Lamplighter Random VValks on Fractals Chikara Nakamura (Joint work wit) Prof. Takashi Kumagai) (Kyoto University, Japan)

Motivation : Make clear the relation between geometrical properties of graphs and asymptotics of random walks. Image of Lamplighter Random Wa ks

Figure: We denote this figure as $\left(\eta, v_{7}\right)$, where $\eta: V(G) \rightarrow\{0,1\}$ where $\eta(u)=1$ if $u=v_{1}, v_{5}$ and $\eta(u)=0$ (otherwise)

Figure: We denote this figure as $\left(\eta, v_{4}\right)$, where $\eta: V(G) \rightarrow\{0,1\}$ where $\eta(u)=1$ if $u=v_{1}, v_{5}, v_{7}$ ard $\eta(u)=0$ (otherwise)

Figure: We denote this figure as
$\left(\eta, v_{2}\right)$, where $\eta: V(G) \rightarrow\{0,1\}$
where $\eta(u)=1$ if $u=v_{5}, v_{7}$ and $\eta(u)=0$ (otherwise)

Figure: We denote this figure as $\left(\eta, v_{1}\right)$, where $\eta: V(G) \rightarrow\{0$, where $\eta(u)=1$ if $u=v_{1}, v_{5}, v_{7}$ $\eta(u)=0$ (otherwise)

Known Results

- Pittet and Saloff-Coste (1996) obtained the on-diagonal heat kernel estimates for the case of the lamplighter graph of $G=\mathbb{Z}^{d}$ (denoted by $\mathbb{Z}_{2} \backslash \mathbb{Z}^{d}$).

$$
p_{2 n}(\mathbf{g}, \mathbf{g}) \approx \exp \left[-n^{d /(d+2)}\right]
$$

- Revelle (2003) obtained the LIL for the case of the lamplighter graph of \mathbb{Z} (denoted by $\left.\mathbb{Z}_{2} \backslash \mathbb{Z}\right)$.

$$
\begin{array}{ll}
c_{1} \leq \limsup _{n \rightarrow \infty} \frac{d_{\mathbb{Z}_{2} \mathbb{Z}}\left(Y_{0}, Y_{n}\right)}{(n \log \log n)^{\frac{1}{2}}} \leq c_{2}, & P \text {-a.s. } \\
c_{3} \leq \liminf _{n \rightarrow \infty} \frac{d_{\mathbb{Z}_{2} / \mathbb{Z}}\left(Y_{0}, Y_{n}\right)}{(n / \log \log n)^{\frac{1}{2}}} \leq c_{4}, & P \text {-a.s.. }
\end{array}
$$

- Question ; How do the exponents change when we replace \mathbb{Z}^{d} to general graph G?

Fractal

- Volume $V(x, r)=\sharp B(x, r) \sim r^{d_{f}}$
- $E\left[d\left(X_{0}, X_{n}\right)\right] \sim n^{1 / d_{w}}\left(d_{w}:\right.$ Walk dimension $\left.\geq 2\right)$

Main Results
 Theorem (On-diagonal Heat Kernel Estimates)

Suppose that Assumption (*) holds. Then for the random walks $\left\{Y_{n}\right\}$ on the lamplighter graph, we have

$$
p_{2 n}^{\mathbb{Z}_{2} 2 G}(\mathbf{x}, \mathbf{x}) \approx \exp \left[-n^{\left.\frac{d_{f}}{d_{f}+d_{w}}\right]}\right.
$$

for all $\mathbf{x}=(\eta, x) \in \mathbb{Z}_{2} \prec G$ (lamplighter graph of G).

Theorem (The LIL for the case of $d_{f} / d_{w}<1$)
Assume that Assumption (*) and $d_{f} / d_{w}<1$ hold. Then there exist (non-random) constants $c_{11}, c_{12}, c_{13}, c_{14}>0$ such that the following hold for all $\mathbf{x} \in V\left(\mathbb{Z}_{2} \backslash G\right)$:

$$
\begin{array}{ll}
c_{11} \leq \limsup _{n \rightarrow \infty} \frac{d_{\mathbb{Z}_{2} G}\left(Y_{0}, Y_{n}\right)}{n^{d_{f} / d_{w}(\log \log n)^{1-d_{f} / d_{w}}} \leq c_{12},} \quad P_{\mathrm{x}} \text {-a.s. } \\
c_{13} \leq \liminf _{n \rightarrow \infty} \frac{d_{\mathbb{Z}_{2} G}\left(Y_{0}, Y_{n}\right)}{n^{d_{f} / d_{w}}(\log \log n)^{-d_{f} / d_{w}}} \leq c_{14}, & P_{\mathrm{x}} \text {-a.s. }
\end{array}
$$

Theorem (The LIL for the case of $d_{f} / d_{w}>1$)
Assume that Assumption (*) and $d_{f} / d_{w}>1$ hold. Then there exist (non-random) positive constants $c_{21}, c_{22}, c_{23}, c_{24}$ such that the following hold for all $\mathbf{x} \in V\left(\mathbb{Z}_{2} \backslash G\right)$:

$$
\begin{array}{ll}
c_{21} \leq \limsup _{n \rightarrow \infty} \frac{d_{\mathbb{Z}_{2} G}\left(Y_{0}, Y_{n}\right)}{n} \leq c_{22}, & P_{x^{-} \text {-a.s. }}^{n} \\
c_{23} \leq \liminf _{n \rightarrow \infty} \frac{d_{\mathbb{Z}_{2} G}\left(Y_{0}, Y_{n}\right)}{n} \leq c_{24}, & P_{x^{-} \text {-a.s. }}
\end{array}
$$

