemannian manifold. Suppose that there exists
a constant K ≥ 0 such that

1
2
∂g
∂t

+ Ric(L) ≥ −K .

Let u be a positive and bounded solution to the heat equation

∂tu = Lu,

The Hamilton Harnack inequality holds

|∇ log u|2 ≤
(

1
t

+ 2K
)

log(A/u).



Harnack inequality for time dependent Witten Laplacian

Theorem (S. Li-L. 2014)
Let M be a compact Riemannian manifold, φ ∈ C2(M).Suppose that
there exists a constant K ≥ 0 such that

1
2
∂g
∂t

+ Ricm,n(L) ≥ −K .

Let u be a positive solution of ∂tu = Lu. Then

∂tu
u
− e−2Kt |∇u|2

u2 + e2Kt m
2t
≥ 0.

In particular, if K = 0, i.e., 1
2
∂g
∂t + Ricm,n(L) ≥ 0, then the Li-Yau

Harnack inequality holds

∂tu
u
− |∇u|2

u2 +
m
2t
≥ 0.



W -entropy for time dependent Witten Laplacian

Theorem (S. Li-Li PJM2015)
Let M be a compact manifold, {g(t), φ(t), t ∈ [0,T ]} satisfies

∂φ

∂t
=

1
2

Tr
∂g
∂t
.

Let

u(x , t) =
e−f (x ,t)

(4πt)m/2

be the solution of the heat equation ∂tu = Lu. Then

dW(u, t)
dt

= −2
∫

M
t
[∣∣∣∇2f − g

2t

∣∣∣2 +

(
1
2
∂g
∂t

+ Ricm,n(L)

)
(∇f ,∇f )

]
udµ

− 2
m − n

∫
M

t
(
∇φ · ∇f +

m − n
2t

)2

udµ.



W -entropy formula on Perelman’s super m-Ricci flow

Corollary (S. Li-Li PJM2015)
Let M be a compact manifold. Suppose that g(t) is a Perelman’s
super m-Ricci flow

1
2
∂g
∂t

+ Ricm,n(L) ≥ 0,

and f (t) satisfies the conjugate equation

∂φ

∂t
=

1
2

Tr
∂g
∂t
.

Let u be a positive solution of the heat equation ∂tu = Lu. Then

dW (u, t)
dt

≤ 0.



W -entropy formula for geodesic flow on Wasserstein
space

Let M be a compact or complete Riemannian manifold, φ ∈ C2(M).
Consider the geodesic flow on the Wasserstein space over (M, µ)
equipped with Otto’s infinite dimensional Riemannian metric

∂ρ

∂t
+∇∗φ(ρ∇f ) = 0,

∂f
∂t

+
1
2
|∇f |2 = 0.

Let
Hm(ρ, t) := −

∫
M
ρ log ρdµ− m

2
(
log(4πt2) + 1

)
,

and define the W -entropy for the Witten Laplacian by

W (ρ, t) :=
d
dt

(tHm(ρ, t)).



W -entropy formula along the optimal transportation

Theorem (S. Li-X.D. Li 2012, 2015)
Let M be a compact (or complete) Riemannian manifold, (ρ(t), f (t))
be the smooth solution to the above equations (with suitable growth
condition). Then

dW (ρ, t)
dt

= −
∫

M
t
[∣∣∣∇2f − g

t

∣∣∣2 + Ricm,n(L)(∇f ,∇f )

]
ρdµ

− 1
m − n

∫
M

t
(
∇f · ∇φ+

m − n
t

)2

ρdµ.

The rigidity model is N(0, t2) on M = Rn, i.e., m = n, and

ρ(t) =
1

(4πt2)m/2 e−
|x|2

4t2 , f (t) =
|x |2

2t2 .



Lott-Villani’s theorem

As a corollary of our W -entropy formula on the Wasserstein space,
we can recapture the following result due to Lott-Villani.

Theorem (Lott-Villani Ann. Math. 2009, Lott 2009)
Let M be a compact Riemannian manifold. Suppose Ric ≥ 0. Then

tEnt(ρ(t)) + nt log t

is convex along the geodesic (ρ(t), f (t)) on (P2(M),dv).



Langevin deformation on Wasserstein space

Problem
How to explain this similarity between the W-entropy formula for the
Witten Laplacian and for the optimal transport problem ?

The vanishing viscosity limit using the Cole-Hopf transformation
does not provide a good answer to this problem.

Inspired by J.-M. Bismut’s work, S. Li and Li (2013) introduced a
deformation of geometric flows on the Wasserstein space, which
interpolates the heat equation on the underlying manifold M, and
the geodesic flow on the Wasserstein space over M.

A discussion with C. Villani on 31 May 2013.



Interpolation between geodesics and gradient flow

Our work is based on the following well-known observation, inspired
by J-M. Bismut’s work on the deformation of the Witten Laplacian and
geodesic flow on the cotangent bundle,

Proposition (S. Li-Li 2013)
Let M be a complete Riemannian manifold, V ∈ C2(M). Let (ρt , vt ) be
defined as follows

ρ̇ =
v
c
,

v̇ = − v
c2 +

∇V (ρ)

c
.

Then ρt satisfies the Langevin equation

c2ρ̈ = −ρ̇+∇V (ρ).



Interpolation between geodesics and gradient flow
Now in the Wasserstein space P2(M, µ) over M, define

H(ρ, ρ̇) =
1
2
‖ρ̇‖2 +

∫
M
ρ log ρdµ.

Inspired by J.-M. Bismut, S. Li and Li (2013) introduced the following
geometric flows on P2(M, µ):

v = −c∇∗µ · (ρ∇φ),

This yields

∂tρ+∇∗µ · (ρ∇φ) = 0,

c2(∂tφ+
1
2
|∇φ|2) = −φ+ log ρ+ 1.

When c = 0, φ = log ρ+ 1, ρ satisfies the backward heat equation

∂tρ = −Lρ,

and when c =∞, (ρ, φ) is a geodesic flow on P2(M, µ)

∂tρ+∇∗µ · (ρ∇φ) = 0,

∂tφ+
1
2
|∇φ|2 = 0.



Link with compressible Euler equation with damping

Let u = ∇φ, then u satisfies the compressible Euler equation with
damping

∂tu + u · ∇u = − 1
c2 u +

1
c2∇ log ρ.

Theorem (S. Li-Li 2015)
Let M be a compact Riemannian manifold, ρ0 > 0, φ0 ∈ C∞(M).
Then the Cauchy problem to the Langevin deformation flow equation
has a unique local smooth solution (ρ(t), φ(t)) on [0,T ]×M with
initial data (ρ0, φ0).

Theorem (S. Li-Li 2015)
Let M be a compact Riemannian manifold. Then for small initial data
(ρ0, φ0) (in suitable Sobolev norm), there is a unique global smooth
solution to the Cauchy problem of the Langevin deformation flow
equation.



Interpolation between geodesics and gradient flow

Theorem (S. Li-Li 2013)
For c ∈ [0,∞), we have

d2

dt2 H(ρ, ρ̇) = 2
∫

M
[c−2|∇φ− ρ−1φ|2 + |Hessφ|2 + (Ric +∇2f )(∇φ,∇φ)]ρdµ.

When c = 0, φ = log ρ+ 1, ∂tρ = −Lρ, and

d2

dt2 Ent(ρ(t)) = 2
∫

M
[|Hessφ|2 + (Ric +∇2f )(∇φ,∇φ)]ρdµ.

When c =∞, (ρ, φ) is a geodesic flow on P2(M, µ), and

d2

dt2 Ent(ρ(t)) =

∫
M

[|Hessφ|2 + (Ric +∇2f )(∇φ,∇φ)]ρdµ.



W -entropy formula for deformation of flows

Problem (S. Li-Li 2013)
Can we prove an analogue of the W-entropy formula for the
deformation flow, and prove a rigidity theorem under suitable
curvature-dimension condition?

Theorem (S. Li-Li 2015)
For any c > 0, we have(

d2

dt2 +
1
c2

d
dt

)
Ent(ρ(t)) =

∫
M

[|Hessφ|2 + Ric(L)(∇φ,∇φ)]ρdµ

+
1
c2

∫
M

|∇ρ|2

ρ
dµ.(

d2

dt2 +
2
c2

d
dt

)
H(ρ(t), φ(t)) =

∫
M

[|Hessφ|2 + Ric(L)(∇φ,∇φ)]ρdµ

+
2
c2

∫
M

|∇ρ|2

ρ
dµ.



W -entropy formula for deformation of flows

Theorem (S. Li-Li 2015)
Define

WH,c(t) = H(ρ(t), φ(t)) +
c2(1− e

2t
c2 )

2
d
dt

H(ρ(t), φ(t)),

Wc(t) = Ent(ρ(t)) + c2(1− e
t

c2 )
d
dt

Ent(ρ(t)).

Note that, as c →∞, c2(1− e
t

c2 )→ t . Then

d
dt

WH,c(t) = (1− e
2t
c2 )

∫
M

|∇ρ|2

ρ
dµ+

∫
M

[|Hessφ|2 + Ric(L)(∇φ,∇φ)]ρdµ,

d
dt

Wc(t) = (1− e
t

c2 )

∫
M

|∇ρ|2

ρ
dµ+

∫
M

[|Hessφ|2 + Ric(L)(∇φ,∇φ)]ρdµ.

In particular, if Ric(L) ≥ 0, then for all c > 0, we have

d
dt

WH,c(t) ≤ 0,
d
dt

Wc(t) ≤ 0, ∀t ≥ 0.



The model: deformation of flows on P2(Rm,dx)

Let V (u) = − 1
2 log u, u > 0. Then V ′(u) = − 1

2u . Consider the
Newton-Langevin equation on T ∗R+ = R+ × R

c2 (ü + u̇) = − 1
2u
.

Note that V (u) = − 1
2 log u is locally Lipschitz on (0,+∞). By Picard

theorem, for any given T > 0, and for given u(T ) > 0 and u̇(T ) ∈ R,
there exists a unique solution u(t) on an interval [T − δ,T ] for some
δ > 0.

Let β : [T − δ,T ]→ R be a smooth solution to the followings ODE

c2β̇ + β = −m log u − m
2

log(4π) + 1.



The model on P2(Rm,dx)

Theorem (S. Li-Li 2014)

Let α(t) = u′
u and define

φm(x , t) =
α(t)

2
‖x‖2 + β(t),

ρm(x , t) =
1

(4πu2(t))m/2 e−
‖x‖2

4u2(t) .

Then (ρm, φm) is a solution of the equations of the deformation flow on

∂tρ+ div(ρ∇φ) = 0,

c2
(
∂tφ+

1
2
|∇φ|2

)
= −φ+ log ρ+ 1.

By calculation, we have

Ent(ρm(t)) = −m
2

[1 + log(4πu2(t))].



W -entropy formula for deformation of flows
Let m > n, (ρ(t), φ(t)) be the deformation of flows on T ∗P2(M, µ)

∂tρ+∇∗µ · (ρ∇φ) = 0,

c2(∂tφ+
1
2
|∇φ|2) = −φ+ log ρ+ 1.

Define

Hm(ρ(t)) = Ent(ρ(t))− Ent(ρm(t)).

Theorem (S. Li-Li 2015)

d2

dt2 Hm(ρ(t)) +

(
2α(t) +

1
c2

)
d
dt

Hm(ρ(t))

=

∫
M

[
|Hessφ− α(t)g|2 + Ricm,n(L)(∇φ,∇φ)

]
ρdµ

+(m − n)

∫
M

∣∣∣∣α(t) +
∇φ · ∇f
m − n

∣∣∣∣2 ρdµ+
1
c2

∫
M

|∇ρ|2

ρ
dµ.



W -entropy formula for deformation of flows

In case m = n, f = 0, let (ρ(t), φ(t)) be solution to

∂tρ+∇ · (ρ∇φ) = 0,

c2(∂tφ+
1
2
|∇φ|2) = −φ+ log ρ+ 1.

Define

Hn(ρ(t)) = Ent(ρ(t))− Ent(ρn(t)).

Theorem (S. Li-Li 2015)

d2

dt2 Hn(ρ(t)) +

(
2α(t) +

1
c2

)
d
dt

Hn(ρ(t))

=

∫
M

[
|Hessφ− α(t)g|2 + Ric(∇φ,∇φ)

]
ρdv +

1
c2

∫
M

|∇ρ|2

ρ
dv .



W -entropy formula for deformation of flows

Note that, on M = Rn, the model (ρn, φn) on (P2(Rn),dx)

φn(x , t) =
α(t)

2
‖x‖2 + β(t),

ρn(x , t) =
1

(4πu2(t))n/2 e−
‖x‖2

4u2(t) .

satisfies

Hessφn = α(t)g.

Moreover

d2

dt2 Hn(ρn(t)) +

(
2α(t) +

1
c2

)
d
dt

Hn(ρn(t)) =
1
c2

∫
M

|∇ρn|2

ρn
dv .

Thus, (ρn, φn) gives the rigidity model for the entropy inequality.



W -entropy formula for deformation of flows
Let us introduce the W -entropy be such that

dW
dt

(ρ(t)) =
d2

dt2 H(ρ(t)) +

(
2α(t) +

1
c2

)
d
dt

H(ρ(t))− 1
c2

∫
M

|∇ρ|2

ρ
dv .

By calculation, we have
d
dt

W (ρn(t)) = −nα2(t).

In view of this, the above theorem is equivalent to the following
comparison theorem
d
dt

(W (ρ(t))−W (ρn(t))) =

∫
M

[
|Hessφ− α(t)g|2 + Ric(∇φ,∇φ)

]
ρdv .

Thus, if Ric ≥ 0, then
d
dt

(W (ρ(t)) ≥ d
dt

W (ρn(t))), ∀t > 0.

Moreover, if one can extend this to complete Riemannian manifolds,
then the equality holds at some t = t0 > 0 if and only if

M = Rn, ρ = ρn, φ = φn.



Thank you !
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