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1. Entropy and the Zygmund space

Zygmund space

e (M,B,m) :ameasure space

e m(M)=1

o () =FBlfl= [ fdm



Let ¢: [0,00) — R be defined by

(1) ¢(r) = log(1 + x)

graph of ¢(x) = log(1 + x)



Set

@ 8@ = | é@w)dy=1+e)log1+2) -

A

Graphsof ® and zlogx — x



The Zygmund space Z = L log L is defined by

(3) Z ={f; E[®(|f])] < oo}
The norm Ng in Z is defined by

(4) Ng(f) = inf{X; E[®(|f|/A)] < 1}

The dual space of Z can be defined as follows. Let 1 be the inverse
function of ¢:

Y(x) = e” — 1.
Set

W)= [ w@dy= [ (" -1dy=e -z 1.



The dual space of Z is the Orlicz space associated with ¥. The
following inequality is fundamental:

() ry < @(z) + ¥(y).
By using this inequality we can show

(6) [flls < (e =1)Na(f).

So Z is smaller than L. Moreover we have

Na(f — (f)) = 2Na(f).



Entropy

Define an entorpy of f > 0 by

(7) Ent(f) = E[f log(f/(f))]-

We discuss the relation between the Zygmunt space and the entropy.

Proposition 1. For any non-negative function f, we have

(8) (NE[R(f = (£)/{HHD] < Ent(f)

f (f) > 1, we have another inequality.




Proposition 2. For any nonnegative function f with (f) > 1, we
have

(9) E[®(|f = (£)D] < {f) Ent(f).

Now we have

Proposition 3. For any non-negative function f, we have

(10)  Na(f — (f)) < max{\/(f), VEnt(f)}/Ent(f).




Now we will prove the reversed inequality. Recall

(11) Ent(f) = E[f log(f/{f))]

Proposition 4. For any non-negative function f, we have

(f)
log(4/e)

(12) Ent(f) < E[®(|(f = (£))/{HD]-

f f satisfy (f) < 1, we have the following.
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Proposition 5. For any non-negative function f with (f) < 1, we
have

(13) Ent(f) < E[®(]f — ()] + 2.

Proposition 6. For any non-negative function f, we have

(14) Ent(f) < 3Nas(f — (f))-




The logarithmic Sobolev inequality

Let us recall the logarithmic Sobolev inequality.
e £ : aDirichlet form
e {T;} : a Markovian semigroup in L?(m)
e 2 : the generator of {T;}

The following inequality is called a logarithmic Sobolev inequality:

(15) /M £2(2) log(£()?/||F12) dm < ——£(f, f).

YLS
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If we assume the logarithmic Sobolev inequality (15), it is known that
for any non-negative function f, we have

(16) Ent (T, f) < e ?7:s! Ent(f).
We set
(17) Yz—sz = —lim —log ||T; — m| z— 2z

t
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Combining the previous results, we have

Theorem 7. We have the following inequality:

(18) YLs < Yz 2z

Under the assumption of the logarithmic Sobole inequality, we can
show that tha independence of the spectrum.

Assume 2 is normal. Then o (%A,,) is independentof p (1 < p < o0).
Here 21, is the generator in LP.

Question: What happens in the Zygmund space?



2. Operators in Zygmund space

We define an Orlitz norm || ||e as follows:

(19) | flle = sup{E|g|f|]; E[¥(g)] < 1}.

Here non-negative functions g run over all fundtions with
E[¥(g)] < 1. We also have

(20) |flle = sup{E[g|f|]; Ele? — g] < 2}.

Tow norms Ng and || || are equivalent:

(21) Ns(f) < |[flle £ 2Na(f)-

14
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Proposition 8. A linear operatorT in Z is bounded if and only if
there exist positive constants A, B such that

(22) ITflle < AE[®(]|f])] + B.

Corollary 9. A linear operator T in Z is bounded if and only if
there exist positive constants A, B such that for all non-negative
function g with E[e9] < 4, we have

(23) Elg|Tf|] < AE|[|f|log|f|] + B.
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3. Spectrum of the Kummer operator

In this section, we consider the Kummer operator

e M = [0,00)

1
I'(la+1)

o H = L*([0,00),m)

r*e *dx

e m(dx) =

lezadez (1 a—w)%
We assume that o« > 0.

We give a representation of the resolvent by using the confluent
hypergeometric functions.
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Confluent hypergeometric functions

A confluent hypergeometric functions is defined by

o @)

(24) 1Fi(a;c5x) = Z (@)n x".

(c)nn!

n=0

Here (a),, stands for the Pochhammer symbol:

I'(a + n) _ <(a,(a—|—1)---(a,—|—n—1) n > 1
I'(a) 1 n=20

\

(25)  (a)n =

1 F1 (a; c; x) satisfies the following Kummer differential equation:

(26) zu" + (¢ — x)u’ = au.
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This means that ; F; (a; c; ) Is an “eigen-function” of the Kummer
operator inthe caseof 1 + a = c.

If 1 Fy(a;c;x) € L?, then 1 Fy(a;c; x) is really an eigen-value. We
set

(27) M(a,1+ asx) = 1F1(a;1 + a;x).

This function is called the Kummer function. Another independent
solution is

(28)

I'(—a) I'(a)

M(a,14a; x)-

Ula,1+esz) = mr—3 T'(a)

r “M((a—a,1—a;x)

which is called the Kummer function of the second kind. Their
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Wronskian is

P(l _l_ a) w—a—lew
I'(a) .

W(M(a'a]-_'_a; ')9U(a31+a; ))(CU) = —

It is known that Laguerre polynomials are eigen-functions. In fact, we
have

(a+ 1),

n!

(29) LY (x) = M(—n,a + 15 x).

Thus the spectrum of 2 is {0, —1, —2,--- }.

The asymptotic behavior is crucial in the computation of the resolvent.
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When x — 0, we have

(30) M(a,1+ a;x) — 1,
sx) ~ L(e) x ¢
(31) U(a,1+ a;x) I'(a) :

When o« = 0, x—< should be log «.

When x — oo, we have
P(l _I_a) r _a—1—«o
e’x .
I'(a)
(33) U(a,1+ a;x) ~x™°

(32) M(a,1+ asx) ~

Herea,1+ a #0,—1,—2,....

Recall that o« > 0. We also assume thata # 0, —1, —2,.... Then
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the resolvent G, = (a — 1)~ ! has the following kernel expression.

(34 Gaf(@) = | Galw.v)f(y) dy
where
( 1
—M(a,1+ a;y)U(a,1 + a,x) y < x,
yW (y)
Ga(wa y) = <
—M(a,1 +a;x)U(a,1+ o,y y>x
\ ( ad )yVV(y)
W is the Wronskian. Hence
I
() M(a,1+ a;y)U(a,1 + a,x)e” Yy y < x,
I'l+ «)
Ga(may) =

I'(a)
(T'(1 + )

M(a,1+ a;x)U(a,1 + a,y)e” Yy y > .




G, is a bounded operator in L2. What happens in the case of
Zygmund space?

22
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4. The spectrum of the Kummer operaotr in Z

Now we can compute the spectrum of 1 in Z. Since we have the
kenel expression of the resolvent,we can compute the spectrum.

Theorem 10. The set of point spectums of 2(is {z; Rz < —1} U

{—1} N {0}.

Theorem 11. When Ra > —1, a belongs to the resolvent set.




The spectrum in Z.
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In Theorem 7, we have shown v, < vz_,z. In this example
v.s = i and vz_,z = 1, which means that yr.s # vz z.
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Thanks !
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