Lamplighter Random Walks on Fractals

 v_2

 v_3

- Chikara Nakamura (Joint work with Prof. Takashi Kumagai) (Kyoto University, Japan)
- Motivation : Make clear the relation between geometrical properties of graphs and asymptotics of random walks.
- Image of Lamplighter Random Walks

Figure: We denote this figure as (η, v_7) , where $\eta : V(G) \rightarrow \{0, 1\}$ where $\eta(u) = 1$ if $u = v_1, v_5$ and $\eta(u) = 0$ (otherwise)

Figure: We denote this figure as
 (η, v_4) , where $\eta : V(G) \rightarrow \{0, 1\}$ Figure: We denote this figure as
 (η, v_2) , where $\eta : V(G) \rightarrow \{0, 1\}$ Figure: We
 (η, v_1) , where $\eta(u) = 1$ if $u = v_1, v_5, v_7$ andFigure: We
 (η, v_2) , where $\eta : V(G) \rightarrow \{0, 1\}$ Figure: We
 (η, v_1) , where $\eta(u) = 1$ if $u = v_5, v_7$ andFigure: We
 (η, v_1) , where $\eta(u) = 1$ if $u = v_5, v_7$ andFigure: We
 (η, v_1) , where $\eta(u) = 0$ (otherwise)

Figure: We denote this figure as (η, v_1) , where $\eta : V(G) \rightarrow \{0, 1$ where $\eta(u) = 1$ if $u = v_1, v_5, v_7$ $\eta(u) = 0$ (otherwise)

Known Results

Pittet and Saloff-Coste (1996) obtained the on-diagonal heat kernel estimates for the case of the lamplighter graph of G = Z^d (denoted by Z₂ ≥ Z^d).
 p_{2n}(g, g) ≈ exp [-n^{d/(d+2)}].

Main Results

Theorem (On-diagonal Heat Kernel Estimates) Suppose that Assumption (*) holds. Then for the random

walks $\{Y_n\}$ on the lamplighter graph, we have

• Revelle (2003) obtained the LIL for the case of the lamplighter graph of \mathbb{Z} (denoted by $\mathbb{Z}_2 \wr \mathbb{Z}$).

$$c_{1} \leq \limsup_{n \to \infty} \frac{d_{\mathbb{Z}_{2} \wr \mathbb{Z}}(Y_{0}, Y_{n})}{(n \log \log n)^{\frac{1}{2}}} \leq c_{2}, \qquad P\text{-a.s.},$$

$$c_{3} \leq \liminf_{n \to \infty} \frac{d_{\mathbb{Z}_{2} \wr \mathbb{Z}}(Y_{0}, Y_{n})}{(n / \log \log n)^{\frac{1}{2}}} \leq c_{4}, \qquad P\text{-a.s.}.$$
Question ; How do the exponents change when we replace \mathbb{Z}^{d} to general graph G ?

Fractal

 $p_{2n}^{\mathbb{Z}_2 \wr G}(\mathbf{x}, \mathbf{x}) \approx \exp[-n^{\frac{a_f}{d_f + d_W}}]$ for all $\mathbf{x} = (\eta, x) \in \mathbb{Z}_2 \wr G$ (lamplighter graph of G).

Theorem (The LIL for the case of $d_f/d_w < 1$)

Assume that Assumption (*) and $d_f/d_w < 1$ hold. Then there exist (non-random) constants $c_{11}, c_{12}, c_{13}, c_{14} > 0$ such that the following hold for all $\mathbf{x} \in V(\mathbb{Z}_2 \wr G)$: $c_{11} \leq \limsup_{n \to \infty} \frac{d_{\mathbb{Z}_2 \wr G}(Y_0, Y_n)}{n^{d_f/d_w} (\log \log n)^{1-d_f/d_w}} \leq c_{12}, \qquad P_{\mathbf{x}}$ -a.s. $c_{13} \leq \liminf_{n \to \infty} \frac{d_{\mathbb{Z}_2 \wr G}(Y_0, Y_n)}{n^{d_f/d_w} (\log \log n)^{-d_f/d_w}} \leq c_{14}, \qquad P_{\mathbf{x}}$ -a.s.

Theorem (The LIL for the case of $d_f/d_w > 1$) Assume that Assumption (*) and $d_f/d_w > 1$ hold. Then there exist (non-random) positive constants $c_{21}, c_{22}, c_{23}, c_{24}$ such that the following hold for all $\mathbf{x} \in V(\mathbb{Z}_2 \wr G)$: $c_{21} \leq \limsup_{n \to \infty} \frac{d_{\mathbb{Z}_2 \wr G}(Y_0, Y_n)}{n} \leq c_{22}, \qquad P_{\mathbf{x}}$ -a.s. $c_{23} \leq \liminf_{n \to \infty} \frac{d_{\mathbb{Z}_2 \wr G}(Y_0, Y_n)}{n} \leq c_{24}, \qquad P_{\mathbf{x}}$ -a.s.