Geometric structures of favorite sites of random walk

Izumi Okada, Tokyo Institute of Technology

Set $M(n) := \max_{x \in \mathbb{Z}^d} K(n; x).$

Theorem 4 (Erdös and Taylor,1960). It holds that for simple random walk in \mathbb{Z}^d $(d \geq 3)$,

$$\lim_{n \to \infty} \frac{M(n)}{\log n} = -\frac{1}{\log P(T_0 < \infty)} \quad a.s.,$$

and for simple random walk in \mathbb{Z}^2

$$\frac{1}{4\pi} \le \liminf_{n \to \infty} \frac{M(n)}{(\log n)^2} \le \limsup_{n \to \infty} \frac{M(n)}{(\log n)^2} \le \frac{1}{\pi} \quad a.s.$$

Theorem 5 (Dembo, Peres, Rosen and Zeitouni, 2001). It holds that for simple random walk in \mathbb{Z}^2

$$\lim_{n \to \infty} \frac{M(n)}{(\log n)^2} = \frac{1}{\pi} \quad a.s.$$

Set $\tilde{M}(n) := \max_{x \in \partial R_n} K(n; x).$

Theorem 6 (O., 2014). It holds that for simple random walk in \mathbb{Z}^d $(d \ge 2)$,

$$\lim_{n \to \infty} \frac{\tilde{M}(n)}{\log n} = -\frac{1}{\log P(T_0 < T_b)} \quad a.s.$$

- Conclusion

$$P\bigg(\lim_{n\to\infty}\frac{M(n)}{(\log n)^2}\neq \lim_{n\to\infty}\frac{\tilde{M}(n)}{(\log n)^2}\bigg)=1.$$

In other words, the favorite site does not appear in the inner boundary for all but finitely many n a.s.