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Problem Formulation
It is well-known that a central limit theorem holds for finite-

dimensional diffusions in random environments (see, e.g., [2]). We
consider the infinite-dimensional extension of this problem. Let H =
L2[0, 1]; C0[0, 1] and µ0 be the path space and distribution of a 1-d
standard Brownian motion on [0, 1] starting from 0.

Suppose that (Σ,A , q), (Ω,F , P ) are two probability spaces,
{(V (u), B(u))}u∈H is an R×H-valued random field on (Σ,A , q) and
Wt is a cylindrical BM on (Ω,F , P ). Let u(t, ·) : Σ × Ω → H be the
solution to the 1-dimensional stochastic heat equation

∂tu(t, x) =
∂2
x

2
u(t, x)−DV (u(t))−B(u(t)) + Ẇ (dt, dx),

∂xu(t, 0) = ∂xu(t, 1) = 0,

u(0, x) = v(x),

(∗)

where we assume V ∈ C1
b (H) and DV is its Fréchet derivative. Our

aim is to investigate the limit distribution of t−
1
2u(t).

Assumptions
Assume that the random mapping DV + B : H → H is bounded

and Lipschitz continuous q-a.s., thus the mild solution u(t, x) to (∗) is
unique and continuous in (t, x) (see [1]). Furthermore, assume:
(A1) V and ‖DV +B‖H are uniformly bounded;
(A2) The distribution of the random field {(V,B)} is stationary and
ergodic under {ιc; c ∈ R}, where ιc stands for the shift on the path
space defined as ιc({V,B}) = {V (·+ c), B(·+ c)}.
(A3) ∀F ∈ C1

b (H), Eµ0

[〈
DF, e−2V ·B

〉
H

]
= 0, q-a.s.

Main Theorem
The solution to (∗) satisfies the central limit theorem in probability

with respect to the environment, i.e.,� �
Theorem (Central Limit Theorem). Let 1 be the constant function
1(x) ≡ 1 on [0, 1], Φσ be the probability density function of a 1-d
centered Gaussian distribution with variance σ2, then

lim
t→∞

Eq

∣∣∣∣EP [F (u(t)√
t

)]
−
∫
R
F (1 · y)Φσ(y)dy

∣∣∣∣ = 0,

for any F ∈ Cb(C[0, 1]), where σ is a constant defined in (∗∗) below.� �
Environmental set and Smooth Functions

Thanks to (A2), w.l.o.g., we can assume that there exists a group
of shift operators {τc : Σ → Σ; c ∈ R} as well as an R × H-valued
function (V,B) defined on the following set

Ξ = {ξ : [0, 1]→ Σ, ξ(·) = τu(·)σ|u ∈ C[0, 1], σ ∈ Σ},

such that τc1 ◦ τc2 = τc1+c2 , q is invariant and ergodic under {τc}
and {(V (u), B(u))} d.

= {V ◦ τu(·),B ◦ τu(·)}. The next Lemma is self-
explanatory, but still plays an important role in our proof.� �

Lemma. Suppose that τv1(·)σ1 = τv2(·)σ2, then v1(x) − v2(x) ≡ c.
Therefore ∀ξ ∈ Ξ, ∃ a unique vξ ∈ C0[0, 1] s.t. ξ(·) = τvξ(·)ξ(0).� �
For a function f on the environment set Ξ, its derivative Df is de-

fined as an H-valued function (if exists) such that

lim
‖h‖H↓0

1

‖h‖H
[
f(τh(·)ξ(·))− f(ξ)− 〈Df(ξ), h〉H

]
= 0.

Environmental process
Define the environmental process {ξt}t≥0 as

ξt(σ, ω) ,
(
τu(σ,ω,t,x)σ

)
x∈[0,1]

∈ Ξ.

The Markovian property of ξt follows from the lemma before.� �
Proposition 1. ξt is a continuous Markov process. Its invariant and
ergodic probability measure is

π(dξ) = Z−1e−2V(ξ) · µ0(dvξ)⊗ q(dξ(0)).

Let (Dom(K),K) be its infinitesimal generator on H = L2(Ξ, π), then
a sector condition holds for K, i.e., there exists some constant C =
C(V,B) such that for all f , g ∈ Dom(K),

〈Kf ,g〉2π ≤ C(V,B)〈−Kf , f〉π〈−Kg,g〉π.� �
Given a test function ϕ on [0, 1], by Itô’s formula we have

〈u(t), ϕ〉H = 〈u(0), ϕ〉H +

∫ t

0

Uϕ(ξr)dr + 〈Wt, ϕ〉H ,

where Uϕ(ξ) = 1
2 〈vξ, ∂

2
xϕ〉H − 〈DV(ξ) + B(ξ), ϕ〉H . Since the sec-

ond term is an additive functional of ξt, the central limit theorem just
follows from Proposition 1, and the diffusion constant σ is

σ2 = lim
λ↓0

Eπ‖Dfλ,1 + 1‖2H , (∗∗)

where D is in the weak sense and fλ,1 = (λ−K)−1U1.

A variational principle
The limit distribution of t−

1
2u(t) decays in every direction which is

orthogonal to constant; in the direction of constant functions, it does
not decay, as stated in the following proposition.� �

Proposition 2. If B ≡ 0, the diffusion constant σ in (∗∗) satisfies

σ2 = inf
f∈C1

b (Ξ)
Eπ
[
‖Df + 1‖2H

]
,

and there exists some strictly positive constant C = C(V) ≤ 1 such
that σ2 ∈ [C, 1]. If B 6≡ 0, the lower bound still holds.� �

Two Examples of non-random coefficients
Example 1. Let Σ = [0, 1] and q be the Lebesgue measure. Suppose that for
each x ∈ [0, 1], V (x, ·) ∈ C1(R) is periodic: V (x, y) = V (x, y + 1). For
σ ∈ Σ and u ∈ H , V (σ, u) ,

∫ 1

0
V (x, u(x) + σ)dx and B(σ, u) , 0. It

gives the equation with periodic coefficients.

Example 2. For d ≥ 2 take Σ = [0, 1]d and q to be the Lebesgue mea-
sure. Suppose that for each x ∈ [0, 1], V (x, ·) ∈ C1(Rd) is periodic:
V (x,y) = V (x,y + ei), ∀1 ≤ i ≤ d. For λ ∈ Rd with rationally indepen-
dent coordinates, let V (σ, u) ,

∫ 1

0
V (x, u(x)λ + σ)dx and B(σ, u) , 0. It

gives the equation with quasi-periodic coefficients.
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