W-entropy formulas and rigidity theorems on Wasserstein space over Riemannian manifolds

Xiangdong Li

Academy of Mathematics and Systems Science

Chinese Academy of Sciences

Joint work with

Songzi Li

Fudan University and Université Paul Sabatier

German-Japanese Conference on Stochastic Analysis and Applications

Sendai, August 31-September 4, 2015

Outline

Perelman's W-entropy for Ricci flow

- W-entropy for heat equation of Witten Laplacian
 - Case of *CD*(0, *m*)
 - Case of CD(K, m)
 - Case of $CD(K,\infty)$
 - Time dependent case

W-entropy formula for geodesic flow on Wasserstein space

W-entropy for Langevin deformation on Wasserstein space

Perelman's W-entropy

Let *M* be a compact manifold, $(g(t), f(t), \tau(t), t \in [0, T])$ be such that

$$\begin{aligned} \partial_t g &= -2 \textit{Ric}, \\ \partial_t f &= -\Delta f + |\nabla f|^2 - \textit{R} + \frac{\textit{n}}{2\tau}, \\ \partial_t \tau &= -1. \end{aligned}$$

In 2002, Perelman introduced the W-entropy for the Ricci flow as

$$\mathcal{W}(\boldsymbol{g},f,\tau) = \int_{M} \left[\tau(\boldsymbol{R}+|\nabla f|^2) + f - n
ight] rac{\boldsymbol{e}^{-f}}{(4\pi\tau)^{n/2}} d\boldsymbol{v},$$

and proved that

$$rac{d}{dt}\mathcal{W}(g,f, au)=2 au\int_{M}\left| extsf{Ric}+
abla^{2}f-rac{g}{2 au}
ight|^{2}rac{e^{-f}}{(4\pi au)^{n/2}}dv.$$

In particular, $W(g, f, \tau)$ is nondecreasing in time and the monotonicity is strict unless that (M, g) is a shrinking Ricci soliton

$$Ric + \nabla^2 f = \frac{g}{2\tau}.$$

Ni's W-entropy formula for Laplace Beltrami

Recall Ni's *W*-entropy formula for the heat equation $\partial_t u = \Delta u$.

Theorem (Ni 2005)

Let (M, g) be a compact Riemannian manifold with a fixed metric. Let

$$u=rac{e^{-f}}{(4\pi t)^{n/2}}$$

be a positive solution of

$$\partial_t u = \Delta u$$

Let

$$W(u,t) = \int_{M} (t|\nabla f|^{2} + f - n) \frac{e^{-t}}{(4\pi t)^{n/2}} dv.$$

Then

$$\frac{d}{dt}W(u,t) = -2\int_{M}t\left(\left|\nabla^{2}f - \frac{g}{2t}\right|^{2} + \operatorname{Ric}(\nabla f,\nabla f)\right)\frac{e^{-f}}{(4\pi t)^{n/2}}dv.$$

In particular, if $Ric \ge 0$, then W(u, t) is decreasing in time t.

Outline

Perelman's W-entropy for Ricci flow

W-entropy for heat equation of Witten Laplacian

- Case of CD(0, m)
- Case of *CD*(*K*, *m*)
- Case of $CD(K,\infty)$
- Time dependent case

3 W-entropy formula for geodesic flow on Wasserstein space

W-entropy for Langevin deformation on Wasserstein space

W-entropy for Witten Laplacian

Let *M* be a complete Riemannian manifold, $\phi \in C^2(M)$, $d\mu = e^{-\phi}dv$. The Witten Laplacian is defined by

$$L = \Delta - \nabla \phi \cdot \nabla.$$

For all $u, v \in C_0^{\infty}(M)$, we have

$$\int_{M} \langle \nabla u, \nabla v \rangle d\mu = - \int_{M} Luv d\mu = \int_{M} uLv d\mu.$$

The Bakry-Emery Ricci curvature associated with L is defined by

$$\operatorname{Ric}(L) = \operatorname{Ric} + \nabla^2 \phi,$$

and the *m*-dimensional Bakry-Emery Ricci curvature associated with *L* is defined by

$$\textit{Ric}_{m,n}(\textit{L}) = \textit{Ric} +
abla^2 \phi - rac{
abla \phi \otimes
abla \phi}{m-n}$$

Entropy for Witten Laplacian

Let *u* be a positive solution to the heat equation

 $\partial_t u = L u$.

Let

$$\operatorname{Ent}(u) = -\int_{M} u \log u d\mu.$$

Then, when M is compact or complete and with bounded geometry condition, it is well known that

$$\frac{d}{dt}\operatorname{Ent}(u(t)) = \int_{M} \frac{|\nabla u|^{2}}{u} d\mu,$$

$$\frac{d^{2}}{dt^{2}}\operatorname{Ent}(u(t)) = -2 \int_{M} [|\nabla^{2} \log u|^{2} + \operatorname{Ric}(L)(\nabla \log u, \nabla \log u)] u d\mu.$$

Thus, if $Ric(L) \ge K$, then

$$rac{d^2}{dt^2} \mathrm{Ent}(u(t)) \leq -2 \kappa rac{d}{dt} \mathrm{Ent}(u(t)).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

W-entropy formula for the Witten Laplacian

Let *u* be a positive solution of the heat equation $\partial_t u = Lu$. Let

$$H_m(u,t) := -\int_M u \log u d\mu - \frac{m}{2} (\log(4\pi t) + 1).$$

The Gaussian heat kernel on \mathbb{R}^m is given by

$$u_m(x,t) = rac{e^{rac{-|x|^2}{4t}}}{(4\pi t)^{rac{m}{2}}}$$

and its Boltzmann entropy is given by

$$H(u_m, t) = -\int_{\mathbb{R}^m} \log u_m(x) u_m(x) dx = \frac{m}{2} (\log(4\pi t) + 1)$$

Hence

$$H_m(u,t) = H(u,t) - H(u_m,t)$$

is the difference of the Boltzmann entropy for $\partial_t u = Lu$ on (M, μ) and the Boltzmann entropy for $\partial_t u = \Delta u$ on (\mathbb{R}^m, dx) . [Li2012]

Li-Yau Harnack inequality

Recall the Li-Yau Harnack inequality for Witten Laplacian.

Theorem (Li JMPA2005, Math Ann2012)

Let *M* be a complete Riemannian manifold with $Ric_{m,n}(L) \ge 0$. Let *u* be a positive solution to the heat equation

 $\partial_t u = L u$.

Then the Li-Yau Harnack inequality holds

 $\frac{|\nabla u|^2}{u^2}-\frac{Lu}{u}\leq \frac{m}{2t},$

i.e.,

$$L\log u+\frac{m}{2t}\geq 0.$$

Thus, under the condition $Ric_{m,n}(L) \ge 0$,

$$\frac{d}{dt}H_m(u,t) = \int_M \left(\frac{|\nabla u|^2}{u^2} - \frac{n}{2t}\right) u d\mu = -\int_M \left(L\log u + \frac{m}{2t}\right) u d\mu \le 0.$$

W-entropy for the Witten Laplacian

Theorem (Li Math Ann2012, S. Li-Li PJM2015)

Let M be a compact or complete Riemannian manifold with bounded geometry condition. Let $u = \frac{e^{-t}}{(4\pi t)^{m/2}}$ be a positive solution of $\partial_t u = Lu$. Define

$$W(u,t) := \frac{d}{dt}(tH_m(u,t)).$$

Then

$$W(u,t) = \int_{M} (t|\nabla f|^{2} + f - m) \frac{e^{-f}}{(4\pi t)^{m/2}} d\mu,$$

and

$$\frac{dW(u,t)}{dt} = -2\int_{M} \left(t \left| \nabla^{2} f - \frac{g}{2t} \right|^{2} + Ric_{m,n}(L)(\nabla f, \nabla f) \right) u d\mu$$
$$-\frac{2}{m-n} \int_{M} t \left(\nabla \phi \cdot \nabla f + \frac{m-n}{2t} \right)^{2} u d\mu.$$

Warped product approach to W-entropy formula

Let $\widetilde{M} = M \times N$. Define

$$\widetilde{g}=g_{\mathsf{M}}\oplus e^{-rac{\phi}{m-n}}g_{\mathsf{N}}.$$

Applying Ni's *W*-entropy formula to the heat equation on $(\widetilde{M}, \widetilde{g})$

$$\partial_t u = \Delta_{\widetilde{M}} u,$$

S. Li and Li (PJM2015) gave a new proof of the *W*-entropy formula for the Witten Laplacian, and proved the following

Proposition (S. Li-Li, PJM2015)

$$\left|\widetilde{\nabla}^2 f - -\frac{\widetilde{g}}{2\tau}\right|^2 = \left|\nabla^2 f - \frac{g}{2\tau}\right|^2 + \frac{2}{m-n}\left(\nabla\phi\cdot\nabla f + \frac{m-n}{2\tau}\right)^2$$

This gives a natural geometric interpretation for (RHS) in the W-entropy formula of the Witten Laplacian using the warped product metric.

A rigidity theorem for Perelman's W-entropy

Note that, under the assumption $Ric_{m,n}(L) \ge 0$, we have

$$\frac{d\mathcal{W}}{dt} = 0 \iff \begin{cases} \nabla_{ij}^2 f = \frac{g_{ij}}{2t}, \quad \forall i, j = 1, \dots, n, \\ Ric_{m,n}(L)(\nabla f, \nabla f) = 0, \\ \nabla \phi \cdot \nabla f + \frac{m-n}{2t} = 0, \end{cases}$$
$$\implies \begin{cases} Ric_{m,n}(L)(\log u, \log u) = 0, \\ L\log u + \frac{m}{2t} = 0. \end{cases}$$

This is the case when

$$M = \mathbb{R}^n, \ m = n, \ \phi(x) = C, \ u(x,t) = \frac{e^{-\frac{|x|^2}{4t}}}{(4\pi t)^{n/2}}.$$

Question

Can we prove a rigidity theorem for the W-entropy under the condition $Ric_{m,n}(L) \ge 0$ on n-dimensional complete Riemannian manifolds?

The following result gives an affirmative answer to the above question.

Theorem (Li Math Ann2012)

Under the same condition as above theorem, $Ric_{m,n}(L) \ge 0$. Then

$$\exists t = t_0 > 0$$
 such that $\frac{dW}{dt} = 0$,

if and only if for all t > 0, and $x \in M$,

$$M = \mathbb{R}^n, \ m = n, \ \phi(x) = C, \ u(x,t) = rac{e^{-rac{|x|^2}{4t}}}{(4\pi t)^{n/2}}.$$

The above results hold in the case of CD(0, m). After I proved the above results in 2009, many people in probability community and in geometry community asked me the following

Problem

What happens in the case of CD(K, m) or $CD(K, \infty)$?

Problem

What happens in the cae of time dependent metrics and potentials ?

Outline

Perelman's W-entropy for Ricci flow

W-entropy for heat equation of Witten Laplacian

- Case of CD(0, m)
- Case of CD(K, m)
- Case of $CD(K,\infty)$
- Time dependent case

3 W-entropy formula for geodesic flow on Wasserstein space

W-entropy for Langevin deformation on Wasserstein space

Theorem (S. Li-L. 2014)

Let M be a complete Riemannian manifold, $\phi \in C^2(M)$. Suppose that there exists a constant $K \ge 0$ such that

$$Ric_{m,n}(L) \geq -K.$$

Let u be a positive solution of $\partial_t u = Lu$. Then the Li-Yau-Hamilton Harnack inequality holds

$$\frac{\partial_t u}{u} - e^{-2\kappa t} \frac{|\nabla u|^2}{u^2} + e^{2\kappa t} \frac{m}{2t} \ge 0.$$

In particular, if K = 0, i.e., $Ric_{m,n}(L) \ge 0$, then the Li-Yau Harnack inequality holds

$$\frac{\partial_t u}{u} - \frac{|\nabla u|^2}{u^2} + \frac{m}{2t} \ge 0.$$

W-entropy and Harnack inequality

Let

$$H_{m,K}(u,t) = \operatorname{Ent}(u(t)) - \operatorname{Ent}(u_{m,K}(t))$$

where $u_{m,K}(t)$ is the density of the Gaussian distribution $N(0, \sigma_K^2(t))$ on \mathbb{R}^m , i.e.,

$$u_{m,K}(t,x) = \frac{1}{(4\pi\sigma_K^2(t))^{m/2}} \exp\left(-\frac{\|x\|^2}{4\sigma_K^2(t)}\right).$$

Note that

$$\operatorname{Ent}(u_{m,K}(t)) = \frac{m}{2} \left(\log(4\pi\sigma_K^2(t)) + 1 \right).$$

By direct calculation, we have

$$\frac{d}{dt}H_{m,\kappa}(u,t) = \int_{M} \left[\frac{|\nabla u|^2}{u^2} - m\frac{d}{dt}\log\sigma_{\kappa}(t)\right] u d\mu.$$

W-entropy and Harnack inequality

Suppose that we can prove the following Harnack inequality

$$\frac{|\nabla u|^2}{u^2} - \alpha_{\mathcal{K}}(t)\frac{\partial_t u}{u} \leq m\beta_{\mathcal{K}}(t).$$

Taking $\sigma_{\mathcal{K}}(t) \in C([0,\infty),\mathbb{R})$ be such that

$$\frac{d}{dt}\log\sigma_{\mathcal{K}}(t)=\beta_{\mathcal{K}}(t).$$

Then

$$\frac{d}{dt}H_{m,K}(u,t) = \int_{M} \left[\frac{|\nabla u|^2}{u^2} - \alpha_K(t)\frac{\partial_t u}{u} - m\beta_K(t)\right] u d\mu \leq 0.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

W-entropy and Harnack inequality

In the case CD(-K, m) holds, the Hamilton's Harnack inequality

$$\frac{|\nabla u|^2}{u^2} - \alpha(t)\frac{\partial_t u}{u} \le m\beta(t)$$

holds with

$$\alpha(t) = e^{2\kappa t}, \quad \beta(t) = \frac{e^{4\kappa t}}{2t},$$

Thus, under CD(-K, m), we have

$$\frac{d}{dt}H_{m,\kappa}(u,t)=\int_{M}\left[\frac{|\nabla u|^{2}}{u^{2}}-\frac{m}{2t}e^{4\kappa t}-e^{2\kappa t}\frac{\partial_{t}u}{u}\right]ud\mu.$$

Proposition (S. Li-Li arxiv204)

Under the CD(-K, m) condition, i.e., $Ric_{m,n}(L) \ge -K$, we have

$$\frac{d}{dt}H_{K,m}(u,t)\leq 0.$$

W-entropy formula for Hamilton's Harnack quantity

Theorem (S. Li-Li arxiv2014)

Define

$$W_{m,\kappa}(u,t)=rac{d}{dt}(tH_{m,\kappa}(u,t)).$$

Under the bounded geometry condition, we have

$$\begin{aligned} \frac{d}{dt}W_{m,K}(u,t) &= -2t\int_{M} \left| \nabla^{2}\log u + \left(\frac{K}{2} + \frac{1}{2t}\right)g \right|^{2}ud\mu \\ &-2t\int_{M}(\operatorname{Ric}_{m,n}(L) + Kg)(\nabla \log u, \nabla \log u)ud\mu \\ &-\frac{2t}{m-n}\int_{M} \left| \nabla\phi \cdot \nabla \log u - \frac{(m-n)(1+Kt)}{2t} \right|^{2}ud\mu \\ &-\frac{m}{2t}\left[e^{4Kt}(1+4Kt) - (1+Kt)^{2}\right]. \end{aligned}$$

Monotonicity and rigidity theorem

Theorem (S. Li-Li arxiv2014)

Assume that $Ric_{m,n}(L) \ge -K$, then for all $t \ge 0$,

$$\frac{d}{dt}W_{m,K}(u,t) \leq -\frac{m}{2t}\left[e^{4Kt}(1+4Kt)-(1+Kt)^2\right].$$

Moreover, the equality holds at some $t = t_0 > 0$ if and only if

$$\begin{aligned} \operatorname{Ric}_{m,n}(L) &= -\operatorname{K}g, \\ & 2\nabla^2 f &= \left(\frac{1}{t} + \operatorname{K}\right)g, \\ & \nabla \phi \cdot \nabla f &= -\frac{(m-n)(1+\operatorname{K}t)}{2t} \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

W-entropy formula for Hamilton's Harnack quantity

The above result is new even in the non weighted case.

Theorem (S. Li-Li arxiv2014)

Under the bounded geometry condition, we have

$$\frac{d}{dt}W_{n,K}(u,t) = -2t\int_{M} \left|\nabla^{2}\log u + \left(\frac{K}{2} + \frac{1}{2t}\right)g\right|^{2}ud\mu$$
$$-2t\int_{M}(\operatorname{Ric} + Kg)(\nabla \log u, \nabla \log u)ud\mu$$
$$-\frac{n}{2t}\left[e^{4Kt}(1 + 4Kt) - (1 + Kt)^{2}\right].$$

In particular, if $Ric \ge -K$, then for all $t \ge 0$,

$$\frac{d}{dt}W_{n,K}(u,t) \leq -\frac{n}{2t}\left[e^{4Kt}(1+4Kt)-(1+Kt)^2\right].$$

Moreover, the equality holds at some time $t = t_0 > 0$ if and only if

$$Ric = -Kg,$$
 $2\nabla^2 f = \left(\frac{1}{t} + K\right)g$

000

W-entropy formula under CD(-K, m)

By chaining the comparable model, we can obtain the following

Theorem (S. Li-Li PJM2015)

Under bounded geometry condition, define

$$W_{m,K}(u,t) = \int_M \left[t |\nabla f|^2 + f - m \left(1 + \frac{Kt}{2}\right) \right] u d\mu.$$

Then

$$\begin{aligned} \frac{d}{dt}W_{m,K}(u,t) &= -2t\int_{M} \left|\nabla^{2}f - \left(\frac{1}{2t} + \frac{K}{2}\right)g\right|^{2}ud\mu \\ &- 2t\int_{M} (\operatorname{Ric}_{m,n}(L) + Kg)\left(\nabla f, \nabla f\right)ud\mu \\ &- \frac{2t}{m-n}\int_{M} \left|\nabla\phi\cdot\nabla f - (m-n)\left(\frac{1}{2t} + \frac{K}{2}\right)\right|^{2}ud\mu. \end{aligned}$$

This extends a previous result due to J. Li and Xu (AIM2010) for the case $L = \Delta$ and m = n.

Monotonicity and rigidity theorem

Theorem (S. Li-Li PJM 2015)

Suppose that $Ric_{m,n}(L) \ge -K$. Then

$$\frac{d}{dt}W_{m,K}(u,t)\leq 0.$$

Moreover, the equality holds at some time $t = t_0 > 0$ if and only if

$$\begin{aligned} \operatorname{Ric}_{m,n}(L) &= -Kg, \\ & 2\nabla^2 f &= \left(\frac{1}{t} + K\right)g, \\ & \nabla \phi \cdot \nabla f &= (m-n)\left(\frac{1}{2t} + \frac{K}{2}\right). \end{aligned}$$

Thus, (M, g, ϕ) is a quasi-Einstein manifold, and the potential f satisfies the soliton equation

$$Ric_{m,n}(L)+2\nabla^2 f=\frac{g}{t}.$$

Outline

Perelman's W-entropy for Ricci flow

W-entropy for heat equation of Witten Laplacian

- Case of *CD*(0, *m*)
- Case of *CD*(*K*, *m*)
- Case of $CD(K,\infty)$
- Time dependent case

3 W-entropy formula for geodesic flow on Wasserstein space

W-entropy for Langevin deformation on Wasserstein space

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem (Li 2013 arxiv SPA2015)

Let M be a complete Riemannian manifold. Suppose that there exists a constant $K \ge 0$ such that

 $Ric(L) \geq -K$.

Let u be a positive and bounded solution to the heat equation

 $\partial_t u = L u$,

Then, the optimal Hamilton Harnack inequality holds

$$|\nabla \log u|^2 \leq \frac{2K}{e^{2Kt}-1}\log(A/u).$$

where $A = \sup\{u(t, x) : x \in M, t \ge 0\}.$

Corollary (Li 2013arxiv SPA2015)

Let M be a complete Riemannian manifold. Suppose that there exists a constant $K \ge 0$ such that

$$Ric(L) \geq -K.$$

Let u be a positive and bounded solution to the heat equation

 $\partial_t u = L u$,

The Hamilton Harnack inequality holds

$$|\nabla \log u|^2 \leq \left(\frac{1}{t} + 2K\right) \log(A/u).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The *W*-entropy formula for $CD(K, \infty)$ case

Theorem (S. Li-L. arxiv2014)

Let $u(\cdot, t) = P_t f$ be a positive solution to the heat equation $\partial_t u = L u$ with $u(\cdot, 0) = f \ge 0$. Suppose $Ric + \nabla^2 \phi \ge K$, where $K \in \mathbb{R}$. Let

$$H_{\mathcal{K}}(f,t) = D_{\mathcal{K}}(t) \int_{\mathcal{M}} (P_t(f\log f) - P_t f\log P_t f) d\mu,$$

where $D_{K}(t) = \frac{K}{1-e^{-2Kt}}$. Then, for all t > 0, $\frac{d}{dt}H_{K}(f,t) \leq 0$, and

$$\frac{d^2}{dt^2}H_{\mathcal{K}}(t)+\frac{2\mathcal{K}\coth(\mathcal{K}t)}{dt}\frac{d}{dt}H_{\mathcal{K}}(t)\leq-2D_{\mathcal{K}}(t)\int_{M}|\nabla^2\log P_t f|^2P_t f d\mu.$$

Moreover, the equality holds if and only if (M, g, ϕ) is a Ricci soliton

$$Ric + \nabla^2 \phi = Kg.$$

The *W*-entropy formula for $CD(K, \infty)$ case

Theorem (S. Li-L. arxiv2014)

Define the W-entropy by the revised Boltzmann entropy formula

$$W_{\mathcal{K}}(f,t) = H_{\mathcal{K}}(f,t) + \frac{\sinh(2\mathcal{K}t)}{2\mathcal{K}}\frac{d}{dt}H_{\mathcal{K}}(f,t).$$

Then, for all $K \in \mathbb{R}$, and for all t > 0, we have

$$\frac{d}{dt}W_{K}(f,t) + \frac{e^{2Kt} + 1}{2} \int_{M} |\nabla^{2} \log P_{t}f|^{2} P_{t}fd\mu$$
$$= -\frac{e^{2Kt} + 1}{2} \int_{M} (Ric(L) - K)(\nabla \log P_{t}f, \nabla \log P_{t}f)P_{t}fd\mu.$$

In particular, if $Ric(L) \ge K$, then

$$\frac{d}{dt}W_{\mathcal{K}}(f,t)+\frac{e^{2\mathcal{K}t}+1}{2}\int_{\mathcal{M}}|\nabla^2\log P_tf|^2P_tfd\mu\leq 0,\quad\forall t>0.$$

Moreover, the equality holds if and only if $Ric + \nabla^2 \phi = Kg$.

900

(ロンス語とスピンスほど)は

Outline

Perelman's W-entropy for Ricci flow

W-entropy for heat equation of Witten Laplacian

- Case of *CD*(0, *m*)
- Case of *CD*(*K*, *m*)
- Case of $CD(K,\infty)$
- Time dependent case

3 W-entropy formula for geodesic flow on Wasserstein space

W-entropy for Langevin deformation on Wasserstein space

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Let *M* be a complete Riemannian manifold equipped with a family of time dependent metrics g(t) and potentials $\phi(t)$.

Let

$$L = \Delta_{g(t)} - \nabla_{g(t)}\phi(t) \cdot \nabla_{g(t)}$$

be the time dependent Witten Laplacian on $(M, g(t), \phi(t))$.

Let $u(\cdot, t) = P_t f$ be a positive solution to the heat equation

$$\partial_t u = L u$$
,

with the initial condition $u(\cdot, 0) = f$, where $f \ge 0$ is a measurable function on *M*.

Logarithmic Sobolev inequalities

Theorem (S. Li-L. 2014)

Let M be a complete Riemannian manifold equipped with a K-super Perelman Ricci flow

$$\frac{1}{2}\frac{\partial g}{\partial t}+\operatorname{Ric}(L)\geq -K.$$

where $K \ge 0$ is a constant independent of $t \in [0, T]$, $f \ge 0$. Then, the following logarithmic Sobolev inequality holds

$$P_t(f \log f) - P_t f \log P_t f \leq \frac{e^{2Kt} - 1}{2K} P_t\left(\frac{|\nabla f|^2}{f}\right), \quad \forall t \in [0, T],$$

and the reversal logarithmic Sobolev inequality holds

$$\frac{|\nabla P_t f|^2}{P_t f} \leq \frac{2K}{1 - e^{-2Kt}} \left(P_t(f \log f) - P_t f \log P_t f \right), \quad \forall t \in [0, T].$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem (S. Li-L. 2014)

Let M be a complete Riemannian manifold. Suppose that there exists a constant $K \ge 0$ such that

 $\frac{1}{2}\frac{\partial g}{\partial t}+Ric(L)\geq -K.$

Let u be a positive and bounded solution to the heat equation

 $\partial_t u = L u$,

Then, the optimal Hamilton Harnack inequality holds

$$|\nabla \log u|^2 \leq \frac{2K}{e^{2Kt}-1}\log(A/u).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

where $A = \sup\{u(t, x) : x \in M, t \ge 0\}.$

Corollary (S. Li-L. 2014)

Let M be a complete Riemannian manifold. Suppose that there exists a constant $K \ge 0$ such that

 $\frac{1}{2}\frac{\partial g}{\partial t}+\operatorname{Ric}(L)\geq -K.$

Let u be a positive and bounded solution to the heat equation

 $\partial_t u = L u$,

The Hamilton Harnack inequality holds

$$|
abla \log u|^2 \leq \left(rac{1}{t} + 2K
ight)\log(A/u).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem (S. Li-L. 2014)

Let *M* be a compact Riemannian manifold, $\phi \in C^2(M)$. Suppose that there exists a constant $K \ge 0$ such that

 $\frac{1}{2}\frac{\partial g}{\partial t}+\operatorname{Ric}_{m,n}(L)\geq -K.$

Let *u* be a positive solution of $\partial_t u = Lu$. Then

$$\frac{\partial_t u}{u} - e^{-2\kappa t} \frac{|\nabla u|^2}{u^2} + e^{2\kappa t} \frac{m}{2t} \ge 0.$$

In particular, if K = 0, i.e., $\frac{1}{2} \frac{\partial g}{\partial t} + Ric_{m,n}(L) \ge 0$, then the Li-Yau Harnack inequality holds

$$\frac{\partial_t u}{u} - \frac{|\nabla u|^2}{u^2} + \frac{m}{2t} \ge 0.$$

W-entropy for time dependent Witten Laplacian

Theorem (S. Li-Li PJM2015)

Let *M* be a compact manifold, $\{g(t), \phi(t), t \in [0, T]\}$ satisfies

$$\frac{\partial \phi}{\partial t} = \frac{1}{2} \operatorname{Tr} \frac{\partial g}{\partial t}.$$

Let

$$u(x,t) = rac{e^{-f(x,t)}}{(4\pi t)^{m/2}}$$

be the solution of the heat equation $\partial_t u = Lu$. Then

$$\frac{d\mathcal{W}(u,t)}{dt} = -2\int_{M} t\left[\left|\nabla^{2}f - \frac{g}{2t}\right|^{2} + \left(\frac{1}{2}\frac{\partial g}{\partial t} + \operatorname{Ric}_{m,n}(L)\right)(\nabla f,\nabla f)\right] ud\mu$$
$$-\frac{2}{m-n}\int_{M} t\left(\nabla\phi\cdot\nabla f + \frac{m-n}{2t}\right)^{2} ud\mu.$$

Corollary (S. Li-Li PJM2015)

Let M be a compact manifold. Suppose that g(t) is a Perelman's super m-Ricci flow

$$\frac{1}{2}\frac{\partial g}{\partial t}+\operatorname{\it Ric}_{m,n}(L)\geq 0,$$

and f(t) satisfies the conjugate equation

$$\frac{\partial \phi}{\partial t} = \frac{1}{2} \mathrm{Tr} \frac{\partial g}{\partial t}.$$

Let u be a positive solution of the heat equation $\partial_t u = Lu$. Then

$$\frac{dW(u,t)}{dt} \leq 0.$$

W-entropy formula for geodesic flow on Wasserstein space

Let *M* be a compact or complete Riemannian manifold, $\phi \in C^2(M)$. Consider the geodesic flow on the Wasserstein space over (M, μ) equipped with Otto's infinite dimensional Riemannian metric

$$rac{\partial
ho}{\partial t} +
abla_{\phi}^{*}(
ho
abla f) = \mathbf{0},$$
 $rac{\partial f}{\partial t} + rac{1}{2} |
abla f|^{2} = \mathbf{0}.$

Let

$$H_m(\rho,t) := -\int_M \rho \log \rho d\mu - \frac{m}{2} \left(\log(4\pi t^2) + 1 \right),$$

and define the W-entropy for the Witten Laplacian by

$$W(\rho, t) := \frac{d}{dt}(tH_m(\rho, t))$$

(日) (日) (日) (日) (日) (日) (日)

Theorem (S. Li-X.D. Li 2012, 2015)

Let M be a compact (or complete) Riemannian manifold, ($\rho(t)$, f(t)) be the smooth solution to the above equations (with suitable growth condition). Then

$$\frac{dW(\rho,t)}{dt} = -\int_{M} t \left[\left| \nabla^{2} f - \frac{g}{t} \right|^{2} + Ric_{m,n}(L)(\nabla f, \nabla f) \right] \rho d\mu$$
$$-\frac{1}{m-n} \int_{M} t \left(\nabla f \cdot \nabla \phi + \frac{m-n}{t} \right)^{2} \rho d\mu.$$

The rigidity model is $N(0, t^2)$ on $M = \mathbb{R}^n$, i.e., m = n, and

$$\overline{\rho}(t) = rac{1}{(4\pi t^2)^{m/2}} e^{-rac{|x|^2}{4t^2}}, \quad \overline{f}(t) = rac{|x|^2}{2t^2}.$$

As a corollary of our *W*-entropy formula on the Wasserstein space, we can recapture the following result due to Lott-Villani.

Theorem (Lott-Villani Ann. Math. 2009, Lott 2009)

Let M be a compact Riemannian manifold. Suppose $Ric \ge 0$. Then

 $t \operatorname{Ent}(\rho(t)) + nt \log t$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

is convex along the geodesic $(\rho(t), f(t))$ on $(P_2(M), dv)$.

Problem

How to explain this similarity between the W-entropy formula for the Witten Laplacian and for the optimal transport problem ?

- The vanishing viscosity limit using the Cole-Hopf transformation does not provide a good answer to this problem.
- Inspired by J.-M. Bismut's work, S. Li and Li (2013) introduced a deformation of geometric flows on the Wasserstein space, which interpolates the heat equation on the underlying manifold *M*, and the geodesic flow on the Wasserstein space over *M*.

(日) (日) (日) (日) (日) (日) (日)

• A discussion with C. Villani on 31 May 2013.

Our work is based on the following well-known observation, inspired by J-M. Bismut's work on the deformation of the Witten Laplacian and geodesic flow on the cotangent bundle,

Proposition (S. Li-Li 2013)

Let M be a complete Riemannian manifold, $V \in C^2(M)$. Let (ρ_t, v_t) be defined as follows

$$\dot{
ho} = rac{m{v}}{m{c}}, \ \dot{m{v}} = -rac{m{v}}{m{c}^2} + rac{
abla m{V}(
ho)}{m{c}}.$$

Then ρ_t satisfies the Langevin equation

$$\boldsymbol{c}^{2}\ddot{\boldsymbol{\rho}}=-\dot{\boldsymbol{\rho}}+\nabla \boldsymbol{V}(\boldsymbol{\rho}).$$

(日) (日) (日) (日) (日) (日) (日)

Interpolation between geodesics and gradient flow

Now in the Wasserstein space $\mathcal{P}_2(M, \mu)$ over M, define

$$H(\rho,\dot{\rho}) = \frac{1}{2} \|\dot{\rho}\|^2 + \int_M \rho \log \rho d\mu.$$

Inspired by J.-M. Bismut, S. Li and Li (2013) introduced the following geometric flows on $\mathcal{P}_2(M, \mu)$:

$$\mathbf{v} = -\mathbf{c}\nabla^*_{\mu} \cdot (\rho \nabla \phi),$$

This yields

$$\begin{array}{lll} \partial_t \rho + \nabla^*_{\mu} \cdot \left(\rho \nabla \phi \right) &=& \mathbf{0}, \\ \mathbf{c}^2 (\partial_t \phi + \frac{1}{2} |\nabla \phi|^2) &=& -\phi + \log \rho + \mathbf{1}. \end{array}$$

When c = 0, $\phi = \log \rho + 1$, ρ satisfies the backward heat equation

$$\partial_t \rho = -L\rho_s$$

and when $\pmb{c} = \infty$, (ρ, ϕ) is a geodesic flow on $\pmb{P}_2(\pmb{M}, \mu)$

$$\partial_t \rho + \nabla^*_{\mu} \cdot (\rho \nabla \phi) = 0,$$

 $\partial_t \phi + \frac{1}{2} |\nabla \phi|^2 = 0.$

Link with compressible Euler equation with damping

Let $u = \nabla \phi$, then *u* satisfies the compressible Euler equation with damping

$$\partial_t u + u \cdot \nabla u = -\frac{1}{c^2}u + \frac{1}{c^2}\nabla\log\rho.$$

Theorem (S. Li-Li 2015)

Let M be a compact Riemannian manifold, $\rho_0 > 0$, $\phi_0 \in C^{\infty}(M)$. Then the Cauchy problem to the Langevin deformation flow equation has a unique local smooth solution ($\rho(t)$, $\phi(t)$) on $[0, T] \times M$ with initial data (ρ_0, ϕ_0).

Theorem (S. Li-Li 2015)

Let M be a compact Riemannian manifold. Then for small initial data (ρ_0, ϕ_0) (in suitable Sobolev norm), there is a unique global smooth solution to the Cauchy problem of the Langevin deformation flow equation.

Interpolation between geodesics and gradient flow

Theorem (S. Li-Li 2013) For $c \in [0, \infty)$, we have $\frac{d^2}{dt^2}H(\rho,\dot{\rho}) = 2\int_{\mathcal{H}} [c^{-2}|\nabla\phi-\rho^{-1}\phi|^2 + |\mathrm{Hess}\phi|^2 + (\mathrm{Ric}+\nabla^2 f)(\nabla\phi,\nabla\phi)]\rho d\mu.$ When c = 0, $\phi = \log \rho + 1$, $\partial_t \rho = -L\rho$, and $\frac{d^2}{dt^2} \operatorname{Ent}(\rho(t)) = 2 \int_{\Omega} [|\operatorname{Hess}\phi|^2 + (\operatorname{Ric} + \nabla^2 f)(\nabla\phi, \nabla\phi)]\rho d\mu.$ When $c = \infty$, (ρ, ϕ) is a geodesic flow on $P_2(M, \mu)$, and $\frac{d^2}{dt^2} \operatorname{Ent}(\rho(t)) = \int_{M} [|\operatorname{Hess}\phi|^2 + (\operatorname{Ric} + \nabla^2 f)(\nabla\phi, \nabla\phi)]\rho d\mu.$

Problem (S. Li-Li 2013)

Can we prove an analogue of the W-entropy formula for the deformation flow, and prove a rigidity theorem under suitable curvature-dimension condition?

Theorem (S. Li-Li 2015) For any c > 0, we have $\left(\frac{d^2}{dt^2} + \frac{1}{c^2}\frac{d}{dt}\right)\operatorname{Ent}(\rho(t)) = \int_{M} [|\operatorname{Hess}\phi|^2 + \operatorname{Ric}(L)(\nabla\phi,\nabla\phi)]\rho d\mu$ $+\frac{1}{c^2}\int_{\mathcal{U}}\frac{|\nabla\rho|^2}{\rho}d\mu.$ $\left(\frac{d^2}{dt^2} + \frac{2}{c^2}\frac{d}{dt}\right)H(\rho(t),\phi(t)) = \int_{M} [|\text{Hess}\phi|^2 + Ric(L)(\nabla\phi,\nabla\phi)]\rho d\mu$ $+\frac{2}{c^2}\int_M\frac{|\nabla\rho|^2}{\rho}d\mu.$ ロト イロト イミト イヨト ニョ

うへで

Theorem (S. Li-Li 2015)

Define

$$\begin{aligned} W_{H,c}(t) &= H(\rho(t),\phi(t)) + \frac{c^2(1-e^{\frac{2t}{c^2}})}{2}\frac{d}{dt}H(\rho(t),\phi(t)), \\ W_c(t) &= \operatorname{Ent}(\rho(t)) + c^2(1-e^{\frac{t}{c^2}})\frac{d}{dt}\operatorname{Ent}(\rho(t)). \end{aligned}$$

Note that, as $c \to \infty$, $c^2(1 - e^{\frac{t}{c^2}}) \to t$. Then

$$\frac{d}{dt}W_{H,c}(t) = (1 - e^{\frac{2t}{c^2}})\int_M \frac{|\nabla\rho|^2}{\rho}d\mu + \int_M [|\text{Hess}\phi|^2 + Ric(L)(\nabla\phi,\nabla\phi)]\rho d\mu,$$

$$\frac{d}{dt}W_c(t) = (1 - e^{\frac{t}{c^2}})\int_M \frac{|\nabla\rho|^2}{\rho}d\mu + \int_M [|\text{Hess}\phi|^2 + Ric(L)(\nabla\phi,\nabla\phi)]\rho d\mu.$$

In particular, if $Ric(L) \ge 0$, then for all c > 0, we have

$$\frac{d}{dt}W_{H,c}(t) \leq 0, \quad \frac{d}{dt}W_c(t) \leq 0, \quad \forall t \geq 0.$$

The model: deformation of flows on $P_2(\mathbb{R}^m, dx)$

Let $V(u) = -\frac{1}{2} \log u$, u > 0. Then $V'(u) = -\frac{1}{2u}$. Consider the Newton-Langevin equation on $T^* \mathbb{R}^+ = \mathbb{R}^+ \times \mathbb{R}$

$$c^2(\ddot{u}+\dot{u})=-\frac{1}{2u}.$$

Note that $V(u) = -\frac{1}{2} \log u$ is locally Lipschitz on $(0, +\infty)$. By Picard theorem, for any given T > 0, and for given u(T) > 0 and $\dot{u}(T) \in \mathbb{R}$, there exists a unique solution u(t) on an interval $[T - \delta, T]$ for some $\delta > 0$.

Let $\beta : [T - \delta, T] \rightarrow \mathbb{R}$ be a smooth solution to the followings ODE

$$c^2\dot{\beta} + \beta = -m\log u - \frac{m}{2}\log(4\pi) + 1.$$

The model on $P_2(\mathbb{R}^m, dx)$

Theorem (S. Li-Li 2014)

Let $\alpha(t) = \frac{u'}{u}$ and define

$$\phi_m(x,t) = \frac{\alpha(t)}{2} ||x||^2 + \beta(t),$$

$$\rho_m(x,t) = \frac{1}{(4\pi u^2(t))^{m/2}} e^{-\frac{||x||^2}{4u^2(t)}}$$

Then (ρ_m, ϕ_m) is a solution of the equations of the deformation flow on

$$\begin{array}{lll} \partial_t \rho + div(\rho \nabla \phi) &=& \mathbf{0}, \\ c^2 \left(\partial_t \phi + \frac{1}{2} |\nabla \phi|^2 \right) &=& -\phi + \log \rho + \mathbf{1}. \end{array}$$

By calculation, we have

$$Ent(\rho_m(t)) = -\frac{m}{2}[1 + \log(4\pi u^2(t))].$$

(日) (日) (日) (日) (日) (日) (日)

Let m > n, $(\rho(t), \phi(t))$ be the deformation of flows on $T^*P_2(M, \mu)$

$$\begin{aligned} \partial_t \rho + \nabla^*_{\mu} \cdot (\rho \nabla \phi) &= 0, \\ c^2 (\partial_t \phi + \frac{1}{2} |\nabla \phi|^2) &= -\phi + \log \rho + 1. \end{aligned}$$

Define

$$H_m(\rho(t)) = \operatorname{Ent}(\rho(t)) - \operatorname{Ent}(\rho_m(t)).$$

Theorem (S. Li-Li 2015)

$$\begin{aligned} \frac{d^2}{dt^2} H_m(\rho(t)) + \left(2\alpha(t) + \frac{1}{c^2}\right) \frac{d}{dt} H_m(\rho(t)) \\ = \int_M \left[|\text{Hess}\phi - \alpha(t)g|^2 + Ric_{m,n}(L)(\nabla\phi,\nabla\phi) \right] \rho d\mu \\ + (m-n) \int_M \left| \alpha(t) + \frac{\nabla\phi \cdot \nabla f}{m-n} \right|^2 \rho d\mu + \frac{1}{c^2} \int_M \frac{|\nabla\rho|^2}{\rho} d\mu. \end{aligned}$$

In case m = n, f = 0, let $(\rho(t), \phi(t))$ be solution to

$$\partial_t \rho + \nabla \cdot (\rho \nabla \phi) = \mathbf{0},$$

$$c^2 (\partial_t \phi + \frac{1}{2} |\nabla \phi|^2) = -\phi + \log \rho + 1.$$

Define

$$H_n(\rho(t)) = \operatorname{Ent}(\rho(t)) - \operatorname{Ent}(\rho_n(t)).$$

Theorem (S. Li-Li 2015)

$$\frac{d^2}{dt^2}H_n(\rho(t)) + \left(2\alpha(t) + \frac{1}{c^2}\right)\frac{d}{dt}H_n(\rho(t))$$

$$= \int_M \left[\left|\operatorname{Hess}\phi - \alpha(t)g\right|^2 + \operatorname{Ric}(\nabla\phi,\nabla\phi)\right]\rho d\nu + \frac{1}{c^2}\int_M \frac{|\nabla\rho|^2}{\rho}d\nu.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Note that, on $M = \mathbb{R}^n$, the model (ρ_n, ϕ_n) on $(P_2(\mathbb{R}^n), dx)$

$$\phi_n(x,t) = \frac{\alpha(t)}{2} ||x||^2 + \beta(t),$$

$$\rho_n(x,t) = \frac{1}{(4\pi u^2(t))^{n/2}} e^{-\frac{||x||^2}{4u^2(t)}}.$$

satisfies

$$\text{Hess}\phi_n = \alpha(t)g.$$

Moreover

$$\frac{d^2}{dt^2}H_n(\rho_n(t))+\left(2\alpha(t)+\frac{1}{c^2}\right)\frac{d}{dt}H_n(\rho_n(t))=\frac{1}{c^2}\int_M\frac{|\nabla\rho_n|^2}{\rho_n}dv.$$

Thus, (ρ_n, ϕ_n) gives the rigidity model for the entropy inequality.

Let us introduce the W-entropy be such that

$$\frac{dW}{dt}(\rho(t)) = \frac{d^2}{dt^2}H(\rho(t)) + \left(2\alpha(t) + \frac{1}{c^2}\right)\frac{d}{dt}H(\rho(t)) - \frac{1}{c^2}\int_M \frac{|\nabla\rho|^2}{\rho}dv.$$

By calculation, we have

$$\frac{d}{dt}W(\rho_n(t))=-n\alpha^2(t).$$

In view of this, the above theorem is equivalent to the following comparison theorem

$$\frac{d}{dt}(W(\rho(t)) - W(\rho_n(t))) = \int_M \left[|\text{Hess}\phi - \alpha(t)g|^2 + Ric(\nabla\phi, \nabla\phi) \right] \rho dv.$$

Thus, if $Ric \ge 0$, then

$$\frac{d}{dt}(W(\rho(t)) \geq \frac{d}{dt}W(\rho_n(t))), \quad \forall t > 0.$$

Moreover, if one can extend this to complete Riemannian manifolds, then the equality holds at some $t = t_0 > 0$ if and only if

$$\boldsymbol{M}=\mathbb{R}^n, \ \boldsymbol{\rho}=\boldsymbol{\rho}_n, \ \boldsymbol{\phi}=\boldsymbol{\phi}_n.$$

・ロト・西ト・西ト・日下・ のくの

Thank you !

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●