The logarithmic Sobolev inequality and the convergence of a semigroup in the Zygmund space

Ichiro Shigekawa (Kyoto University)
August 31, 2015, Tohoku University
Stochastic Snalysis and Application:
German-Japanese bilateral research project
URL: http://www.math.kyoto-u.ac.jp/־ichiro/

Contents

1. Entropy and the Zygmund space
2. Operators on the Zygmund space
3. The spectrum of the Kummer operator
4. The spectrum of the Kummer operator in \boldsymbol{Z}
5. Entropy and the Zygmund space

Zygmund space

- ($M, \mathcal{B}, m)$: a measure space
- $m(M)=1$
- $\langle f\rangle=E[f]=\int_{M} f d m$

Let $\phi:[0, \infty) \rightarrow \mathbb{R}$ be defined by
(1)

$$
\phi(x)=\log (1+x)
$$

graph of $\phi(x)=\log (1+x)$

Set

$$
\begin{equation*}
\Phi(x)=\int_{0}^{x} \phi(y) d y=(1+x) \log (1+x)-x . \tag{2}
\end{equation*}
$$

Graphs of Φ and $x \log x-x$

The Zygmund space $Z=L \log L$ is defined by

$$
\begin{equation*}
Z=\{f ; E[\Phi(|f|)]<\infty\} \tag{3}
\end{equation*}
$$

The norm N_{Φ} in Z is defined by

$$
\begin{equation*}
N_{\Phi}(f)=\inf \{\lambda ; E[\Phi(|f| / \lambda)] \leq 1\} \tag{4}
\end{equation*}
$$

The dual space of Z can be defined as follows. Let ψ be the inverse function of ϕ :

$$
\psi(x)=e^{x}-1
$$

Set

$$
\Psi(x)=\int_{0}^{x} \psi(y) d y=\int_{0}^{x}\left(e^{y}-1\right) d y=e^{x}-x-1
$$

The dual space of Z is the Orlicz space associated with $\boldsymbol{\Psi}$. The following inequality is fundamental:
(5)

$$
x y \leq \Phi(x)+\Psi(y)
$$

By using this inequality we can show

$$
\begin{equation*}
\|f\|_{1} \leq(e-1) N_{\Phi}(f) \tag{6}
\end{equation*}
$$

So Z is smaller than L^{1}. Moreover we have

$$
N_{\Phi}(f-\langle f\rangle)=2 N_{\Phi}(f)
$$

Entropy

Define an entorpy of $f \geq \mathbf{0}$ by

$$
\begin{equation*}
\operatorname{Ent}(f)=E[f \log (f /\langle f\rangle)] \tag{7}
\end{equation*}
$$

We discuss the relation between the Zygmunt space and the entropy.
Proposition 1. For any non-negative function f, we have

$$
\begin{equation*}
\langle f\rangle E[\Phi(|(f-\langle f\rangle) /\langle f\rangle|)] \leq \operatorname{Ent}(f) \tag{8}
\end{equation*}
$$

If $\langle f\rangle \geq 1$, we have another inequality.

Proposition 2. For any nonnegative function f with $\langle f\rangle \geq 1$, we have

$$
\begin{equation*}
E[\Phi(|f-\langle f\rangle|)] \leq\langle f\rangle \operatorname{Ent}(f) \tag{9}
\end{equation*}
$$

Now we have
Proposition 3. For any non-negative function f, we have
(10) $\quad N_{\Phi}(f-\langle f\rangle) \leq \max \{\sqrt{\langle f\rangle}, \sqrt{\operatorname{Ent}(f)}\} \sqrt{\operatorname{Ent}(f)}$.

Now we will prove the reversed inequality. Recall

$$
\begin{equation*}
\operatorname{Ent}(f)=E[f \log (f /\langle f\rangle)] \tag{11}
\end{equation*}
$$

Proposition 4. For any non-negative function f, we have

$$
\begin{equation*}
\operatorname{Ent}(f) \leq \frac{\langle f\rangle}{\log (4 / e)} E[\Phi(|(f-\langle f\rangle) /\langle f\rangle|)] \tag{12}
\end{equation*}
$$

If f satisfy $\langle f\rangle \leq 1$, we have the following.

Proposition 5. For any non-negative function f with $\langle f\rangle \leq 1$, we have
(13)

$$
\operatorname{Ent}(f) \leq E[\Phi(|f-\langle f\rangle|)]+2
$$

Proposition 6. For any non-negative function f, we have

$$
\begin{equation*}
\operatorname{Ent}(f) \leq 3 N_{\Phi}(f-\langle f\rangle) \tag{14}
\end{equation*}
$$

The logarithmic Sobolev inequality

Let us recall the logarithmic Sobolev inequality.

- \mathcal{E} : a Dirichlet form
- $\left\{T_{t}\right\}$: a Markovian semigroup in $L^{2}(m)$
- \mathfrak{A} : the generator of $\left\{\boldsymbol{T}_{t}\right\}$

The following inequality is called a logarithmic Sobolev inequality:

$$
\begin{equation*}
\int_{M} f^{2}(x) \log \left(f(x)^{2} /\|f\|_{2}^{2}\right) d m \leq \frac{2}{\gamma_{\mathrm{LS}}} \mathcal{E}(f, f) \tag{15}
\end{equation*}
$$

If we assume the logarithmic Sobolev inequality (15), it is known that for any non-negative function f, we have

$$
\begin{equation*}
\operatorname{Ent}\left(T_{t} f\right) \leq e^{-2 \gamma_{\mathrm{LS}} t} \operatorname{Ent}(f) \tag{16}
\end{equation*}
$$

We set

$$
\begin{equation*}
\gamma_{Z \rightarrow Z}=-\varlimsup \frac{1}{\lim } \frac{\log \left\|T_{t}-m\right\|_{Z \rightarrow Z}}{} \tag{17}
\end{equation*}
$$

Combining the previous results, we have
Theorem 7. We have the following inequality:

$$
\begin{equation*}
\gamma_{\mathrm{LS}} \leq \gamma_{Z \rightarrow Z} \tag{18}
\end{equation*}
$$

Under the assumption of the logarithmic Sobole inequality, we can show that tha independence of the spectrum.

(Kusuoka - S [2015])

Assume \mathfrak{A} is normal. Then $\sigma\left(\mathfrak{A}_{p}\right)$ is independent of $\boldsymbol{p}(\mathbf{1}<\boldsymbol{p}<\infty)$.
Here $\boldsymbol{A}_{\boldsymbol{p}}$ is the generator in $\boldsymbol{L}^{\boldsymbol{p}}$.
Question: What happens in the Zygmund space?

2. Operators in Zygmund space

We define an Orlitz norm \| $\|_{\Phi}$ as follows:
(19) $\quad\|f\|_{\Phi}=\sup \{E[g|f|] ; E[\Psi(g)] \leq 1\}$.

Here non-negative functions g run over all fundtions with $E[\Psi(g)] \leq 1$. We also have

$$
\begin{equation*}
\|f\|_{\Phi}=\sup \left\{E[g|f|] ; E\left[e^{g}-g\right] \leq 2\right\} \tag{20}
\end{equation*}
$$

Tow norms N_{Φ} and $\left\|\|_{\Phi}\right.$ are equivalent:

$$
\begin{equation*}
N_{\Phi}(f) \leq\|f\|_{\Phi} \leq 2 N_{\Phi}(f) \tag{21}
\end{equation*}
$$

Proposition 8. A linear operatorT in Z is bounded if and only if there exist positive constants $\boldsymbol{A}, \boldsymbol{B}$ such that

$$
\begin{equation*}
\|T f\|_{\Phi} \leq A E[\Phi(|f|)]+B \tag{22}
\end{equation*}
$$

Corollary 9. A linear operator \boldsymbol{T} in Z is bounded if and only if there exist positive constants $\boldsymbol{A}, \boldsymbol{B}$ such that for all non-negative function g with $E\left[e^{g}\right] \leq 4$, we have

$$
\begin{equation*}
E[g|T f|] \leq A E[|f| \log |f|]+B . \tag{23}
\end{equation*}
$$

3. Spectrum of the Kummer operator

In this section, we consider the Kummer operator

- $M=[0, \infty)$
- $m(d x)=\frac{1}{\Gamma(\alpha+1)} x^{\alpha} e^{-x} d x$
- $H=L^{2}([0, \infty), m)$
- $\mathfrak{A}=x \frac{d}{d x^{2}}+(1+\alpha-x) \frac{d}{d x}$

We assume that $\alpha>0$.
We give a representation of the resolvent by using the confluent hypergeometric functions.

Confluent hypergeometric functions

A confluent hypergeometric functions is defined by

$$
\begin{equation*}
{ }_{1} F_{1}(a ; c ; x)=\sum_{n=0}^{\infty} \frac{(a)_{n}}{(c)_{n} n!} x^{n} \tag{24}
\end{equation*}
$$

Here $(a)_{n}$ stands for the Pochhammer symbol:

$$
(a)_{n}=\frac{\Gamma(a+n)}{\Gamma(a)}= \begin{cases}a(a+1) \cdots(a+n-1) & n \geq 1 \tag{25}\\ 1 & n=0\end{cases}
$$

${ }_{1} \boldsymbol{F}_{1}(\boldsymbol{a} \boldsymbol{c} \boldsymbol{c} ; \boldsymbol{x})$ satisfies the following Kummer differential equation:

$$
\begin{equation*}
x u^{\prime \prime}+(c-x) u^{\prime}=a u \tag{26}
\end{equation*}
$$

This means that ${ }_{1} \boldsymbol{F}_{\mathbf{1}}(\boldsymbol{a} ; \boldsymbol{c} ; \boldsymbol{x})$ is an "eigen-function" of the Kummer operator in the case of $1+\alpha=c$.
If ${ }_{1} F_{1}(a ; c ; x) \in L^{2}$, then ${ }_{1} F_{1}(a ; c ; x)$ is really an eigen-value. We set

$$
\begin{equation*}
M(a, 1+\alpha ; x)={ }_{1} F_{1}(a ; 1+\alpha ; x) \tag{27}
\end{equation*}
$$

This function is called the Kummer function. Another independent solution is
(28)
$U(a, 1+\alpha ; x)=\frac{\Gamma(-\alpha)}{\Gamma(a-\alpha)} M(a, 1+\alpha ; x)+\frac{\Gamma(\alpha)}{\Gamma(a)} x^{-\alpha} M(a-\alpha, 1-\alpha ; x)$
which is called the Kummer function of the second kind. Their

Wronskian is

$$
W(M(a, 1+\alpha ; \cdot), U(a, 1+\alpha ; \cdot))(x)=-\frac{\Gamma(1+\alpha)}{\Gamma(a)} x^{-\alpha-1} e^{x}
$$

It is known that Laguerre polynomials are eigen-functions. In fact, we have

$$
\begin{equation*}
L_{n}^{\alpha}(x)=\frac{(\alpha+1)_{n}}{n!} M(-n, \alpha+1 ; x) \tag{29}
\end{equation*}
$$

Thus the spectrum of \mathfrak{A} is $\{0,-1,-2, \cdots\}$.
The asymptotic behavior is crucial in the computation of the resolvent.

When $\boldsymbol{x} \rightarrow \mathbf{0}$, we have

$$
\begin{align*}
M(a, 1+\alpha ; x) & \rightarrow 1 \tag{30}\\
U(a, 1+\alpha ; x) & \sim \frac{\Gamma(\alpha)}{\Gamma(a)} x^{-\alpha} \tag{31}
\end{align*}
$$

When $\alpha=0, x^{-\alpha}$ should be $\log x$.
When $x \rightarrow \infty$, we have

$$
\begin{align*}
M(a, 1+\alpha ; x) & \sim \frac{\Gamma(1+\alpha)}{\Gamma(a)} e^{x} x^{a-1-\alpha} \tag{32}\\
U(a, 1+\alpha ; x) & \sim x^{-a} \tag{33}
\end{align*}
$$

Here $a, 1+\alpha \neq 0,-1,-2, \ldots$
Recall that $\alpha>0$. We also assume that $a \neq 0,-1,-2, \ldots$ Then
the resolvent $G_{a}=(\boldsymbol{a}-\mathfrak{A})^{-1}$ has the following kernel expression.

$$
\begin{equation*}
G_{a} f(x)=\int_{0}^{\infty} G_{a}(x, y) f(y) d y \tag{34}
\end{equation*}
$$

where

$$
G_{a}(x, y)= \begin{cases}-M(a, 1+\alpha ; y) U(a, 1+\alpha, x) \frac{1}{y W(y)} & y<x \\ -M(a, 1+\alpha ; x) U(a, 1+\alpha, y) \frac{1}{y W(y)} & y>x\end{cases}
$$

W is the Wronskian. Hence

$$
G_{a}(x, y)= \begin{cases}\frac{\Gamma(a)}{\Gamma(1+\alpha)} M(a, 1+\alpha ; y) U(a, 1+\alpha, x) e^{-y} y^{\alpha} & y<x \\ \frac{\Gamma(a)}{\Gamma(1+\alpha)} M(a, 1+\alpha ; x) U(a, 1+\alpha, y) e^{-y} y^{\alpha} & y>x\end{cases}
$$

G_{a} is a bounded operator in L^{2}. What happens in the case of Zygmund space?

4. The spectrum of the Kummer operaotr in Z

Now we can compute the spectrum of \mathfrak{A} in Z. Since we have the kenel expression of the resolvent, we can compute the spectrum.

Theorem 10. The set of point spectums of \mathfrak{A} is $\{z ; \Re z<-1\} \cup$
$\{-1\} \cap\{0\}$.

Theorem 11. When $\Re a>-1, a$ belongs to the resolvent set.

The spectrum in Z.

In Theorem 7, we have shown $\gamma_{\mathrm{LS}} \leq \gamma_{Z \rightarrow Z}$. In this example $\gamma_{\mathrm{LS}}=\frac{1}{2}$ and $\gamma_{Z \rightarrow Z}=1$, which means that $\gamma_{\mathrm{LS}} \neq \gamma_{Z \rightarrow Z}$.

Thanks !

