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Let Ω ⊂ Rd, d ≥ 1, be a bounded domain with smooth boundary Γ.
Denote by λ the Lebesgue measure on Ω, by σ the surface measure on
Γ and let α ∈ C1(Ω), α > 0.

Then the solution of the following SDE describes a distorted Brownian
motion in Ω with (immediate) reflection at Γ:

dX̃t = dB̃t +
1

2

∇α
α

(X̃t)dt−
1

2
α(X̃t)n(X̃t) dl

X̃
t ,

X̃0 = x ∈ Ω,

where (B̃t)t≥0 is an Rd-valued standard Brownian motion, (lX̃t )t≥0 is
the boundary local time and n the outward normal.

Let β ∈ C(Ω), β > 0, and define the additive functional (At)t≥0 by
At := t +

∫ t
0 β(X̃s)dl

X̃
s , t ≥ 0. Using the inverse (τ (t))t≥0 of (At)t≥0

it is possible to define the time changed process (Xt)t≥0, Xt := X̃τ (t),
which is a solution of the SDE

dXt = 1Ω(Xt)
(
dBt +

1

2

∇α
α

(Xt)dt
)
− 1

2
1Γ(Xt)

α

β
(Xt)n(Xt) dt,

X0 = x ∈ Ω,

where (Bt)t≥0 is an Rd-valued standard Brownian motion. This follows
by
∫ t

0 1Γ(X̃s) ds = 0 a.s. for every t ≥ 0.
(Xt)t≥0 is called a sticky reflected distorted Brownian motion or dis-
torted Brownian motion with delayed reflection, since the new time scale
slows the process down if it reaches Γ. Moreover, the process spends
indeed time on Γ in the sense

lim
t→∞

1

t

∫ t

0
1Γ(Xs) ds = c > 0 a.s. for some fixed constant c.

The Dirichlet form associated to the distorted Brownian motion with
immediate reflection is given by the closure (Ẽ , D(Ẽ)) of

Ẽ(f, g) =
1

2

∫
Ω

(∇f,∇g) αdλ, f, g ∈ C1(Ω), on L2(Ω;αλ).

The local time (lX̃t )t≥0 is in Revuz correspondence with the surface
measure σ and therefore, the Revuz measure of (At)t≥0 is given by
αλ+βσ. As a consequence, the Dirichlet form (E , D(E)) associated to
the sticky reflected distorted Brownian motion is given by the closure
of (Ẽ , C1(Ω)) on L2(Ω;αλ + βσ).

In the following, we present step by step the Dirichlet form construc-
tion of a system of N interacting sticky reflected distorted Brownian
motions on Ω for N ∈ N under mild assumptions on the boundary Γ,
the interaction and the densities α and β. Since the process spends
indeed time on Γ, we provide additionally an optional diffusion along
Γ. This interacting particle system provides a model for the dynamics
of molecules in a chromatography tube.

Introduction

Let Ω ⊂ Rd, d ≥ 1, be a bounded domain with boundary Γ.

Γ is Lipschitz continuous. Moreover, let α ∈ L1(Ω;λ), α > 0 λ-a.e.,
and β ∈ L1(Γ;σ), β > 0 σ-a.e.

Condition C1

Set % = 1Ωα + 1Γβ and µ := αλ + βσ = %(λ + σ).

Define (E , C1(Ω)) on L2(Ω;µ) by

E(f, g) :=
1

2

∫
Ω

(∇f,∇g) αdλ +
δ

2

∫
Γ

(∇Γf,∇Γg) βdσ

=
1

2

∫
Ω

(
1Ω (∇f,∇g) + δ 1Γ (∇Γf,∇Γg)

)
dµ

for f, g ∈ C1(Ω), where δ ∈ {0, 1}, P (x) := E − n(x)n(x)t and
∇Γf (x) := P (x)∇f (x) for f ∈ C1(Ω), x ∈ Γ. Let

Rα(Ω) := {x ∈ Ω|
∫
{y∈Ω| |x−y|<ε}

α−1dλ <∞ for some ε > 0}

and analogously Rβ(Γ).

α = 0 λ-a.e. on Ω\Rα(Ω) and if δ = 1 β = 0 σ-a.e. on Γ\Rβ(Γ).

Condition C2 (Hamza condition)

Assume that C1 and C2 are fulfilled. Then (E , C1(Ω)) is densely
defined and closable on L2(Ω;µ). Its closure (E , D(E)) is a conser-
vative, strongly local, regular, symmetric Dirichlet form.

Proposition 1

Dirichlet form for a single particle

Γ is Lipschitz continuous and α, β ∈ C(Ω), α > 0 λ-a.e. on Ω,
β > 0 σ-a.e. on Γ such that

√
α ∈ H1,2(Ω). Additionally, Γ is

C2-smooth and
√
β ∈ H1,2(Γ) if δ = 1.

Condition C3

C3 implies C1 and C2. Note that C3 yields |∇α|α ∈ L2(Ω;αλ) and if
δ = 1 also |∇Γβ|

β ∈ L2(Γ; βσ).

Assume that C3 is fulfilled and denote by (L,D(L)) the generator
of (E , D(E)). Then C2(Ω) ⊂ D(L) and

Lf =
1

2
1Ω
(
∆f + (

∇α
α
,∇f )

)
− 1

2
1Γ
α

β
(n,∇f )

+ δ
1

2
1Γ
(
∆Γf + (

∇Γβ

β
,∇Γf )

)
for f ∈ C2(Ω).

Proposition 2

For δ = 0 this is connected to the Wentzell boundary condition

α(n,∇f ) = β
(
∆f + (

∇α
α
,∇f )

)
on Γ.

Generator for a single particle

Assume that C3 is fulfilled. Then there exists a conservative diffusion
process (i.e. a strong Markov process with continuous sample paths
and infinite life time)

M =
(
Ω,F , (Ft)t≥0, (Xt)t≥0, (Θt)t≥0, (Px)x∈Ω

)
with state space Ω which is properly associated with (E , D(E)) on
L2(Ω;µ) and M is a solution to the SDE

dXt = 1Ω(Xt)
(
dBt +

1

2

∇α
α

(Xt)dt
)
− 1

2
1Γ(Xt)

α

β
(Xt)n(Xt) dt

+ δ 1Γ(Xt)
(
dBΓ

t +
1

2

∇Γβ

β
(Xt)dt

)
, (#)

dBΓ
t =P (Xt) ◦ dBt = P (Xt)dBt −

1

2
κ(Xt) n(Xt) dt,

X0 = x ∈ Ω,

for quasi every x ∈ Ω, where κ = divΓn (−κ n = (P∇)tP ).

Theorem 1

If we require additional assumptions on α and β, the statement of the
Theorem 1 can be strengthened:

C3 is fulfilled. Furthermore, Γ is C2-smooth, cap({% = 0}) = 0 and
there exists p ≥ 2, p > d, such that

|∇α|
α
∈ Lploc(Ω ∩ {% > 0};αλ)

and if δ = 1
|∇Γβ|
β
∈ Lploc(Γ ∩ {% > 0}; βσ).

Condition C4

Suppose that C4 is fulfilled. Then the statement of Theorem 1 holds
accordingly, but M is a strong Feller process with state space Ω ∩
{% > 0} and Dirichlet form (E , D(E)) on L2(Ω ∩ {% > 0};µ).
Moreover, it solves the SDE (#) for every x ∈ Ω ∩ {% > 0}.

Theorem 2

The proof of Theorem 2 is based on the general construction scheme
presented in [1] using regularity results for elliptic PDEs with Wentzell
boundary conditions.

Dynamics of a single particle

Let αi and βi, i = 1, . . . , N , fulfill C1 and C2. Denote by (E i, C1(Ω))

the according forms. Define (⊗Ni=1E
i, C1(Λ)), Λ := Ω

N , by

⊗Ni=1E
i(f, g) :=

N∑
i=1

∫
Ω
N−1
E i(f, g)

∏
j 6=i

(αjλj + βjσj)

for f, g ∈ C1(Λ). This bilinear form is closable on L2(Λ;µN ), where
µN :=

∏N
i=1(αiλi + βiσi). Its closure is a regular Dirichlet form and

yieldsN independent sticky reflected distorted Brownian motions. Next
we introduce an interaction.

Product form of N pre-Dirichlet forms

(⊗Ni=1E
i, C1(Λ)) has the representation

1

2

∫
Λ

N∑
i=1

(
1Λi,Ω (∇if,∇ig) + δ 1Λi,Γ (∇i,Γf,∇i,Γg)

)
dµN ,

where Λi,Ω := {x = (x1, . . . , xN ) ∈ Λ| xi ∈ Ω}, Λi,Γ similary, and
∇i denotes the gradient w.r.t. the i-th component in Λ = Ω

N for
i = 1, . . . , N .

Let φ ∈ C(Λ) and φ > 0 µN -a.e. Define

G(f, g) :=
1

2

∫
Λ

N∑
i=1

(
1Λi,Ω(∇if,∇ig) + δ1Λi,Γ(∇i,Γf,∇i,Γg)

)
φdµN

for f, g ∈ C1(Λ).

Assume that αi and βi, i = 1, . . . , N fulfill C1 and C2. Let
φ ∈ C(Λ) and φ > 0 µ-a.e. Then (G, C1(Λ)) is densely defined
and closable on L2(Λ;φ µ). Its closure (G, D(G)) is a conservative,
strongly local, regular, symmetric Dirichlet form.

Proposition 3

Note that in contrast to the case of an immediate reflection the
construction for N > 1 can not be reduced to the case N = 1.

General Dirichlet form for N particles

φ ∈ C1(Λ), φ > 0 µ-a.e., such that |∇φ|φ ∈ L2(Λ;φ µ).

Condition C5

Set %i := 1Ωαi + 1Γβi, i = 1, . . . , N .

Assume that αi and βi, i = 1, . . . , N , fulfill C3 and φ fulfills C5.
Then there exists a conservative diffusion process MN with state
space Λ which is properly associated with (G, D(G)). MN is for
quasi every x ∈ Λ a solution to the SDE

dXi
t = 1Ω(Xi

t)
(
dBi

t +
1

2

(∇iαi
αi

(Xi
t) +
∇iφ

φ
(Xt)

)
dt
)
− 1

2
1Γ(Xi

t)
αi
βi

(Xi
t)n(Xi

t)dt

+ δ 1Γ(Xi
t)
(
dBΓ,i

t +
1

2

(∇Γ,iβi
βi

(Xi
t) +
∇Γ,iφ

φ
(Xt)

)
dt
)
,

dBΓ,i
t = P (Xi

t) ◦ dBi
t = P (Xi

t)dB
i
t −

1

2
κ(Xi

t) n(Xi
t) dt, i = 1, . . . , N

X0 = x ∈ Λ.

Suppose additionally that αi and βi, i = 1, . . . , N , fulfill C4 and
that φ is strictly positive. Then it exists a solution for every x ∈
Λ1 := Λ \ {x = (x1, . . . , xN ) ∈ Λ|

∏N
i=1 %i(x

i) = 0}.

Theorem 3

Note that the above SDE has in general no strong solution by [2].

Dynamics of the interacting particle system

In [3] a similar system of interacting particles with sticky boundary
was constructed in view of a model for the dynamics in a chro-
matography tube, but the interaction is in particular assumed to
be bounded and Lipschitz continuous. Our construction even al-
lows singular interactions. E.g. it is possible to consider φ given by

φ(x1, . . . , xN ) := exp
(
−
∑

1≤i,j≤N
i 6=j

V (|xi − xj|)
)
,

where V (r) := r−12−r−6, r > 0, denotes the Lennard-Jones potential.

Application
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