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Abstract

A new approach to prove pathwise uniqueness for SDEs of the form

dXt = b(t,Xt)dt + dWt

was introduced by E. Fedrizzi and F. Flandoli in [1]. We generalize this method
to SDEs with time and space dependent diffusion

dXt = b(t,Xt)dt + σ(t,Xt)dWt,

where the matrix-valued function σ is non-degenerated, bounded, continuous
and its weak derivative ∂xσ as well as σ is in Lq

p. The proof is based on a
transformation via solutions to PDEs of the form

∂tu +
1

2

∑

i,j

(σσ∗)ij∂xi∂xju = −b.

1 Assumptions

Consider the SDE

Xt = x +

t∫

0

b(s,Xs)ds +

t∫

0

σ(s,Xs)dWs, t ∈ [0, T ], (1)

where W is an m-dimensional Brownian motion on a filtered probability
space (Ω, (Ft)t,P), x ∈ R

d and b : [0, T ]×R
d → R

d, σ : [0, T ]×R
d →

R
d×m are measurable functions with the following properties:

(1) b ∈ L
q
p(T ), for some p, q > 2(d + 1),

(2) σ is continuous in (t, x),

(3) σ is non-degenerate, i.e. there exists a constant cσ > 0 such that

〈σσ∗(t, x)ξ, ξ〉 ≥ cσ〈Iξ, ξ〉 ∀ ξ ∈ R
d ∀ (t, x) ∈ [0, T ]× R

d,

(4) σ is bounded by a constant c̃σ,

(5) σ ∈ W
0,1
q,p (T ).

Here

L
q
p(T ) = { f : [0, T ]× R

d → R
d (Rd×m) | ‖f‖Lq

p(T ) < ∞ },

with

‖f‖Lq
p(T ) =







T∫

0






∫

Rd

|f (t, x)|pdx






q
p

dt







1
q

,

W
1,2
q,p (T ) = { f : [0, T ]× R

d → R
d | f, ∂tf, ∂xf, ∂

2
xf ∈ L

q
p(T ) },

W
0,1
q,p (T ) = { f : [0, T ]× R

d → R
d×m | f, ∂xf ∈ L

q
p(T ) },

where we consider weak differentials.

In addition, assume that for all f ∈ L
q
p(T ) there exists a solution u ∈

W
1,2
q,p (T ) to the equation

∂tu +
1

2

∑

i,j

(σσ∗)ij∂xi∂xju = f on [0, T ], u|t=T = 0

with
‖u‖

W
1,2
q,p (T )

≤ C‖f‖Lq
p(T ),

where C is independent of f . This is e.g. the case if q ≥ p and σ is
uniformly continuous (see [2]).

2 Result

Theorem 1. Under the above assumptions, we have pathwise unique-
ness for equation (1).

3 Sketch of proof

The proof follows the ideas of [1].

3.1 Step by step to a more convenient drift term

Step 1

Let Ub be a solution to the PDE

∂tu +
1

2

∑

i,j

(σσ∗)ij∂xi∂xju = −b on [0, T ], u
∣
∣
t=T = 0.

By a generalized Itô formula for weak differentiable functions, we get

Ub(t,Xt) = Ub(0, x) +

t∫

0

∂xUb(s,Xs)b(s,Xs)ds

+

t∫

0

∂xUb(s,Xs)σ(s,Xs)dWs

+

t∫

0

∂tUb(s,Xs) +
1

2

∑

i,j

(σσ∗(s,Xs))ij∂xi∂xjUb(s,Xs)ds

︸ ︷︷ ︸

−
t∫

0

b(s,Xs)ds

.

Replacing
t∫

0
b(s,Xs)ds in the integral equation (1) yields

Xt = x + Ub(0, x)− Ub(t,Xt) +

t∫

0

∂xUb(s,Xs)b(s,Xs)
︸ ︷︷ ︸

=:T (b)(s,Xs)

ds (2)

+

t∫

0

(∂xUb(s,Xs)σ(s,Xs) + σ(s,Xs))dWs

Step 2

Let UT (b) be a solution to the PDE

∂tu +
1

2

∑

i,j

(σσ∗)ij∂xi∂xju = −T (b) on [0, T ], u|t=T = 0.

Now, applying Itô’s formula to UT (b) and, as before, replacing the drift

term in (2), we obtain

Xt = x + Ub(0, x) + UT (b)(0, x)− Ub(t,Xt)− UT (b)(t,Xt)

+

t∫

0

∂xUT (b)(s,Xs)b(s,Xs)ds

+

t∫

0

(I + ∂xUb(s,Xs) + ∂xUT (b)(s,Xs))σ(s,Xs)dWs.

Step n+1 (T 0(b) := b, T k+1(b) := ∂xUT k(b) · b)

Xt +

n∑

k=0

UT k(b)(t,Xt)

︸ ︷︷ ︸

=:Y
(n)
t

= x +

n∑

k=0

UT k(b)(0, x)

︸ ︷︷ ︸

=Y
(n)
0

+

t∫

0

T n+1(b)(s,Xs)ds

+

t∫

0





n∑

k=0

∂xUT k(b)(s,Xs) + I



 σ(s,Xs)

︸ ︷︷ ︸

=:σn(s,Xs)

dWs.

One can prove that

E






T∫

0

∣
∣
∣T n+1(b)(t,Xt)

∣
∣
∣

2
dt




 → 0 for n → ∞.

3.2 Pathwise Uniqueness

Let X
(1)
t , X

(2)
t be two solutions to equation (1) with the same initial

values. We have
∣
∣
∣X

(1)
t −X

(2)
t

∣
∣
∣ ≤ 2

∣
∣
∣Y

(1,n)
t − Y

(2,n)
t

∣
∣
∣ ≤ 3

∣
∣
∣X

(1)
t −X

(2)
t

∣
∣
∣ ,

which follows from the mean-value inequality and the fact that
∑

‖∂xUT k(b)‖L∞(T ) ≤
1
2. Furthermore

E

[

e
A

(n)
T∧τR∧τε

]

≤ C uniformly in n,

where

A
(n)
t :=

t∫

0

∣
∣
∣σ(n)(s,X

(1)
s )− σ(n)(s,X

(2)
s )

∣
∣
∣

2

∣
∣
∣Y

(1,n)
s − Y

(2,n)
s

∣
∣
∣

2
1
{Y

(1,n)
s 6=Y

(2,n)
s }

ds.

To prove this is the hardest part! Then we have

E

[ ∣
∣
∣X

(1)
t∧τR∧τε

−X
(2)
t∧τR∧τε

∣
∣
∣

]

≤ 2E

[

e
1
2A

(n)
t∧τR∧τε e

−1
2A

(n)
t∧τR∧τε

∣
∣
∣Y

(1,n)
t∧τR∧τε

− Y
(2,n)
t∧τR∧τε

∣
∣
∣

]

≤ CE

[

e
−A

(n)
t∧τR∧τε

∣
∣
∣Y

(1,n)
t∧τR∧τε

− Y
(2,n)
t∧τR∧τε

∣
∣
∣

2
]1
2

,

where the term under the expectation can be estimated as follows:

d

(

e−A
(n)
t

∣
∣
∣Y

(1,n)
t − Y

(2,n)
t

∣
∣
∣

2
)

= e−A
(n)
t d

∣
∣
∣Y

(1,n)
t − Y

(2,n)
t

∣
∣
∣

2
−
∣
∣
∣Y

(1,n)
t − Y

(2,n)
t

∣
∣
∣

2
e−A

(n)
t dA

(n)
t

≤ 2e−A
(n)
t

∣
∣
∣Y

(1,n)
t − Y

(2,n)
t

∣
∣
∣

∣
∣
∣T n+1(b)(t,X

(1)
t )− T n+1(b)(t,X

(2)
t )

∣
∣
∣ dt

+ 2e−A
(n)
t

〈

Y
(1,n)
t − Y

(2,n)
t ,

(

σ(n)(t,X
(1)
t )− σ(n)(t,X

(2)
t )dWt

)〉

,

here we used Itô’s formula and the Cauchy–Schwarz inequality in the
last step.
Summarizing, we obtain

E

[ ∣
∣
∣X

(1)
t∧τR∧τε

−X
(2)
t∧τR∧τε

∣
∣
∣

]

≤ CE






T∫

0

∣
∣
∣X

(1)
s −X

(2)
s

∣
∣
∣

∣
∣
∣T n+1(b)(s,X

(1)
s )− T n+1(b)(s,X

(2)
s )

∣
∣
∣ ds






1
2

+ CE






t∧τR∧τε∫

0

e−A
(n)
s

〈

Y
(1,n)
s − Y

(2,n)
s ,

(

σ(n)(s,X
(1)
s )− σ(n)(s,X

(2)
s )

)

dWs

〉






1
2

for all n ∈ N.
The first term converges to 0 for n → ∞ and the second integral is a
martingale. Therefore, we have pathwise uniqueness.

4 Remark: What is the problem if σ 6= I?

By a change of measure (Girsanov) the solution of the equation

Xt = x +

t∫

0

b(s,Xs)ds +Wt

is a Brownian motion. This fact was essential in the proof of [1]. The
Girsanov transformation for non-constant diffusion is here no longer use-
ful, since the Brownian motion, after change of measure, is not of the
form (1). A priori it is even not clear that the process is Markovian.
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