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It is well-known that a central limit theorem holds for finite-
dimensional diffusions in random environments (see, e.g., [2]). We
consider the infinite-dimensional extension of this problem. Let H =
L?[0,1]; Cy[0,1] and po be the path space and distribution of a 1-d
standard Brownian motion on |0, 1| starting from 0.

Suppose that (X, 47,q), (2,.#,P) are two probability spaces,
{(V(u), B(u))}yen is an R x H-valued random field on (X, 7, q) and
W, is a cylindrical BM on (€2,.%#, P). Let u(t,-) : ¥ x Q@ — H be the
solution to the 1-dimensional stochastic heat equation

Oru(t,r) = %u(t, r) — DV (u(t)) — B(u(t)) + W (dt, dz),
,u(t,0) = dyu(t, 1) = 0, (*)
u(0,z) = v(z),

where we assume V € C}(H) and DV is its Fréchet derivative. Our
aim is to investigate the limit distribution of ¢t~z u(t).

Assume that the random mapping DV + B : H — H is bounded
and Lipschitz continuous g-a.s., thus the mild solution u(z, x) to (x) is
unique and continuous in (¢, x) (see [1]). Furthermore, assume:

(A1) V and | DV + B||g are uniformly bounded;

(A2) The distribution of the random field {(V, B)} is stationary and
ergodic under {..;c € R}, where ¢, stands for the shift on the path
space defined as t.({V, B}) ={V(-+¢),B(- +¢)}.

(A3)VF € Cy(H), E,, [(DF,e Y -B) | =0, g-as.
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The solution to (x) satisties the central limit theorem in probability
with respect to the environment, i.e.,
4 )
Theorem (Central Limit Theorem). Let 1 be the constant function
1(z) = 1 on |0,1], &, be the probability density function of a 1-d
centered Gaussian distribution with variance o2, then
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Thanks to (A2), w.l.o.g., we can assume that there exists a group
of shift operators {7. : ¥ — X;c € R} as well as an R x H-valued
function (V, B) defined on the following set

= =1£:10,1] = X,&(+) = Tuyolu € C10,1],0 € X},

such that 7., o 7., = 7., 4¢,, q is invariant and ergodic under {7.}
and {(V(u), B(u))} < {Vor7,),Bortyu}. The next Lemma is self-
explanatory, but still plays an important role in our proof.
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Lemma. Suppose that 7, (. 01 = Ty,(.)02, then vi(x) — v2(x) = c
Therefore V€ € E, 3 a unique ve € Cpl0,1] s.t. £(+) = 7,,(1€(0).
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For a function f on the environment set =, its derivative Df is de-
fined as an H-valued function (if exists) such that

£(Th()€() = £(8) = (DEE), hym] = 0.
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Define the environmental process {¢;:};>¢ as

1

ft(O',Cd) é (Tu(a,w,t,w)g)we[oyl] =

The Markovian property of & follows from the lemma before.
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Proposition 1. &; is a continuous Markov process. Its invariant and
ergodic probability measure is

m(d) = Z7 eV - po(due) @ q(d€(0)).

Let (Dom(K), K) be its infinitesimal generator on 7 = L*(Z, ), then
a sector condition holds for IC, i.e., there exists some constant C' =
C(V,B) such that for all £, g € Dom(K),

(Kt g>72r < C(V,B)(-Kf, 1) (—Kg, g)x-
\_ /

Given a test function ¢ on |0, 1], by Itd6’s formula we have

wlt), )i = (u(0), @) + / U, (&,)dr + (We o)

where U, (£) = 2(ve, 02¢)m — (DV(E) + B(), p) . Since the sec-
ond term is an additive functional of &;, the central limit theorem just
follows from Proposition 1, and the diffusion constant o is

52 — 1)318 E.||Dfy 1 + 1%, ()

where D is in the weak sense and f ; = (A — K)~'Uj.

The limit distribution of t~zu(t) decays in every direction which is
orthogonal to constant; in the direction of constant functions, it does
not decay, as stated in the following proposition.
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Proposition 2. If B = 0, the diffusion constant o in (xx) satisfies

2 : 2
c°= inf E.|[|Df+1 ,
feCl (=) [H HH]

and there exists some strictly positive constant C' = C(V) < 1 such
that o € [C,1]. If B # 0, the lower bound still holds.
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Example 1. Let X = |0, 1| and q be the Lebesgue measure. Suppose that for
each x € [0,1], V(z,-) € C'(R) is periodic: V(x,y) = V(x,y + 1). For
ceYandu e H, V(o,u) 2 [} V(z,u(z) + o)dr and B(o,u) £ 0. It
qives the equation with periodic coefficients.

Example 2. For d > 2 take ¥ = [0,1]% and q to be the Lebesgue mea-
sure. Suppose that for each x € [0,1], V(z,-) € CH(R?) is periodic:
Viz,y) =V(z,y +e;), V1l <i<d. For A € R with rationally indepen-
dent coordinates, let V (o, u) 2 [ V(z, u(z)A + o)dx and B(o,u) £ 0. It

gives the equation with quasi-periodic coefficients.
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