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1. Framework and Definitions

Let T0 > 0 and A = (aij)i,j∈N, B = (B i )i∈N, with

aij : R∞ × [0,T0]→ R, aij = aji , AN :=
(
aij
)

1≤i,j≤N
nonnegative for each N ∈ N,

B i : R∞ × [0,T0]→ R

Borel functions. Consider the corresponding Kolmogorov operator on R∞ × [0,T0]

Lϕ(x , t) =
∞∑

i,j=1

aij(x , t)∂ei ∂ejϕ(x , t) +
∞∑
i=1

B i (x , t)∂eiϕ(x , t), ϕ ∈ Dom(L),

where Dom(L) = linear span of
{
ϕ = ϕ̃(PN)

∣∣∣ N ∈ N, ϕ̃ ∈ C 2,1
0

(
RN × [0,T0

)}
and

PN : R∞ → RN × [0,T0] denotes the canonical projection.
Furthermore, ∂ei denotes partial derivative in direction ei := (0, . . . 0, 1, 0, . . . ).
Below we consider any function f : RN × [0,T0]→ R as a function on R∞ × [0,T0] and
hence do not distinguish between ϕ and ϕ̃ in the definition of Dom(L).
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1. Framework and Definitions

We say a measure µ = µt dt on R∞ × [0,T0], where µt , t ∈ [0,T0], are probability
measures on R∞ (measurable in t), is a solution to the Fokker-Planck-Kolmogorov
equation associated to L, if for every ϕ ∈ Dom(L)∫

R∞
ϕ(x , t) µt(dx) =

∫
R∞

ϕ(x , 0) ν(dx) +

∫ t

0

∫
R∞

[∂sϕ+ Lϕ] dµs ds for dt − a.e.

(FPKE)

t ∈ [0,T0].

Here ν is a probability measure on R∞, given as initial condition. (FPKE) is also shortly
written as a Cauchy problem for paths µt , t ∈ [0,T0], of probability measures as

∂tµt = L∗µt

µ0 = ν,

where L∗ is the formal adjoint (in x ∈ R∞) of L.
In (FPKE) we implicitly assume that aij , B i ∈ L1 (R∞ × [0,T0], µ).
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1. Framework and Definitions

Aims:

General existence and uniqueness results for (FPKE)

Applications to obtain transition probabilities for SPDE

Remark.

Both non-degenerate (cylindrical noise) and degenerate Kolmogorov operators are
covered. The latter include the case A ≡ 0, i.e. where (FPKE) is just the continuity
equation.

Special case: ν := δx(= Dirac measure in x). Then the solution µt(dy), t ∈ [s,T0],
of (FPKE) started at s ∈ [0,T0] in δx is usually denoted ps,t(x , dy). If (FPKE) is
well-posed (i.e. has a unique solution for all initial measures ν and any s ∈ [0,T0]),
then for all r ≤ s ≤ t, x ∈ H,

ps,t(y , dz) pr,s(x , dy) = pr,t(x , dz) “Chapman-Kolmogorov-Equations”.

And ps,t , s ≤ t, are the transition probabilities of the (time-inhomogeneous) Markov
process generated by L, if it exists.
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2. Relation to S(P)DE

Consider the associated S(P)DE

dX (t) = B(X (t), t) dt + σ(X (t), t) dW (t) (S(P)DE)

X (0) ∼ ν,

e.g. on H := `2 ⊂ R∞, with W being a cylindrical Wiener process on H and “your
favourite” assumptions on B and σ :=

√
A. Suppose (S(P)DE) has a solution (Px)x∈H in

the sense of Stroock-Varadhan’s martingale problem. Then µ := µt dt solves (FPKE)
with

µt := Pν • X (t)−1 (“marginals”) , Pν :=

∫
H

Px ν( dx).
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2. Relation to S(P)DE

Hence:

weak (= martingale) existence for (S(P)DE) ⇒ existence for (FPKE)

BUT: :
Remark: Under very broad assumptions (see [Stannat, Memoirs AMS 1999])

“⇐” holds ⇔ generalized Dirichlet form given by L is quasi regular.

“⇐” holds in finite dimensions under very general conditions,
see [Figalli, JFA 2008],[Trevisian, PhD-Thesis, SNS Pisa 2014].
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2. Relation to S(P)DE

Furthermore (under some integrability conditions):

uniqueness for (FPKE) ⇒ weak (= martingale) uniqueness for (S(P)DE)

Reason. Stroock-Varadhan’s proof is “stable” under integrability conditions.

BUT: :
Reason. If coefficients A and B are too singular (so that “quasi-regularity” fails to hold),
there might exist solutions to (FPKE) which are not the marginals of a martingale
solution to (S(P)DE).
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3. Uniqueness: Non-degenerate Case

Conditions:

(A) Each aij only depends on t, x1, x2, . . . , xmax{i,j}, is continuous and for every N ∈ N
and AN := (aij)1≤i,j≤N there exist γN , λN ∈ (0,∞) and βN ∈ (0, 1] such that for all
x , y ∈ RN , t ∈ [0,T0]

γN |y |2 ≤ 〈AN(x , t)y , y〉RN ≤ γ−1
N |y |

2, ‖AN(x , t)− AN(y , t)‖ ≤ λN |x − y |βN .

Consider a convex set Pν of solutions µ = µt dt to (FPKE) such that:

(B) |Bk | ∈ L2 (R∞ × [0,T0], µ) , k ∈ N, and ∃N` ∈ N, N` ↗∞ as `→∞ and
C 2,1
b -mappings b` : RN` × [0,T0]→ RN` such that for B` :=

(
B1, . . . ,BN`

)
lim
`→∞

∫ T0

0

∫
R∞

∣∣∣AN`(x , t)−
1
2 (B`(x , t)− b` (PN`x , t))

∣∣∣2 µt(dx) dt = 0.
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3. Uniqueness: Non-degenerate Case

Example

(i) (“triangular case”) Each component Bk depends only on x1, . . . , xk and is in
L2 (R∞ × [0,T0], µ).

(ii) Suppose (for simplicity) aij = δijαi with α1 > 0.
If

∞∑
k=1

α−1
k

∫ T0

0

∫
R∞

∣∣∣Bk(x , t)
∣∣∣2 µt( dx) dt <∞,

then (simple exercise) B = (Bk) fulfills (B).

(iii) B = G + F , G as in (i), F as in (ii). In this case one can take Pν as the set of all
solutions to (FPKE) such that G satisfies (i) and F satisfies (ii).
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3. Uniqueness: Non-degenerate Case

Theorem I. Suppose (A) holds and let Pν be as above. Then #Pν ≤ 1.

Proof. Assume that σ1 = σ1
t dt and σ2 = σ2

t dt belong to Pν . Then
σ := (σ1 + σ2)/2 ∈ Pν . Let d ∈ N, ψ ∈ C∞0 (Rd) and |ψ(x)| ≤ 1 for all x ∈ Rd . By
condition (B) for every ε > 0 there exist a natural number N ≥ d and a C 2,1

b -mapping
b = (bk)Nk=1 : RN × [0,T0]→ RN such that∫ T0

0

∫
R∞
|A−1/2

N (x , s)(BN(x , s)− b(x1, . . . , xN , s))|2 σs(dx) ds < ε. (∗)
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3. Uniqueness: Non-degenerate Case

Fix “ dt-a.e.” t ∈ [0,T0]. Let f be a solution to the finite-dimensional Cauchy problem{
∂t f +

∑N
i,j=1 a

ij∂xi ∂xj f +
∑N

i=1 b
i∂xi f = 0 on RN × (0, t),

f (t, x) = ψ(x).
(PDEN)

By standard PDE-theory such a solution exists and belongs to the class
Cb(RN × [0, t])

⋂
C 2,1
b (RN × (0, t)). Moreover, according to the maximum principle

|f (x , s)| ≤ 1 for all (x , s) ∈ RN × [0, t].
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3. Uniqueness: Non-degenerate Case

Set µ = σ1 − σ2. The measure µ solves (FPKE) with zero initial condition. Hence∫
R∞

f (x , t)µt(dx) =

∫ t

0

∫
R∞

[
∂s f +

N∑
i,j=1

aij∂xj∂xi f +
N∑
i=1

B i∂xi f
]
dµs ds.

Hence by (PDEN)∫
R∞

ψ dµt =

∫ t

0

∫
R∞
〈B − b,∇f 〉 dµs ds. (∗∗)

Röckner (Bielefeld) Infinite Dimensional Continuity and Fokker-Planck-Kolmogorov Equations 13 / 32



3. Uniqueness: Non-degenerate Case

Let us estimate: ∫ t

0

∫
R∞
|
√

AN∇f |2 dσs ds.

Using (FPKE) for σ and ϕ = f 2, taking into account that
(∂s + L)(f 2) = 2f (∂s + L)f + 2|

√
AN∇f |2, we obtain from (PDEN) that∫

R∞
ψ2 dσt −

∫
R∞

f 2(x , 0) ν(dx) = 2

∫ t

0

∫
R∞

[
|
√

AN∇f |2 + f
N∑
i=1

(B i − bi )∂xi f
]
dσs ds.

Therefore,∫ t

0

∫
R∞
|
√

AN∇f |2 dσs ds ≤ 2 +

∫ T0

0

∫
R∞
|A−1/2

N (x , s)(BN(x , s)− b(x1, . . . , xN , s))|2 σs(dx) ds,

hence by (∗)∫ t

0

∫
R∞
|
√

AN∇f |2 dσs ds ≤ 2 + ε. (∗ ∗ ∗)
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3. Uniqueness: Non-degenerate Case

Applying (∗∗), (∗ ∗ ∗) and the fact that |µ| ≤ σ1 + σ2 = 2σ we have∫
R∞

ψ dµt ≤ 2
√
ε(2 + ε),

hence (letting ε→ 0) ∫
R∞

ψ dµt ≤ 0.

Replacing ψ with −ψ we obtain∫
R∞

ψ dµt = 0 for all ψ ∈ C∞0 (Rd), d ∈ N.

Hence µt ≡ 0 for dt-a.e. t ∈ [0,T0], i.e.

σ1 = σ2.

�
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4. Applications to Stochastic Reaction Diffusion Equations

Let D ⊂ Rd , d ∈ N, D open, bounded, and ∆D the Dirichlet Laplacian on L2(D) with
eigenbasis ek , k ∈ N, and eigenvalues −λ2

k , k ∈ N. Then L2(D) ∼= `2 ⊂ R∞.
As before consider

Lϕ =
∞∑

i,j=1

aij∂ei ∂ejϕ+
∞∑
i=1

B i∂eiϕ, ϕ ∈ Dom(L),

or associated (heuristic) S(P)DE (with σ =
√
A)

dX (t) = B(X (t), t) dt + σ(X (t), t) dW (t).

Assume A = (aij) satisfies condition (A) with γN = γ > 0. Let

B(u, t)(ξ) := ∆Du(ξ) + f (t, ξ, u(ξ)), u ∈ L2(D),

for some Borel f : [0,T0]× D × R→ R.

Röckner (Bielefeld) Infinite Dimensional Continuity and Fokker-Planck-Kolmogorov Equations 16 / 32



4. Applications to Stochastic Reaction Diffusion Equations

More precisely, B = (B i ) : R∞ × [0,T0]→ R∞ is defined by

B i (u, t) :=

{
−λ2

i ui + 〈f (t, ·, u), ei 〉L2(D), if u = (ui ) =
(
〈ei , u〉L2(D)

)
∈ `2,

0, if u ∈ R∞\`2.

Proposition. Suppose ∃ Borel C : [0,T0]→ [0,∞) and m ≥ 1 such that

|f (t, ξ, u)| ≤ C(t)(1 + |u|m), for all (t, ξ, u) ∈ [0,T0]× D × R.

Then there exists at most one solution µ = µt dt to (FPKE) such that∫ T0

0

C(t)2

∫
L2(D)

‖u‖2m
L2m(D) µt(du) dt <∞. (IRD)

Proof. Consequence of Theorem I. �
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4. Applications to Stochastic Reaction Diffusion Equations

Remark. Existence of a solution to (FPKE) satisfying (IRD) is known, e.g. if
D = (0, 1), aij = δijα, α > 0, and if

f (t, ξ, u) = f1(t, ξ, u) + f2(t, ξ, u),

where fi (·, ξ, ·), i = 1, 2, is continuous for all ξ ∈ D and for some
c1, c3 ∈ L2((0,T0)), c2 ∈ L1((0,T0))

(i) |f1(t, ξ, u)| ≤ c1(t)(1 + |u|m)

(ii) (f1(t, ξ, u)− f1(t, ξ, v)) (u − v) ≤ c2(t)|u − v |2

(iii) |f2(t, ξ, u)| ≤ c3(t)(1 + |u|),
provided∫

L2(D)

‖u‖2m
L2m(D)ν(du) <∞.

(See e.g. Bogachev/DaPrato/R.: JDE 2010).
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5. Uniqueness: (Possibly) Degenerate Case

Conditions:

(A′) Each aij only depends on t, x1, x2, . . . , xmax{i,j}, is bounded and for each N ∈ N the

matrix AN := (aij)1≤i,j≤N is nonnegative such that σN =
√
AN has components σij

N

in C∞(RN × [0,T0]).
Consider a convex set Pν of solutions µ = µt dt to (FPKE) such that:

(B′) |Bk | ∈ L1(R∞ × [0,T0], µ), k ∈ N, and ∃ N` ∈ N, N` ↗∞ as `→∞ and
C∞-mappings b` = (bi

`)1≤i≤N`
: RN` × [0,T0]→ RN` , a Borel

Θ` : RN` → R, V` ∈ C 2(RN`) with V` ≥ 1 and C` ∈ [0,∞), δ` ∈ (0,∞) such that
for B` := (B1, . . . ,BN`):

(i) (V` ◦ PN`
)

1
2 ∈ L1(R∞ × [0,T0], µ) and

lim
`→∞

∫ T0

0

∫
R∞

∣∣B`(x , t)− b`
(
PN`

x , t
)∣∣ (V` (PN`

x
)) 1

2 eC`(T0−t)/2µt( dx) dt = 0,
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5. Uniqueness: (Possibly) Degenerate Case

(ii) the matrix B` =
(
∂xj b

i
`

)
and the operator

L`ϕ =
∑

i,j≤N`

aij∂xi ∂xjϕ+
∑
i≤N`

bi
`∂xiϕ

satisfy for all (x , t) ∈ RN` × [0,T0], h ∈ RN` ,

〈B`(x , t)h, h〉RN` ≤ Θ`(x)|h|2, (“weighted monotonicity”)

L`V`(x , t) ≤ (C` − Λ`(x , t))V`(x), (“strong Lyapunov function”)

where

Λ`(x , t) := 4
∑

i,j,k≤N

∣∣∣∂xkσij
N(x , t)

∣∣∣2 + 2Θ`(x) + δ`
|b`(x , t)|2

1 + |x |2 .

Theorem II Suppose (A′) holds and let Pν be as above. Then #Pν ≤ 1.

Proof. Again reduction to finite dimensions and PDE-theory. See also [R./Sobol,
Ann. Probab. 2006]. �
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6 Applications to (Stochastic) Generalized Burgers and 2D Navier-Stokes
Equations

(Stochastic) Generalized Burgers Equation

Let D := (0, 1) ⊂ R1 and ∆D the Dirichlet Laplacian on L2(D) with eigenbasis
ek , k ∈ N, and eigenvalues −λ2

k , k ∈ N. Then L2(D) ∼= `2 ⊂ R∞.
As before consider

Lϕ =
∞∑

i,j=1

aij∂ei ∂ejϕ+
∞∑
i=1

B i∂eiϕ, ϕ ∈ Dom(L),

or associated (heuristic) S(P)DE (with σ =
√
A)

dX (t) = B(X (t), t) dt + σ(X (t), t) dW (t).

Assume that aij = 〈Sei , ej〉L2 for some symmetric nonnegative operator S on L2(0, 1),
Tr S <∞. For m, ` ∈ N, 2 ≤ m ≤ `+ 2, define

B(u)(ξ) := ∆Du(ξ) + ∂ξ(um(ξ))− u2`+1(ξ), u ∈ L2(D),
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6 Applications to (Stochastic) Generalized Burgers and 2D Navier-Stokes
Equations

more precisely, B = (B i ) : R∞ −→ R∞ is defined by

B i (u) :=

{
−λ2

i ui − 〈u
m, ∂ξei 〉L2(D) − 〈u2`+1, ei 〉L2(D), if u = (ui ) =

(
〈ei , u〉L2(D)

)
∈ `2,

0, if u ∈ R∞ \ `2.

Proposition There exists at most one solution µ = µt dt to (FPKE) such that for some
κ′ > 0∫ T0

0

∫
L2(D)

[
‖u‖2`+1

L4`+2(D) + ‖um‖H1
0 (D)

]
exp

(
κ′‖u‖2m−2

L2m−2(D)

)
µt( du) dt <∞. (IGB)

Proof. Consequence of Theorem II. �

Remark

(i) Existence of solution to (FPKE) satisfying (IGB) follows from a general result in
Section 7 below (see Section 8 for more details).

(ii) Above Proposition partly generalizes uniqueness in [Gyongy/Rovira: SPA 2000].
Their results applies if ` = 0.
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6 Applications to (Stochastic) Generalized Burgers and 2D Navier-Stokes
Equations

2D Navier-Stokes Equation

Let us first look at the dD-case: Let D ⊂ Rd , open, bounded and

V2 :=
{
u = (uj)1≤j≤d

∣∣∣ uj ∈ H1
0 (D) for j = 1, . . . , d and div u = 0

}
with norm

‖u‖V2 :=

(
d∑

j=1

‖∇ξuj‖2
L2(D)

) 1
2

Let H := closure of V2 in L2(D; Rd)

and PH := L2(D; Rd)→ H orthogonal (“Leray-Helmholtz”) projection.
Let ηk ∈ V2, k ∈ N, be the eigenbasis of the Stokes-Laplacian ∆ on H ∼= `2 ⊂ R∞ with
eigenvalues −λ2

k , k ∈ N. As before consider

Lϕ =
∞∑

i,j=1

aij∂ηi ∂ηjϕ+
∞∑
i=1

B i∂ηiϕ, ϕ ∈ Dom(L),

resp. (with σ =
√
A)

dX (t) = B(X (t), t) dt + σ(X (t), t) dW (t).
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6 Applications to (Stochastic) Generalized Burgers and 2D Navier-Stokes
Equations

Assume aij = 〈Sηi , ηj〉L2(D) with
∑
i

aiiλ2
i <∞ where S is symmetric nonnegative bounded

operator on H, and define

B(u)(ξ) := PH∆u(ξ)− PH (〈u,∇〉u) (ξ),

more precisely, B = (B i ) : R∞ → R∞ is defined by

B i (u) :=


〈u,∆ηi 〉L2 + 〈u, 〈u,∇〉ηi 〉L2(D), if u = (〈ηi , u〉H) ∈ `2,

0, if u ∈ R∞ \ `2.

Proposition. Suppose d = 2. Then there exists at most one solution µ = µt dt to
(FPKE) such that for some δ > 0∫ T0

0

∫
H

(
1 + ‖∆u‖2

L2

)
e
δ‖u‖2

V2µt( du) dt <∞, (INV )

where ‖∆u‖2
L2 :=∞ if u /∈ H2,2.

Proof. Theorem II. �

Remark Existence of solution to (FPKE) satisfying (INV ) follows from a general result in
Section 7 below (see Section 8 for more details).
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7. Existence: General Results

Consider the general situation described in Section 1. We have the following two
existence results for solution of (FPKE) depending on the existence of Lyapunov
functions V : R∞ → [1,+∞] of either polynomial type (Theorem III below) or
exponential type (Theorem IV below).
For n ∈ N we define

Hn := linear span of
{
ei
∣∣∣ i ∈ N

}
(⊂ R∞),

where ei = (δij)j∈N = (0, . . . , 0, 1, 0, . . . ).
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7. Existence: General Results

Theorem III. Suppose that there exists a compact function Θ : R∞ → [0,+∞], with
compact sublevel sets, finite on each Hn and such that the functions aij and B i are
continuous in x on all sublevel sets {Θ ≤ R},and there exist numbers M0,C0 ≥ 0 and a
Borel function V : R∞ → [1,+∞] whose sublevel sets {V ≤ R} are compact and whose
restrictions to Hn are of class C 2 and such that for all x ∈ Hn, n ≥ 1, one has

n∑
i,j=1

aij(x , t)∂eiV (x)∂ejV (x) ≤ M0V (x)2, LV (x , t) ≤ C0V (x)−Θ(x). (1)
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7. Existence: General Results

Assume also that there exist constants Ci ≥ 0 and ki ≥ 0 such that for all i and j ≤ i one
has

|aij(x , t)|+ |B i (x , t)| ≤ CiV (x)ki (1 + δ(Θ(x))Θ(x)), (x , t) ∈ R∞ × [0,T0], (2)

where δ is a bounded nonnegative Borel function on [0,+∞) with lim
s→∞

δ(s) = 0.

Then, if for all k ∈ N, Wk := sup
n

∫
R∞ V k ◦ Pn dν <∞ for the initial distribution ν,

(FPKE) has a solution µ = µt dt such that for all t ∈ [0,T0]∫
R∞

V k dµt + k

∫ t

0

∫
R∞

V k−1Θ dµs ds ≤ NkWk ∀ k ∈ N,

where Nk := Mke
Mk + 1, Mk := k(C0 + (k − 1)M0). In particular, µt(V <∞) = 1 for

all t and µt(Θ <∞) = 1 for dt-a.e. t ∈ [0,T0].
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7. Existence: General Results

Theorem IV. Suppose that in Theorem III condition (1) is replaced by

LV (x , t) ≤ V (x)− V (x)Θ(x) (1′)

and (2) is replaced by

|aij(x , t)|+ |B i (x , t)| ≤ Ci (1 + δ(V (x)Θ(x))V (x)Θ(x)), (x , t) ∈ R∞ × [0,T0]. (2′)

Then, if W1 := sup
n

∫
R∞ V ◦ Pn dν <∞ for the initial distribution ν, (FPKE) has a

solution µ = µt dt such that for all t ∈ [0,T0]∫
R∞

V dµt +

∫ t

0

∫
R∞

VΘ dµs ds ≤ 4W1.
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8 Applications to (Stochastic) Generalized Burgers and dD Navier-Stokes
Equations

(Stochastic) Generalized Burgers Equation

Consider the situation in Section 6.1 and additionally assume that

aij = 〈Sei , ej〉L2(0,1)

with S a symmetric, nonnegative operator on L2(0, 1),Tr S <∞. Take

V (u) :=
(

1 + ‖u‖2
L2(0,1) + ‖u‖2`+2

L2`+2(0,1)

)
exp

(
δ‖u‖2m−2

L2m−2(0,1)

)
for small enough δ > 0 and for a suitably small constant Cδ

Θ(u) := Cδ
(

1 + ‖u‖4`+2
L4`+2(0,1) + ‖u‖2

H1
0 (0,1) + ‖um−1‖2

H1
0 (0,1)

)
.
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8 Applications to (Stochastic) Generalized Burgers and dD Navier-Stokes
Equations

Then Theorem IV applies to give existence of a solution µ = µt dt to (FPKE), if
sup
n

∫
V ◦ Pn dν <∞, such that V ·Θ ∈ L1(R∞ × [0,T0], µ). In particular, since by

Sobolev embedding H1
0 (0, 1) ⊂ L∞(0, 1) continuously and hence

‖um‖H1
0 (0,1) ≤ ‖u‖2

H1
0 (0,1)

+ ‖um−1‖2
H1

0 (0,1)
, also (IGB) holds. So, this µ is the unique

solution of (FPKE) satisfying (IGB).

Röckner (Bielefeld) Infinite Dimensional Continuity and Fokker-Planck-Kolmogorov Equations 30 / 32



8 Applications to (Stochastic) Generalized Burgers and dD Navier-Stokes
Equations

(Stochastic) Perturbed dD Navier-Stokes Equation

Consider the situation in Section 6.2 and additionally assume that

aij = δijαi with αi ∈ [0,∞) such that
∞∑
i=1

αi <∞.

Take for some suitable C ∈ (0,∞)

V (u) := ‖u‖2
H + 1 and Θ(u) := C‖u‖2

V2

Then Theorem III applies to give existence of a solution µ = µt dt to (FPKE), if
sup
∫
V k ◦ Pn dν <∞ for all k ∈ N, such that V kΘ ∈ L1(R∞ × [0,T0], µ) and

V k ∈ L1(R∞, µt) for all t ∈ [0,T0] and all k ∈ N. In particular, µt(H) = 1 for all
t ∈ [0,T0] and µt(V2) = 1 for dt-a.e. t ∈ [0,T0].

Remark The same result also holds if we replace B in Section 6.2 by B + F , where
F (u, t)(ξ) = f (u(ξ), t), ξ ∈ D, with f : Rd × [0,T0]→ R bounded and continuous.
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8 Applications to (Stochastic) Generalized Burgers and dD Navier-Stokes
Equations

If d = 2, assume
∞∑
n=1

αnλ
2
n <∞

and take for some δ > 0

V (u) := exp
(
δ‖u‖2

V2

)
,Θ(u) := 1− δ

∞∑
n=1

αnλ
2
n + δ‖∆u‖2

L2(D),

where again we set V (u) =∞ and Θ(u) =∞ if u ∈ R∞ \ V2 (using that
V2 ⊂ H ∼= `2 ⊂ R∞). Then Theorem IV applies to give existence of a solution µ = µt dt
to (FPKE), if sup

n

∫
V ◦ Pn dν <∞, such that VΘ ∈ L1(R∞ × [0,T0], µ). In particular,

also (INV ) holds. So, this µ is the unique solution of (FPKE) satisfying (INV ).
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