The conservativeness of Girsanov transformed

 symmetric Markov processesYusuke Miura
Mathematical Institute, Tohoku University (mail: sb0m32@rnath.tohoku.ac.jp)

1 Settings

- E : locally compact separable metric space
- m : Radon measure with $\operatorname{supp}[m]=E$
- $\mathbb{M}=\left(\Omega, X_{t}, \mathbb{P}_{x}, \zeta\right): m$-symmetric Hunt process
- $(\mathcal{E}, \mathcal{F})$: Dirichlet form on $L^{2}(E ; m)$ generated by \mathbb{M}
$\mathcal{F}_{\text {loc }}^{\dagger}:=\left\{u \in \mathcal{F}_{\text {loc }} \mid \int_{y \in E}(u(x)-u(y))^{2} J(d x, d y)\right.$
is a Radon measure $\}$

Fukushima's decomposition [Kuwae ('10, '12)

For $u \in \mathcal{F}_{\text {loc }}^{\dagger}, u\left(X_{t}\right)-u\left(X_{0}\right)$ can be decomposed as

$$
u\left(X_{t}\right)-u\left(X_{0}\right)=M_{t}^{[u]}+N_{t}^{[u]}
$$

where $M^{[u]}$: martingale AF, $N^{[u]}$: continuous AF.

2 Girsanov transformations

Take nonnegative $\rho \in \mathcal{F}_{\text {loc }}^{\dagger}$.

- $E_{\rho}:=\{x \in E: 0<\rho(x)<\infty\}$
- L_{t}^{ρ} the solution to

$$
L_{t}^{\rho}=1+\int_{0}^{t} L_{s-}^{\rho} \frac{1}{\rho\left(X_{s-}\right)} d M_{s}^{[\rho]}, \quad t<\zeta \wedge \tau_{E_{\rho}}
$$

$\Longrightarrow L_{t}^{\rho}$: supermartingale multiplicative functional
$d \widetilde{\mathbb{P}}_{x}:=L_{t}^{\rho} d \mathbb{P}_{x}$.
$\leadsto \widetilde{\mathbb{M}}^{\rho}=\left(\Omega, X_{t}, \widetilde{\mathbb{P}}_{x}\right)$ is a symmetric Markov process on E_{ρ} (the Girsanov transformed process)
$\left(\widetilde{\mathcal{E}}^{\rho}, \widetilde{\mathcal{F}}^{\rho}\right)$: Dirichlet form generated by $\widetilde{\mathbb{M}}^{\rho}$.

3 Main Result

Theorem 1

Let $\rho \in \mathcal{F}_{e} \cap \mathfrak{B}_{b}(E)$ with $\rho>0$. Then
(i) $\left(\widetilde{\mathcal{E}}^{\rho}, \widetilde{\mathcal{F}}^{\rho}\right)$ is recurrent,
(ii) $\mathcal{F} \subset \widetilde{\mathcal{F}}^{\rho}$ and for $u \in \mathcal{F}$,

$$
\begin{aligned}
\widetilde{\mathcal{E}}^{\rho}(u, u)= & \int_{E} \rho(x)^{2} \mu_{\langle u\rangle}^{c}(d x) \\
& +\int_{E \times E}(u(x)-u(y))^{2} \rho(x) \rho(y) J(d x, d y) .
\end{aligned}
$$

Remark.

The conservativeness of \mathbb{M} is not assumed.
However, for $\rho \in \mathcal{F}_{e}, \widetilde{\mathbb{M}}^{\rho}$ is always conservative.

Theorem 2
Assume \mathbb{M} is conservative and $\mu_{\langle\rho\rangle}(E)<\infty$.
Then $\tilde{\mathbb{M}}^{\rho}$ is conservative and never hits $\{\rho(x)=0\}$.
i.e., $\mathbb{P}_{x}\left(\zeta \wedge \tau_{E_{\rho}}=\infty\right)=1, \quad \rho^{2} m$-a.e.

Key Lemma

If there exists a constant $c>1$ s.t. $c^{-1} \leq \rho \leq c$, then $\tilde{\mathbb{M}}^{\rho}$ is conservative.

I
L_{t}^{ρ} is a martingale under $\mathbb{P}_{x} \cdots(*)$
Idea of the proof.
We cannot apply Novikov's theorem to show (*).
\rightsquigarrow We check a condition due to Z.-Q. Chen ('12).

4 Application

Assumption. \mathbb{M} : transient, irreducible and strong Feller
$\mu:$ positive Green-tight measure $\left({ }^{\forall} \varepsilon>0,{ }^{\exists} K: c p t,{ }^{\exists} \delta>0\right.$ s.t. ${ }^{\forall} B \subset K$ with $\left.\mu(B)<\delta,\left\|R\left(\mathbb{1}_{K^{c} \cup B} \mu\right)\right\|_{\infty}<\varepsilon\right)$
$\xrightarrow{\text { Takeda }\left({ }^{\prime} 14\right)}{ }^{\exists} h \in \mathcal{F}_{e}$ s.t. $h>0, \quad \int_{E} h^{2} d \mu=1, \quad \mathcal{E}(h, h)=\lambda(\mu) \quad\left(:=\inf \left\{\mathcal{E}(u, u): u \in \mathcal{F}_{e}, \int_{E} u^{2} d \mu=1\right\}\right)$, and $h\left(X_{t}\right)-h\left(X_{0}\right)=M_{t}^{[h]}-\int_{0}^{t} h\left(X_{s}\right) d A_{s}^{\lambda(\mu) \cdot \mu}$.
\Downarrow Ito's formula applied to $\log h\left(X_{t}\right)$

$$
\frac{h\left(X_{t}\right)}{h\left(X_{0}\right)} \exp A_{t}^{\lambda(\mu) \cdot \mu}=L_{t}^{h}
$$

\Downarrow Theorem 1

$$
\mathcal{E}(h u, h u)-\lambda(\mu) \int_{E}(h u)^{2} d \mu=\frac{1}{2} \int_{E} h(x)^{2} \mu_{\langle u\rangle}^{c}(d x)+\int_{E \times E}(u(x)-u(y))^{2} h(x) h(y) J(d x, d y), \quad u \in \mathcal{F}
$$

