Interacting particle systems with sticky boundary

Robert Vofshall

Department of Mathematics, University of Kaiserslautern, Germany

vosshall@mathematik.uni-kl.de I—: TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Introduction (Generator for a single particle General Dirichlet form for /N particles

Let © € R% d > 1, be a bounded domain with smooth boundary T. Condition C3 ®i]\i15i, CL(A)) has the representation
Denote by A the Lebesgue measure on €2, by ¢ the surface measure on

[ and let a € CH(Q), a > 0. T is Linschi . o) N
: pschitz continuous and a, 8 € C(f2), a > 0 A-a.e. on €, 1 | | | | | | N
B > 0 c-a.e. on I' such that \/_ c HY(Q). Additionally, T is 9 AZ (Lo (Vif, Vig) +6 Ty (Vinf, Virg)) dp™,

Thep the solut.ion Qf the fgllowing SDE describes a distorted Brownian C2-smooth and /B € HW2(D) if § = 1. K 1=l .
motion in {2 with (immediate) reflection at I | | |
- = . ) N C3 implies C1 and C2. Note that C3 yields | al e L%(Q;a)) and if where ABH = {z = (z,... aCUN) € Al 2" € QF, AR similar_ijand
IX, — dBy + ! oz(X \dt — 504(5(75)71(5(0 aX, 5—1 also | Brﬁ| c LYT: Bo). V,; denotes the gradient w.r.t. the é-th component in A = Q° for
] a | =1,...,N.
N Xp=1x € Q, y Z 7 ’
) ] % Proposition 2 Let ¢ € C(A) and ¢ > 0 p'V-a.e. Define
where (Bt)g>0 is an R%-valued standard Brownian motion, ([*);>0 is Assume that C3 is fulfilled and denote by (L, D(L)) the generator 4 b
the boundary local time and n the outward normal. of (€. D(E)). Then C2(Q)  D(L) and
& D)) (&) c D) G(f,g) = /Z Lya(Vif, Vig) + 6100 (V1 f, Virg)) ddu
Let B € C(Q), B > S{ and define the additive functional (Ay)¢>p by Lf— 1 1o(Af + (E v5) 1 ]lpg(n, v/) K )
Ay =1+ fO Xs)dlsr, t > 0. Using the inverse (7(¢))i>0 of (A¢)>0 2 Q 2 P for f,g € CH(A).
it is possible to deﬁne the time changed process (X¢)i>0, Xy 1= Xt L5 ILF(AFf N (VFﬁ VI‘f)) "
which is a solution of the SDE 2 p Proposition 3
~ N _
B 1V 1 for f € C%(Q). Assume that a; and B, i = 1,...,N fulfill C1 and C2. Let
dXy = Lo(X¢) (dB; + §F(X’f)dt) 9 1F<Xt)5(Xt)n(Xt) at, ¢ € C(A) and ¢ > 0 p-a.e. Then (G,CH(A)) is densely defined
X) =1z €9, For 0 = 0 this is connected to the Wentzell boundary condition and closable on L*(A; ¢ p). Its closure (G, D(G)) is a conservative,
- / o, strongly local, regular, symmetric Dirichlet form.
- d - - - an,Vf)=8 (Af+(—,Vf)) onl.
where (Bp)g is an Rf-valued standard Brownian motion. This follows ( a ) Note that in contrast to the case of an immediate reflection the

by fot I1(Xs) ds = 0 a.s. for every t > 0.

(X¢)r>0 is called a sticky reflected distorted Brownian motion or dis-
torted Brownian motion with delayed reflection, since the new time scale : : :
slows the process down if it reaches I'. Moreover, the process spends DyﬂamlCS of a Slﬂgle Paftlde

indeed time on I' in the sense

construction for NV > 1 can not be reduced to the case N = 1.

Dynamics of the interacting particle system

1 t
lim — [ 1p(Xg) ds=c >0 as. for some fixed constant c. Theorem 1 o
t—oo t g Condition C5
Assume that C3 is fulfilled. Then there exists a conservative diffusion
The Dirichlet form associated to the distorted Brownian motion with Process (i..e. ‘fl,str.ong Markov process with continuous sample paths o € CHA), ¢ > 0 p-a.e., such that % e L*(N\; ¢ ).
immediate reflection is given by the closure (£, D(E)) of and infinite life time)
1 M = (Q, F, (F)t>0, (Xt)e>0, (O1)>0, (Pz) )

g(fag) — 5

/(Vf, Vg) ad\, f,g¢€ C’l(ﬁ), on LQ(Q; Q).
2 Jq

with state space Q which is properly associated with (£, D(E)) on Theorem 3
200, - -
L7(8% ) and Miis a solution to the SDE Assume that o; and G;, ¢ = 1,..., N, fulfill C3 and ¢ tulfills C5.

~

The local time (l})tzo is in Revuz correspondence with the surface

measure o and therefore, the Revuz measure of (A;)s>q is given by 1V 1 Then there exists a conservative diffusion process MY with state
aX+ Bo. As a consequence, the Dirichlet form (€, D(E)) associated to dX = Lo(X¢)(dBy + 5_(Xt)dt) ) ]lF(Xt)ﬁ(Xt)n(Xt> dt space A which is properly associated with (G, D(G)). M is for
the sticky reflected distorted Brownian motion is given by the closure 1V quasi every x € A a solution to the SDE

of (€,CHQ)) on L2(Q; a\ + Bo). +0 1p(Xe) (dB; + 3 ——(Xp)dt),  (#) . 1

? vz¢ ?
5 (o (XD + =22 (X0) dt) — 51(X) 7

1 v M1 ' v 1
SR+ YR ) )ar).

' dX! = 16(X0) (dBZ
In the following, we present step by step the Dirichlet form construc- dBt =P(X¢) o = P(Xy)dBt — §K(Xt> n(Xy) dt,
tion of a system of N interacting sticky reflected distorted Brownian Xg=uz €, bi ¢
motions on {2 for N € N under mild assumptions on the boundary I', dB, " = P(X!) o dB! = P(X))dB! — %;«;(Xi) n(X!)dt, i=1,...,N
the interaction and the densities o and 3. Since the process spends for quasi every & € Q, where k = divpn (—k n = (PV)'P). X, =z €A
indeed time on I', we provide additionally an optional diffusion along
['. This interacting particle system provides a model for the dynamics
of molecules in a chromatography tube.

(XX

16 1p(X0) (dB“

If we require additional assumptions on o and 3, the statement of the Suppose additionally that a; and 8;, ¢ = 1,..., N, fulfill C4 and
Theorem 1 can be strengthened: that ¢ 1s strictly posmve Then it ex1sts a solutlon for every x €

A=A\ {z = (!, aN) e A TTIY, ai(a) = 0}

Note that the above SDE has in general no strong solution by [2].

Condition C4

Dirichlet form for a Single particle C3 is fulfilled. Furthermore, I' is C*-smooth, cap({o = 0}) = 0 and
there exists p > 2, p > d, such that

d - v Application
Let €2 C R® d > 1, be a bounded domain with boundary I'. | a&| c Lp (Q A {o> 0} a)) PP

Condition C1 and if § =1 [n 3] a similar system of interacting particles with sticky boundary
was constructed in view of a model for the dynamics in a chro-
e IV (TN {o > 0}; Bo). | o e
matography tube, but the interaction is in particular assumed to
be bounded and Lipschitz continuous. Our construction even al-
lows singular interactions. E.g. it is possible to consider ¢ given by

Set 0 = lga+ Ipf and p = aA + fo = o(A + 0). Theorem 2 -
ozt .. ) = exp ( Z V\x—x~7|

Define (£,C1(Q)) on L*(Q; u) by Suppose that C4 is fulfilled. Then the statement of Theorem 1 holds <7 <N
a N accordingly, but M is a strong Feller process with state space €2 N _ ke J

E(f,q) ;:1 /(Vf, Vg) Ozd)\jLé /(vPﬁ Vrg) Bdo {o > 0} gnd Dirichlet form (€, D(E)) on LQ_(Q N{o > 0};p).
Q) 2 Jr Moreover, it solves the SDE (#) for every x € Q2N {p > 0}.

[ is Lipschitz continuous. Moreover, let o« € LY (Q: \), & > 0 M-a.e.,
and B € L'(T;0), B > 0 c-a.e.

2 . > 0, denotes the Lennard-Jones potential.

1 /5(119 (Vf,Vg)+6 1p (Vrf,Vrg)) dy

2 The proof of Theorem 2 is based on the general construction scheme

- - presented in [I] using regularity results for elliptic PDEs with Wentzell References and Acknowledgment
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and analogously Rg(I").

Let a; and B;, 4 = 1,..., N, fulfill C1 and C2. Denote by (£, C1(Q))
L L : ‘ =V
Condition C2 (Hamza condition) the according forms. Define (®;%,€, C'(A)), A =", by

« N
a =0 Aae on N\Ry(2) andif 6 =1 =0 o-a.c. on "\Rg(').

Proposition 1

for f,g € CY(A). This bilinear form is closable on L*(A; ™)

= Hz‘]\;1(ai>‘z’ + Bi0;). Its closure is a regular Dirichlet form and
yields IV independent sticky reflected distorted Brownian motions. Next
we introduce an interaction.

where

)

Assume that C1 and C2 are fulfilled. Then (£,C1(Q)) is densely

defined and closable on L(Q; p). Its closure (£, D(E)) is a conser-
vative, strongly local, regular, symmetric Dirichlet form.
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