Geometric structures of favorite sites of random walk

Izumi Okada, Tokyo Institute of Technology

Definition

- Let X_{1}, X_{2}, \ldots be i.i.d. \mathbb{Z}^{d}-valued random variables, $S_{0}:=0, S_{k}:=\Sigma_{i=1}^{k} X_{i}$ random walk taking values in \mathbb{Z}^{d} with $d \geq 1$.
- $T_{a}:=\inf \left\{m \geq 1: S_{m}=a\right\}$
- $K(n ; x):=\sum_{i=0}^{n} 1\left\{S_{i}=x\right\}$
- $R_{n}:=\{x: K(n ; x) \geq 1\}=\left\{S_{0}, S_{1}, \ldots, S_{n}\right\}$
- $R_{n}^{(p)}:=\{x: K(n ; x)=p\}$
- $\mathcal{N}(\mathrm{a}):=\{\mathrm{z}: \operatorname{dist}(\mathrm{a}, \mathrm{z})=1\}$
- $\partial R_{n}:=\left\{x \in R_{n}: R_{n} \not \supset \mathcal{N}(x)\right\}$
- $\tilde{R}_{n}^{(p)}:=\left\{x \in \partial R_{n}: k(n ; x)=p\right\}$

The inner boundary points in \mathbb{Z}^{2}

- random walk range
- The inner boundary of random walk range

\qquad

