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( Definition

o Let X1, Xs, ... be i.i.d. Z%valued random vari-
ables, Sp := 0, Sy := XF_, X; random walk tak-
ing values in Z? with d > 1.

o T, :=inf{m>1:8, =a)

o K(njz): =1 1{Si=x}

o Ry = {: K(n;z) > 1} = {S0, 51, ., S}
o RY = {z: K(n;z) =p}

o N(a):={z: dist(az)=1}

S e IR, :={x € R, : R, DN(2)}

o« RV = {x € OR, : k(n;x) = p}

s The inner boundary points in Z?2 —

® random walk range © The inner boundary of random walk range

N J

Consider random walk in Z¢ with d > 1.

Theorem 1 (Spitzer, 1976).
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Theorem 2 (Jain and Pruitt, 1970). For simple ran-
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Theorem 3 (0., 2014).
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For simple random walk in Z? and p > 1,

o U{S}m=0 2 N(0),
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dom walk in Z?* it holds that p—1,2 - p—1,2
o mn +o< E|RW| < cm n+07
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(logn) (logn) where ¢y = P(Ty < Tp) and b € N(0). )
r Question ~
How often does random walk visit the sites in the inner boundary?
In particular, does the favorite site exist in the inner boundary for large time? y

Set M(n) := max,cze K(n;x).
Theorem 4 (Erdés and Taylor,1960). It holds that for
simple random walk in Z¢ (d > 3),
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Theorem 5 (Dembo, Peres, Rosen and Zeitouni,
2001). It holds that for simple random walk in 7>
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Set M(n) := max,ecor, K(n;x).
Theorem 6 (O., 2014). It holds that for simple random
walk in Z¢ (d > 2),
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In other words, the favorite site does not appear in
the inner boundary for all but finitely many n a.s.

M (n) ) _

n—oo (log n)2




