Interacting particle systems with sticky boundary

Robert Voßhall Department of Mathematics, University of Kaiserslautern, Germany vosshall@mathematik.uni-kl.de

Introduction

Let $\Omega \subset \mathbb{R}^d$, $d \ge 1$, be a bounded domain with smooth boundary Γ . Denote by λ the Lebesgue measure on Ω , by σ the surface measure on Γ and let $\alpha \in C^1(\overline{\Omega})$, $\alpha > 0$.

Then the solution of the following SDE describes a distorted Brownian motion in Ω with (immediate) reflection at Γ :

$$d\tilde{\mathbf{X}}_{t} = d\tilde{B}_{t} + \frac{1}{2} \frac{\nabla \alpha}{\alpha} (\tilde{\mathbf{X}}_{t}) dt - \frac{1}{2} \alpha (\tilde{\mathbf{X}}_{t}) n(\tilde{\mathbf{X}}_{t}) \ dl_{t}^{\tilde{\mathbf{X}}},$$
$$\tilde{\mathbf{X}}_{0} = x \in \overline{\Omega},$$

where $(\tilde{B}_t)_{t\geq 0}$ is an \mathbb{R}^d -valued standard Brownian motion, $(l_t^{\mathbf{X}})_{t\geq 0}$ is

Generator for a single particle

Condition C3

 Γ is Lipschitz continuous and $\alpha, \beta \in C(\overline{\Omega}), \alpha > 0$ λ -a.e. on Ω , $\beta > 0 \sigma$ -a.e. on Γ such that $\sqrt{\alpha} \in H^{1,2}(\Omega)$. Additionally, Γ is C^2 -smooth and $\sqrt{\beta} \in H^{1,2}(\Gamma)$ if $\delta = 1$.

C3 implies C1 and C2. Note that C3 yields $\frac{|\nabla \alpha|}{\alpha} \in L^2(\Omega; \alpha \lambda)$ and if $\delta = 1$ also $\frac{|\nabla_{\Gamma}\beta|}{\beta} \in L^2(\Gamma; \beta \sigma)$.

Proposition 2

Assume that C3 is fulfilled and denote by (L, D(L)) the generator

General Dirichlet form for N particles

 $(\otimes_{i=1}^{N} \mathcal{E}^{i}, C^{1}(\Lambda))$ has the representation

 $\frac{1}{2} \int_{\Lambda} \sum_{i=1}^{N} \left(\mathbb{1}_{\Lambda^{i,\Omega}} \left(\nabla_{i} f, \nabla_{i} g \right) + \delta \mathbb{1}_{\Lambda^{i,\Gamma}} \left(\nabla_{i,\Gamma} f, \nabla_{i,\Gamma} g \right) \right) \, d\mu^{N},$

where $\Lambda^{i,\Omega} := \{x = (x^1, \dots, x^N) \in \Lambda | x^i \in \Omega\}, \Lambda^{i,\Gamma}$ similarly, and ∇_i denotes the gradient w.r.t. the *i*-th component in $\Lambda = \overline{\Omega}^N$ for $i = 1, \dots, N$.

Let $\phi \in C(\Lambda)$ and $\phi > 0 \ \mu^N$ -a.e. Define

the boundary local time and n the outward normal.

Let $\beta \in C(\overline{\Omega}), \beta > 0$, and define the additive functional $(A_t)_{t\geq 0}$ by $A_t := t + \int_0^t \beta(\tilde{\mathbf{X}}_s) dl_s^{\tilde{\mathbf{X}}}, t \geq 0$. Using the inverse $(\tau(t))_{t\geq 0}$ of $(A_t)_{t\geq 0}$ it is possible to define the time changed process $(\mathbf{X}_t)_{t\geq 0}, \mathbf{X}_t := \tilde{\mathbf{X}}_{\tau(t)},$ which is a solution of the SDE

$$d\mathbf{X}_{t} = \mathbb{1}_{\Omega}(\mathbf{X}_{t}) \left(dB_{t} + \frac{1}{2} \frac{\nabla \alpha}{\alpha} (\mathbf{X}_{t}) dt \right) - \frac{1}{2} \mathbb{1}_{\Gamma}(\mathbf{X}_{t}) \frac{\alpha}{\beta} (\mathbf{X}_{t}) n(\mathbf{X}_{t}) dt,$$
$$\mathbf{X}_{0} = x \in \overline{\Omega},$$

where $(B_t)_{t\geq 0}$ is an \mathbb{R}^d -valued standard Brownian motion. This follows by $\int_0^t \mathbb{1}_{\Gamma}(\tilde{\mathbf{X}}_s) \, ds = 0$ a.s. for every $t \geq 0$. $(\mathbf{X}_t)_{t\geq 0}$ is called a sticky reflected distorted Brownian motion or distorted Brownian motion with delayed reflection, since the new time scale slows the process down if it reaches Γ . Moreover, the process spends indeed time on Γ in the sense

 $\lim_{t \to \infty} \frac{1}{t} \int_0^t \mathbb{1}_{\Gamma}(\mathbf{X}_s) \, ds = c > 0 \quad \text{a.s. for some fixed constant } c.$

The Dirichlet form associated to the distorted Brownian motion with immediate reflection is given by the closure $(\tilde{\mathcal{E}}, D(\tilde{\mathcal{E}}))$ of

$$\tilde{\mathcal{E}}(f,g) = \frac{1}{2} \int_{\Omega} (\nabla f, \nabla g) \; \alpha d\lambda, \quad f,g \in C^1(\overline{\Omega}), \quad \text{on } L^2(\overline{\Omega}; \alpha \lambda).$$

The local time $(l_t^{\mathbf{X}})_{t\geq 0}$ is in Revuz correspondence with the surface measure σ and therefore, the Revuz measure of $(A_t)_{t\geq 0}$ is given by $\alpha\lambda + \beta\sigma$. As a consequence, the Dirichlet form $(\mathcal{E}, D(\mathcal{E}))$ associated to

of $(\mathcal{E}, D(\mathcal{E}))$. Then $C^2(\overline{\Omega}) \subset D(L)$ and

$$\begin{split} Lf &= \frac{1}{2} \, \mathbbm{1}_{\Omega} \big(\Delta f + (\frac{\nabla \alpha}{\alpha}, \nabla f) \big) - \frac{1}{2} \, \mathbbm{1}_{\Gamma} \frac{\alpha}{\beta} (n, \nabla f) \\ &+ \delta \, \frac{1}{2} \, \mathbbm{1}_{\Gamma} \big(\Delta_{\Gamma} f + (\frac{\nabla_{\Gamma} \beta}{\beta}, \nabla_{\Gamma} f) \big) \end{split}$$

for $f \in C^2(\overline{\Omega})$.

For $\delta = 0$ this is connected to the Wentzell boundary condition

$$\alpha(n, \nabla f) = \beta \left(\Delta f + \left(\frac{\nabla \alpha}{\alpha}, \nabla f \right) \right)$$
 on Γ .

Dynamics of a single particle

Theorem 1

Assume that C3 is fulfilled. Then there exists a conservative diffusion process (i.e. a strong Markov process with continuous sample paths and infinite life time)

 $\mathbf{M} = \left(\mathbf{\Omega}, \mathcal{F}, (\mathcal{F}_t)_{t \ge 0}, (\mathbf{X}_t)_{t \ge 0}, (\Theta_t)_{t \ge 0}, (\mathbf{P}_x)_{x \in \overline{\Omega}}\right)$

with state space $\overline{\Omega}$ which is properly associated with $(\mathcal{E}, D(\mathcal{E}))$ on $L^2(\overline{\Omega}; \mu)$ and **M** is a solution to the SDE

$$d\mathbf{X}_t = \mathbb{1}_{\Omega}(\mathbf{X}_t) \left(dB_t + \frac{1}{2} \frac{\nabla \alpha}{\alpha} (\mathbf{X}_t) dt \right) - \frac{1}{2} \mathbb{1}_{\Gamma}(\mathbf{X}_t) \frac{\alpha}{\beta} (\mathbf{X}_t) n(\mathbf{X}_t) dt$$

for $f, g \in C^1(\Lambda)$.

Proposition 3

Assume that α_i and β_i , $i = 1, \ldots, N$ fulfill C1 and C2. Let $\phi \in C(\Lambda)$ and $\phi > 0$ μ -a.e. Then $(\mathcal{G}, C^1(\Lambda))$ is densely defined and closable on $L^2(\Lambda; \phi \mu)$. Its closure $(\mathcal{G}, D(\mathcal{G}))$ is a conservative, strongly local, regular, symmetric Dirichlet form.

Note that in contrast to the case of an immediate reflection the construction for N > 1 can not be reduced to the case N = 1.

Dynamics of the interacting particle system

Condition C5

 $\phi \in C^1(\Lambda), \phi > 0$ μ -a.e., such that $\frac{|\nabla \phi|}{\phi} \in L^2(\Lambda; \phi \mu).$

Set $\varrho_i := \mathbb{1}_{\Omega} \alpha_i + \mathbb{1}_{\Gamma} \beta_i, \ i = 1, \dots, N.$

Theorem 3

Assume that α_i and β_i , i = 1, ..., N, fulfill C3 and ϕ fulfills C5. Then there exists a conservative diffusion process \mathbf{M}^N with state space Λ which is properly associated with $(\mathcal{G}, D(\mathcal{G}))$. \mathbf{M}^N is for quasi every $x \in \Lambda$ a solution to the SDE

the sticky reflected distorted Brownian motion is given by the closure of $(\tilde{\mathcal{E}}, C^1(\overline{\Omega}))$ on $L^2(\overline{\Omega}; \alpha \lambda + \beta \sigma)$.

In the following, we present step by step the Dirichlet form construction of a system of N interacting sticky reflected distorted Brownian motions on $\overline{\Omega}$ for $N \in \mathbb{N}$ under mild assumptions on the boundary Γ , the interaction and the densities α and β . Since the process spends indeed time on Γ , we provide additionally an optional diffusion along Γ . This interacting particle system provides a model for the dynamics of molecules in a chromatography tube.

Dirichlet form for a single particle

Let $\Omega \subset \mathbb{R}^d$, $d \ge 1$, be a bounded domain with boundary Γ .

Condition C1

 Γ is Lipschitz continuous. Moreover, let $\alpha \in L^1(\Omega; \lambda)$, $\alpha > 0 \lambda$ -a.e., and $\beta \in L^1(\Gamma; \sigma)$, $\beta > 0 \sigma$ -a.e.

Set $\varrho = \mathbb{1}_{\Omega} \alpha + \mathbb{1}_{\Gamma} \beta$ and $\mu := \alpha \lambda + \beta \sigma = \varrho(\lambda + \sigma)$.

Define $(\mathcal{E}, C^1(\overline{\Omega}))$ on $L^2(\overline{\Omega}; \mu)$ by

$$\begin{split} \mathcal{E}(f,g) &:= \frac{1}{2} \int_{\Omega} (\nabla f, \nabla g) \; \alpha d\lambda + \frac{\delta}{2} \int_{\Gamma} (\nabla_{\Gamma} f, \nabla_{\Gamma} g) \; \beta d\sigma \\ &= \frac{1}{2} \int_{\overline{\Omega}} \left(\mathbb{1}_{\Omega} \; (\nabla f, \nabla g) + \delta \; \mathbb{1}_{\Gamma} \; (\nabla_{\Gamma} f, \nabla_{\Gamma} g) \right) \; d\mu \end{split}$$

 $+ \delta \mathbb{1}_{\Gamma}(\mathbf{X}_t) \left(dB_t^{\Gamma} + \frac{1}{2} \frac{\nabla_{\Gamma} \beta}{\beta} (\mathbf{X}_t) dt \right), \qquad (\#)$ $dB_t^{\Gamma} = P(\mathbf{X}_t) \circ dB_t = P(\mathbf{X}_t) dB_t - \frac{1}{2} \kappa(\mathbf{X}_t) \ n(\mathbf{X}_t) \ dt,$ $\mathbf{X}_0 = x \in \overline{\Omega},$

for quasi every $x \in \overline{\Omega}$, where $\kappa = \operatorname{div}_{\Gamma} n \ (-\kappa \ n = (P\nabla)^t P)$.

If we require additional assumptions on α and β , the statement of the Theorem 1 can be strengthened:

Condition C4

C3 is fulfilled. Furthermore, Γ is C^2 -smooth, cap $(\{\varrho = 0\}) = 0$ and there exists $p \ge 2$, p > d, such that

 $\frac{|\nabla \alpha|}{\alpha} \in L^p_{\text{loc}}(\overline{\Omega} \cap \{\varrho > 0\}; \alpha \lambda)$

and if $\delta = 1$ $\frac{|\nabla_{\Gamma}\beta|}{\beta} \in L^p_{\text{loc}}(\Gamma \cap \{\varrho > 0\}; \beta\sigma).$

Theorem 2

Suppose that C4 is fulfilled. Then the statement of Theorem 1 holds accordingly, but **M** is a strong Feller process with state space $\overline{\Omega} \cap \{\varrho > 0\}$ and Dirichlet form $(\mathcal{E}, D(\mathcal{E}))$ on $L^2(\overline{\Omega} \cap \{\varrho > 0\}; \mu)$. Moreover, it solves the SDE (#) for every $x \in \overline{\Omega} \cap \{\varrho > 0\}$.

The proof of Theorem 2 is based on the general construction scheme presented in [1] using regularity results for elliptic PDEs with Wentzell boundary conditions. $d\mathbf{X}_{t}^{i} = \mathbb{1}_{\Omega}(\mathbf{X}_{t}^{i}) \left(dB_{t}^{i} + \frac{1}{2} \left(\frac{\nabla_{i} \alpha_{i}}{\alpha_{i}} (\mathbf{X}_{t}^{i}) + \frac{\nabla_{i} \phi}{\phi} (\mathbf{X}_{t}) \right) dt \right) - \frac{1}{2} \mathbb{1}_{\Gamma}(\mathbf{X}_{t}^{i}) \frac{\alpha_{i}}{\beta_{i}} (\mathbf{X}_{t}^{i}) n(\mathbf{X}_{t}^{i}) dt \\ + \delta \mathbb{1}_{\Gamma}(\mathbf{X}_{t}^{i}) \left(dB_{t}^{\Gamma,i} + \frac{1}{2} \left(\frac{\nabla_{\Gamma,i} \beta_{i}}{\beta_{i}} (\mathbf{X}_{t}^{i}) + \frac{\nabla_{\Gamma,i} \phi}{\phi} (\mathbf{X}_{t}) \right) dt \right), \\ dB_{t}^{\Gamma,i} = P(\mathbf{X}_{t}^{i}) \circ dB_{t}^{i} = P(\mathbf{X}_{t}^{i}) dB_{t}^{i} - \frac{1}{2} \kappa(\mathbf{X}_{t}^{i}) n(\mathbf{X}_{t}^{i}) dt, \quad i = 1, \dots, N \\ \mathbf{X}_{0} = x \in \Lambda.$

Suppose additionally that α_i and β_i , i = 1, ..., N, fulfill C4 and that ϕ is strictly positive. Then it exists a solution for every $x \in \Lambda_1 := \Lambda \setminus \{x = (x^1, ..., x^N) \in \Lambda | \prod_{i=1}^N \varrho_i(x^i) = 0\}.$

Note that the above SDE has in general no strong solution by [2].

Application

In [3] a similar system of interacting particles with sticky boundary was constructed in view of a model for the dynamics in a chromatography tube, but the interaction is in particular assumed to be bounded and Lipschitz continuous. Our construction even allows singular interactions. E.g. it is possible to consider ϕ given by

$$\phi(x^1,\ldots,x^N) := \exp\Big(-\sum_{\substack{1 \le i,j \le N \\ i \ne j}} V(|x^i - x^j|)\Big),$$

where $V(r) := r^{-12} - r^{-6}$, r > 0, denotes the Lennard-Jones potential.

 $2 J \Sigma$

for $f, g \in C^1(\overline{\Omega})$, where $\delta \in \{0, 1\}$, $P(x) := E - n(x)n(x)^t$ and $\nabla_{\Gamma} f(x) := P(x)\nabla f(x)$ for $f \in C^1(\overline{\Omega})$, $x \in \Gamma$. Let

 $R_{\alpha}(\Omega) := \{ x \in \Omega | \int_{\{y \in \Omega | |x-y| < \epsilon\}} \alpha^{-1} d\lambda < \infty \text{ for some } \epsilon > 0 \}$

and analogously $R_{\beta}(\Gamma)$.

Condition C2 (Hamza condition)

 $\alpha = 0 \ \lambda$ -a.e. on $\Omega \setminus R_{\alpha}(\Omega)$ and if $\delta = 1 \ \beta = 0 \ \sigma$ -a.e. on $\Gamma \setminus R_{\beta}(\Gamma)$.

Proposition 1

Assume that C1 and C2 are fulfilled. Then $(\mathcal{E}, C^1(\overline{\Omega}))$ is densely defined and closable on $L^2(\overline{\Omega}; \mu)$. Its closure $(\mathcal{E}, D(\mathcal{E}))$ is a conservative, strongly local, regular, symmetric Dirichlet form.

Product form of N pre-Dirichlet forms

Let α_i and β_i , i = 1, ..., N, fulfill C1 and C2. Denote by $(\mathcal{E}^i, C^1(\overline{\Omega}))$ the according forms. Define $(\bigotimes_{i=1}^N \mathcal{E}^i, C^1(\Lambda)), \Lambda := \overline{\Omega}^N$, by

$$\otimes_{i=1}^{N} \mathcal{E}^{i}(f,g) := \sum_{i=1}^{N} \int_{\overline{\Omega}^{N-1}} \mathcal{E}^{i}(f,g) \prod_{j \neq i} (\alpha_{j}\lambda_{j} + \beta_{j}\sigma_{j})$$

for $f, g \in C^1(\Lambda)$. This bilinear form is closable on $L^2(\Lambda; \mu^N)$, where $\mu^N := \prod_{i=1}^N (\alpha_i \lambda_i + \beta_i \sigma_i)$. Its closure is a regular Dirichlet form and yields N independent sticky reflected distorted Brownian motions. Next we introduce an interaction.

References and Acknowledgment

[1] B. Baur, M. Grothaus and P. Stilgenbauer. Construction of \mathcal{L}^p -strong Feller Processes via Dirichlet Forms and Applications to Elliptic Diffusions. *Potential Anal.*, 38(4):1233-1258, 2013.

[2] H. -J. Engelbert and G. Peskir. Stochastic differential equations for sticky Brownian motion. In *Research report No. 5, 2012, Probability and Statistics Group*, pages 28 pp., School of Mathematics, The University of Manchester, 2012.

[3] C. Graham. The martingale problem with sticky reflection conditions, and a system of particles interacting at the boundary. Ann. Inst. Henri Poincaré Probab. Stat., 24(1):45-72, 1988.

[4] R. Voßhall. Interacting particle system with sticky boundary. arXiv:1508.02519, 2015.

Robert Voßhall thanks the organizers of the conference for the invitation and for financial support. Moreover, financial support by the IMU Itô fund is gratefully acknowledged.