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1. Framework and Definitions

Let To >0and A= (a"f');,jeN, B = (Bi),‘eN, with
al  R™ x [0, To] = R, =4 Ay:= (a'j) nonnegative for each N € N,
1<ij<N

B':R>® x [0, To] = R

Borel functions. Consider the corresponding Kolmogorov operator on R* x [0, To]

L@(Xa t) = Z aij(Xa t)8e,.aej<p(x, t) + Z BI(X7 t)(?e,ga(x, t)a P € DOI’T‘I(L),
ij=1 i=1

where Dom(L) = linear span of {<p = @(Pn) ‘ NeN, pge ! (R x [o, To)} and

Py : R>® — RN x [0, To] denotes the canonical projection.

Furthermore, O, denotes partial derivative in direction & := (0,...0,1,0,...).

Below we consider any function f : RY x [0, To] = R as a function on R* x [0, To] and
hence do not distinguish between ¢ and @ in the definition of Dom(L).
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1. Framework and Definitions

We say a measure u = ¢ dt on R* x [0, To], where u:, t € [0, To], are probability
measures on R (measurable in t), is a solution to the Fokker-Planck-Kolmogorov
equation associated to L, if for every ¢ € Dom(L)

/[Roo o(x,t) pe(dx) = /ROO ©(x,0) v(dx) + /Ot/Roo [Osp + L] dus ds  for dt —a.e.
(FPKE)
t e [07 TQ]A

Here v is a probability measure on R, given as initial condition. (FPKE) is also shortly
written as a Cauchy problem for paths p:, t € [0, To], of probability measures as

at/lt = L*Ht
Ho =V,

where L* is the formal adjoint (in x € R*) of L.
In (FPKE) we implicitly assume that a¥, B' € L* (R x [0, To], ).
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1. Framework and Definitions

Aims:
o General existence and uniqueness results for (FPKE)

@ Applications to obtain transition probabilities for SPDE

Remark.

@ Both non-degenerate (cylindrical noise) and degenerate Kolmogorov operators are
covered. The latter include the case A =0, i.e. where (FPKE) is just the continuity
equation.

@ Special case: v := d(= Dirac measure in x). Then the solution u¢(dy), t € [s, Tol,
of (FPKE) started at s € [0, To] in dx is usually denoted ps,:(x, dy). If (FPKE) is
well-posed (i.e. has a unique solution for all initial measures v and any s € [0, To]),
then forall r <s<t, x€H,

ps,t(y,dz) prs(x,dy) = pr.e(x,dz) “Chapman-Kolmogorov-Equations”.

And ps:, s < t, are the transition probabilities of the (time-inhomogeneous) Markov
process generated by L, if it exists.
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2. Relation to S(P)DE

Consider the associated S(P)DE

dX(t) = B(X(t),t) dt + o(X(t),t) dW(t) (S(P)DE)
X(0) ~ v,

e.g. on H:=(? C R*, with W being a cylindrical Wiener process on H and “your
favourite” assumptions on B and o := \/A. Suppose (S(P)DE) has a solution (Px), ep in
the sense of Stroock-Varadhan's martingale problem. Then p := p; dt solves (FPKE)
with

e =P, e X(t)"! (“marginals”) , P, := / P, v( dx).
H
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2. Relation to S(P)DE

Hence:
o weak (= martingale) existence for (S(P)DE) = existence for (FPKE)
BUT: e

Remark: Under very broad assumptions (see [Stannat, Memoirs AMS 1999])
@ “<=" holds <= generalized Dirichlet form given by L is quasi regular.

@ “<=" holds in finite dimensions under very general conditions,
see [Figalli, JFA 2008],[Trevisian, PhD-Thesis, SNS Pisa 2014].
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2. Relation to S(P)DE

Furthermore (under some integrability conditions):
o uniqueness for (FPKE) => weak (= martingale) uniqueness for (S(P)DE)

Reason. Stroock-Varadhan's proof is “stable” under integrability conditions.
BUT: <+
Reason. If coefficients A and B are too singular (so that “quasi-regularity” fails to hold),

there might exist solutions to (FPKE) which are not the marginals of a martingale
solution to (S(P)DE).
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3. Uniqueness: Non-degenerate Case

Conditions:

(A) Each a¥ only depends on t,x1, %2, . . ., Xmax{i,j}, IS continuous and for every N € N
and Ay := (a”)1<i,j<n there exist vy, Ay € (0,00) and Bn € (0, 1] such that for all
x,y €RY, t €0, Ty

wlyl> < (An(x, )y, yian <l lylP [[An(x, t) = An(y, £)]] < Anlx — y|%.

Consider a convex set P, of solutions = ¢ dt to (FPKE) such that:

(B) |B¥| € L>(R*™ x [0, To], u), k €N, and 3N, € N, N, /00 as £ — oo and
C7'-mappings by : R x [0, To] — R such that for B, := (B, ..., B")

£—00

lim /OTO /oo ’ANZ(X, t)_% (Be(x, t) — be (Pw,x, t))r#t(dx) dt =0.
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3. Uniqueness: Non-degenerate Case

Example

(i) (“triangular case”) Each component B¥ depends only on x1, ..., xx and is in
L* (R x [0, To], 2).

(i) Suppose (for simplicity) a¥ = 6%a; with a; > 0.
If

> To 2
a;1/ / 185, &) el ) e < oo,
k=1 0 o

then (simple exercise) B = (B*) fulfills (B).

(i) B=G+F, G asin (i), F asin (ii). In this case one can take P, as the set of all
solutions to (FPKE) such that G satisfies (i) and F satisfies (ii).
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3. Uniqueness: Non-degenerate Case

Theorem |. Suppose (A) holds and let P, be as above. Then #P, < 1.
Proof. Assume that o! = oldt and 0% = o2dt belong to P,. Then
o:=(c'+0%)/2€P,. Let d €N, ¢ € C§°(R?) and |¢p(x)| < 1 for all x € RY. By

condition (B) for every € > 0 there exist a natural number N > d and a Cs’l—mapping
b= (b")N_, :RY x [0, To] — RY such that

/o 0 /Roo |A/;1/2(><7 $)(Bn(x,s) — b(xa, ..., xn,s))|° os(dx) ds < e. (%)

Réckner (Bielefeld) Infinite Dimensional Continuity and Fokker-Planck-Kol 11 /32



3. Uniqueness: Non-degenerate Case

Fix “dt-a.e.” t € [0, To]. Let f be a solution to the finite-dimensional Cauchy problem

{ Of + 301 a1 0,04 + 3L, b0 f =0 onRY x (0,1),

i=

PDEy
Flt.) = V(). (PDEW)
By standard PDE-theory such a solution exists and belongs to the class

Co(RY x [0, ¢]) N C2H (R x (0, t)). Moreover, according to the maximum principle
|f(x,s)] <1 for all (x,5) € RY x [0, t].
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3. Uniqueness: Non-degenerate Case

Set = o — o2, The measure y solves (FPKE) with zero initial condition. Hence

N N
F(x, t) pe(dx) = /t/ [asf + > dog0,f + > Bo, f] dis ds.
Ro© 0 JRee i=1

ij=1

Hence by (PDEy)

dus = B — b,Vf)dusds.
v //J VF) dps ds (+%)

Roo
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3. Uniqueness: Non-degenerate Case

Let us estimate:

t
/ / |V ANV £ dos ds.
0 oo

Using (FPKE) for o and ¢ = f2, taking into account that
(8s + L)(f?) = 2f(ds + L) AnV |2, we obtain from (PDEy) that

w2datf/ 2(x,0) v dx)72// |\/ANVf| +fz —b) ax,f] dos ds.

Roo

Therefore,

t To
/ / VANV dos ds < 2+/ / ALY (x, 5)(Bu(x,5) — b(x, . ... xy. 5))|2 os(cx) s,
0 Roo 0 R

hence by ()

t
/ /R VANV dosds <2 +e. (5 * %)
0 oo
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3. Uniqueness: Non-degenerate Case

Applying (#%), (* * *) and the fact that |u| < o' + 6° = 20 we have

Pdue < 2y/e(2+ ¢€),
ROO

hence (letting € — 0)
P dl/«t <0.

Roo
Replacing 1 with —1) we obtain

/ Y dp: =0 for all 9 € Gg°(RY), d €N.

Hence u: =0 for dt-a.e. t € [0, To], i.e.

g1 = 02.
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4. Applications to Stochastic Reaction Diffusion Equations

Let D C RY, d € N, D open, bounded, and Ap the Dirichlet Laplacian on L?(D) with
eigenbasis e, k € N, and eigenvalues —)\2, k € N. Then L?(D) = (> C R*.
As before consider

Lo = Z a"fae,.aejgp + Z B'dep, ¢ € Dom(L),

ij=1 i=1

or associated (heuristic) S(P)DE (with o = v/A)
dX(t) = B(X(t), t) dt + o(X(t), t) dW(t).

Assume A = (a”) satisfies condition (A) with vy = v > 0. Let
B(u, t)(€) := Apu(§) + F(£,€,u(€)), ue L*(D),

for some Borel f : [0, To] x D x R — R.
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4. Applications to Stochastic Reaction Diffusion Equations

More precisely, B = (B') : R™® x [0, To] — R is defined by

i L —)\,?u,- + <f:(1.“7 . u), e,'>L2(D)7 if u= (u,-) = ((e,-, U>L2(D)) € 62,
B'(u,t) = { 0, if u € R™®\(2.

Proposition. Suppose 3 Borel C : [0, Tg] — [0,00) and m > 1 such that
[f(t, & u)| < C(E)(1+ |ul™), forall (¢,& u) €0, To] x D xR.

Then there exists at most one solution p = p; dt to (FPKE) such that

To
[ [l pdw) de < . (1ro)
0 12(D)
Proof. Consequence of Theorem I. O
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4. Applications to Stochastic Reaction Diffusion Equations

Remark. Existence of a solution to (FPKE) satisfying (lrp) is known, e.g. if
D =(0,1), a’ =6"a, a >0, and if

f(t7 €7 u) = fl(t7§7 u) + fQ(t,f, U),

where fi(+,&,-), i = 1,2, is continuous for all £ € D and for some
a,a € L2((0, To)), o € L((0, To))
(i) 1At & u)| < a(t)(@ + |u|™)
(it) (At & u) = A(t,&v)) (u—v) < c(t)|u—v[
(i) 1(t, & u)| < es(£) (1 + [ul),
provided

/ ]2 o) < 0.
L2(D)

(See e.g. Bogachev/DaPrato/R.: JDE 2010).
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5. Uniqueness: (Possibly) Degenerate Case

Conditions:

(A") Each a’ only depends on t,x1, %, ... , Xmax{i,j} 15 bounded and for each N € N the
matrix Ay := (a¥)1<ij<n is nonnegative such that oy = /Ay has components o},
in C*=(R" x [0, To]).

Consider a convex set P, of solutions = ¢ dt to (FPKE) such that:

(B") |B¥| € L*(R™ x [0, To], n), k€N, and 3N, €N, N, /00 as £ — oo and
C*°-mappings by = (by)1<i<n, : RNe x [0, To] — RMe, a Borel
©,: RV 5 R, V, € C*(RM) with V; > 1 and C, € [0, 00), &¢ € (0,00) such that
for By ;= (BY,...,B"):

(i) (VeoPu,)? € LY(R™ x [0, To], 1) and

.
lim / 0/ |Be(x, t) — by (Pn,x, t)| (Ve (PNZX))% eCelTo=1/2), (dx) dt = 0,
0 Roe

£— o0
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5. Uniqueness: (Possibly) Degenerate Case

(ii) the matrix B, = (yb}) and the operator

Lip =Y a"0,040+ Y bidgp

PJ<Ng <N

satisfy for all (x, t) € RV x [0, To], h € R,

(Be(x, t)h, hyen, < Ou(x)|h]?, (“weighted monotonicity” )
LeVi(x, t) < (G — Ae(x, t)) Ve(x), (“strong Lyapunov function™)
where
i 2 be(x, t)|?
Ne(x, 1) =4 > |dgoh(x, t)‘ +20,(x) + 55%.
i k<N

Theorem Il Suppose (A’) holds and let P, be as above. Then #P, < 1.

Proof. Again reduction to finite dimensions and PDE-theory. See also [R./Sobol,
Ann. Probab. 2006]. O
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6 Applications to (Stochastic) Generalized Burgers and 2D Navier-Stokes
Equations

o (Stochastic) Generalized Burgers Equation

Let D := (0,1) C R! and Ap the Dirichlet Laplacian on L?>(D) with eigenbasis
e, k € N, and eigenvalues —)%, k € N. Then [*(D) = ¢?> C R™.
As before consider

Lo = Z a'jaeﬁejtp + Z B0, 0, ¢ € Dom(L),

or associated (heuristic) S(P)DE (with o = v/A)
dX(t) = B(X(t),t) dt + o(X(t), t) dW(t).

Assume that a’ = (Se;, ¢;),2 for some symmetric nonnegative operator S on L?(0,1),
TrS <oo. Form, £ €N, 2<m</{+2, define

B(u)(€) == Apu(€) + de(u™(€)) — v***1(€), u e L*(D),

Réckner (Bielefeld) Infinite Dimensional Continuity and Fokker-Planck-Kol 21 /32



6 Applications to (Stochastic) Generalized Burgers and 2D Navier-Stokes
Equations

more precisely, B = (B’) : R™® — R is defined by

Bi(u) = —Aup — (U™, O¢ei) ppy — (P, ) p(py,  ifu= () = ((e,-, U>L2(D)> €,

0, if u€R>®\ (2.
Proposition There exists at most one solution p = u; dt to (FPKE) such that for some
K >0
To 20+1 2
L (i, + 1a™lgon] 0 (a5 %)) el du) de < 0. (1as)
o Ji2p)

Proof. Consequence of Theorem II. d

Remark

(i) Existence of solution to (FPKE) satisfying (l¢g) follows from a general result in
Section 7 below (see Section 8 for more details).

(ii) Above Proposition partly generalizes uniqueness in [Gyongy/Rovira: SPA 2000].
Their results applies if £ = 0.
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6 Applications to (Stochastic) Generalized Burgers and 2D Navier-Stokes
Equations

e 2D Navier-Stokes Equation
Let us first look at the dD-case: Let D C R?, open, bounded and

Vs = {u: (Ll’j)lgjgd‘ Ve H&(D) forj=1,...,d and div u:O}

with norm

d
lullv, == (Z IIVsU’IIfZ(D))
j=1

Let H:= closure of Vs in [*(D; RY)

2

and Py := [*(D; RY) — H orthogonal (“Leray-Helmholtz") projection.
Let nx € Vo, k € N, be the eigenbasis of the Stokes-Laplacian A on H & 2 C R™ with
eigenvalues —)\2, k € N. As before consider

Lo=> a"0,0y,0+> B'dyp, ©€Dom(L),

ij=1 i=1

resp. (with o = v/A)

dxﬂ = Bﬁxfti’ t= dt + o(X(t), t) dW(t).
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6 Applications to (Stochastic) Generalized Burgers and 2D Navier-Stokes
Equations

Assume a¥ = (Sn;, nj)2(py With > a"A? < oo where S is symmetric nonnegative bounded
i
operator on H, and define

B(u)(§) := PnAu(§) — Pr ((u, V)u) (£),
more precisely, B = (B') : R® — R is defined by

. <U, Ani>L2 + <U, <U, v>"7I'>L2(D)7 if u= (<T)i: U>H) € £25
B'(u) :=
0, if u € R\ /2,
Proposition. Suppose d = 2. Then there exists at most one solution p = pu dt to
(FPKE) such that for some § > 0

To
/ / (1 + ”AUH%) 1% 1o du) dt < oo, (Imv)
o JH
where [|Aul|?; == 0o if u ¢ H>?.
Proof. Theorem II. O

Remark Existence of solution to (FPKE) satisfying (Inv) follows from a general result in
Section 7 below (see Section 8 for more details).
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7. Existence: General Results

Consider the general situation described in Section 1. We have the following two
existence results for solution of (FPKE) depending on the existence of Lyapunov
functions V : R®™ — [1, +00] of either polynomial type (Theorem Il below) or
exponential type (Theorem IV below).

For n € N we define

H, := linear span of {e;

i€ N} (CR™),

where & = (0;);cy = (0,...,0,1,0,...).
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7. Existence: General Results

Theorem I11. Suppose that there exists a compact function © : R — [0, +oo] with
compact sublevel sets, finite on each H, and such that the functions a’ and B’ are
continuous in x on all sublevel sets {® < R},and there exist numbers My, Co > 0 and a
Borel function V: R* — [1,4+oc0] whose sublevel sets {V < R} are compact and whose
restrictions to H, are of class C? and such that for all x € H,, n > 1, one has

n

D a(x, )0, V(x)0 V(x) < MoV(x)?,  LV(x,t) < GV(x) — O(x). (1)

ij=1
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7. Existence: General Results

Assume also that there exist constants C; > 0 and k; > 0 such that for all / and j </ one
has

a7 (x, )] +B'(x, )| < GV(x)(1+5(0(x)O(x)), (x,t) € R™ x [0, To], ()

where § is a bounded nonnegative Borel function on [0, +00) with lim 4(s) = 0.
5$§— 00

Then, if for all k e N, Wy := sup wa VAR P, dv < oo for the initial distribution v,
(FPKE) has a solution v = p dt such that for all t € [0, To]

t
/ vkdut+k/ / V'O dps ds < NkW, Vk €N,
]RQO O oo

where Ny := MyeM 41, My := k(Co + (k — 1)Mp). In particular, p:(V < o0) =1 for
all t and p:(© < 00) =1 for dt-a.e. t €0, To].
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7. Existence: General Results

Theorem IV. Suppose that in Theorem Il condition (1) is replaced by

LV(x, 1) < V(x) - V(x)8(x) (1)
and (2) is replaced by

26, D] + 1B (x, B)] < G(L+ 8(V()B))V()8(X)), (x,1) € B x [0, Tal. (2)
Then, if W; :=sup fROO V o P, dv < oo for the initial distribution v, (FPKE) has a
solution p = p¢ dtnsuch that for all ¢t € [0, To]

t
/ Vdut+// VO dpusds < 4W5.
Roe 0 o
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8 Applications to (Stochastic) Generalized Burgers and dD Navier-Stokes
Equations

o (Stochastic) Generalized Burgers Equation

Consider the situation in Section 6.1 and additionally assume that
a’ = (Sej, ej>L2(0,1)
with S a symmetric, nonnegative operator on L*(0,1), Tr S < co. Take
2042 2m—2
V() = (14 lullfaon + 1617520y ) &P (311635 %0,1))
for small enough 6 > 0 and for a suitably small constant Cs

£+2 2 m—12
() = Cs (1+ lullhr2 0 0y + 020 + 10" o) -

Réckner (Bielefeld) Infinite Dimensional Continuity and Fokker-Planck-Kol 29 /32



8 Applications to (Stochastic) Generalized Burgers and dD Navier-Stokes
Equations

Then Theorem IV applies to give existence of a solution p = u; dt to (FPKE), if
sup [ Vo P,dv < oo, such that V- © € L'(R™ x [0, To], p). In particular, since by

Sobolev embedding H{(0,1) € L>°(0,1) continuously and hence
[|u™ ||H1(0 y < ||u|| 1o T [Ju™™ 1“/41 0,1 also (lgg) holds. So, this p is the unique
solution of (FPKE) sat|sfy|ng (IGB)
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8 Applications to (Stochastic) Generalized Burgers and dD Navier-Stokes
Equations

o (Stochastic) Perturbed dD Navier-Stokes Equation

Consider the situation in Section 6.2 and additionally assume that
a¥ = §%a; with o, € [0, 00) such that Za; < 0.
i=1
Take for some suitable C € (0, c0)
V(u) := [lullf + 1 and ©(u) := C|lul},

Then Theorem |1l applies to give existence of a solution p = p. dt to (FPKE), if
sup [ V¥ o P, dv < oo for all k € N, such that V¥© € L}(R™ x [0, To], p) and
vk e [H(R*, p:) for all t € [0, To] and all k € N. In particular, p:(H) = 1 for all
t € [0, To] and ue(V2) =1 for dt-a.e. t € [0, To].

Remark The same result also holds if we replace B in Section 6.2 by B + F, where
F(u, t)(&) = f(u(é),t), € € D, with f : R? x [0, To] = R bounded and continuous.
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8 Applications to (Stochastic) Generalized Burgers and dD Navier-Stokes
Equations

If d =2, assume
o0
Zan)\i < 0
n=1

and take for some § > 0
V(u) = exp (5||u||2Vz) LO(u) =16 and? + 6 Aulfp),
n=1

where again we set V(u) = co and ©(u) = oo if u € R* \ V5 (using that
Vo C H =202 C R™®). Then Theorem IV applies to give existence of a solution y = p; dt
to (FPKE), if sup [ V o P, dv < oo, such that VO € L'(R*> x [0, To], 1). In particular,

also (Inv) holds. So, this  is the unique solution of (FPKE) satisfying (Inv).
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