Bonn International Graduate School in Mathematics
for time dependent gradient flows in probability space

Kopfer, Eva

Advisor : Prof. Dr. Karl-Theodor Sturm

Let M be a smooth closed manifold equipped with a smooth family of Riemannian metrics g_{t}
We suppose that g_{t} evolves under the Ricci flow

$$
\partial_{t} g=-2 \operatorname{Ric}(g) \quad t \in[0, T],
$$

where $\operatorname{Ric}(g)$ denotes the Ricci tensor of g.
We consider the forward heat equation acting on functions

$$
\partial_{t} u=\Delta u
$$

where $\Delta=\Delta_{g(t)}$ denotes the Laplace-Beltrami operator.
By duality we obtain the backward heat equation on measures

$$
\partial_{t} \nu=-\Delta \nu .
$$

Aim

We are interested in reinterpreting the diffusion equation (1) as a dynamic gradient flow for the relative entropy with respect to the Kantorovich distance.
Method
At first we need to understand the meaning of gradient flows in a metric setting, where the metric is changing.
To establish existence of the trajectory, we apply the time discrete approximation of the gradient flow.

Let $\mathcal{P}(M)$ be the space of Borel probability measures on M. We consider the follwing two objects on this space:

- the Kantorovich distance at time t between two measures $\mu, \nu \in \mathcal{P}(M)$ is defined by

$$
W_{t}(\mu, \nu):=\inf \left\{\int_{M \times M} d_{t}^{2}(x, y) d \pi(x, y)\right\}^{1 / 2},
$$

where the infimum is taken over all $\pi \in \mathcal{P}(M \times M)$ such that $\pi(A \times M)=\mu(A), \pi(M \times A)=\nu(A)$;

- the relative entropy H_{t} with respect to the volume measure m_{t}, which is defined by

$$
H_{t}(\mu):=\int_{M} \rho \log \rho d m_{t},
$$

provided that $\mu \in \mathcal{P}(M)$ is absolutely continuous with density ρ. Otherwise $H_{t}(\mu)=\infty$

```
Motivation (dynamic gradient flow)
Let V:[0,T]\timesM->\mathbb{R}\mathrm{ be a smooth function, }x:[0,T]->M\mathrm{ a smooth curve. G(a,b) denotes the Green}
function on [0,1].
    V is dynamically convex :}\Leftrightarrow\mp@subsup{\operatorname{Hess}}{t}{}\mp@subsup{V}{t}{}\geq\frac{1}{2}\mp@subsup{\partial}{t}{}\mp@subsup{g}{t}{
    \LeftrightarrowV\mp@subsup{V}{t}{}(\mp@subsup{\gamma}{a}{})\leq(1-a)\mp@subsup{V}{t}{}(\mp@subsup{\gamma}{0}{})+a\mp@subsup{V}{t}{}(\mp@subsup{\gamma}{1}{})-\frac{1}{2}\mp@subsup{\int}{0}{1}G(a,b)\mp@subsup{\partial}{t}{}\mp@subsup{g}{t}{}(\mp@subsup{\dot{\gamma}}{b}{},\mp@subsup{\dot{\gamma}}{b}{})db
        \foralld}\mp@subsup{d}{t}{}\mathrm{ -geodesics (}(\mp@subsup{\gamma}{a}{})
```

Then the following are equivalent

$$
\dot{x}_{t}=-\nabla_{t} V_{t}\left(x_{t}\right)
$$

$$
\left.\Leftrightarrow \quad \partial_{s} \frac{1}{2} d_{t}^{2}\left(x_{s}, z\right)\right|_{s=t} \leq V_{t}(z)-V_{t}\left(x_{t}\right)-\frac{1}{2} \int_{0}^{1}(1-b) \partial_{t} g_{t}\left(\dot{\gamma}_{b}, \dot{\gamma}_{b}\right) d b \quad \forall d_{t} \text {-geodesics } \gamma \text { from } x_{t} \text { to } z .
$$

For each x_{0} there exists at most one dynamic gradient flow for V sarting in x_{0}.

Definition

A functional V on $\mathcal{P}(M)$ is dynamically convex if for every W_{t} geodesic $\left(\gamma_{a}\right)$

$$
V_{t}\left(\gamma_{a}\right) \leq(1-a) V_{t}\left(\gamma_{0}\right)+a V_{t}\left(\gamma_{1}\right)-\frac{1}{2} \int_{0}^{1} G(a, b) \partial_{t}\left(\left.\dot{\gamma}_{b}\right|_{t} ^{2}\right) d b,
$$

where $\left|\dot{\gamma}_{b}\right|_{t}:=\lim _{\epsilon \rightarrow 0} \frac{W_{t}\left(\gamma_{b+e}, \gamma_{b}\right)}{\epsilon}$ is the metric speed with respect to W_{t}.
A dynamic gradient flow for V is a curve $\left(\mu_{t}\right)$ in $\mathcal{P}(M)$ satisfying the dynamic Evolution Variation Inequality (EVI), i.e.

$$
\left.\partial_{s} \frac{1}{2} W_{t}^{2}\left(\mu_{s}, \sigma\right)\right|_{s=t} \leq V_{t}(\sigma)-V_{t}\left(\mu_{t}\right)-\frac{1}{2} \int_{0}^{1}(1-b) \partial_{t}\left(\left|\dot{\gamma}_{b}\right|_{t}^{2}\right) d b \quad \forall \sigma,
$$

where $\left(\gamma_{b}\right)$ is a W_{t}-geodesic from μ_{t} to σ.
Backward dynamic convexity and backward EVI
The Ricci flow ensures the backward dynamic convexity of the relative entropy H, i.e. H is dynamically convex with respect to \tilde{W}, where $H_{t}=H_{T-t}$.
Since we are dealing with the backward heat equation, we have to deal with the EVI backwards in time, too, i.e. $\left(\mu_{t}\right)$ satisfies the backward EVI for H with respect to W if $\left(\tilde{\mu}_{t}\right)$ satisfies the EVI for \tilde{H} with respect to \tilde{W}, where $\tilde{\mu}_{t}=\mu_{T-t}$.

Motivation (time discrete approximation)
Let $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a convex differentiable functional. Consider the gradient flow $\left(x_{t}\right)$ starting from $\bar{x} \in \mathbb{R}^{d}$

$$
\left\{\begin{array}{l}
\dot{x}_{t}=-\nabla F\left(x_{t}\right), \\
x_{0}=\bar{x} .
\end{array}\right.
$$

Fix a step size $h>0$, set $x_{0}=\bar{x}$ and recursively determine x_{n} that minimizes

$$
\begin{equation*}
x \quad \mapsto \quad F(x)+\frac{\left|x-x_{n-1}\right|^{2}}{2 h} . \tag{2}
\end{equation*}
$$

The Euler-Lagrange equation of x_{n} is

$$
\frac{x_{n}-x_{n-1}}{h}=-\nabla F\left(x_{n}\right),
$$

which is a time discretization of $\dot{x}_{t}=-\nabla F\left(x_{t}\right)$.
Define the interpolation

$$
x_{t}^{h}:=x_{n}^{h} \text { if } t \in((n-1) h, n h] .
$$

Then as $h \rightarrow 0$

$$
x_{t}^{h} \rightarrow x_{t} \text { and } x_{t} \text { is a gradient flow starting in } \bar{x} .
$$

Fix a time step $h>0$ and an initial value $\bar{\mu}$.
Recursively define the sequence of minimizers $\left(\mu_{n}^{h}\right)_{n}$ according to the following discrete scheme

$$
\mu_{0}^{h}:=\bar{\mu}, \quad \mu_{n}^{h}:=\arg \min _{\nu \in \mathcal{P}(M)}\left\{H_{n h}(\nu)+\frac{1}{2 h} W_{n h}^{2}\left(\mu_{n-1}^{h}, \nu\right)\right\}
$$

Existence of minimizers is provided by compactness and lower semicontinuity.
Uniqueness follows by usual strict convexity.
Euler-Lagrange equation for the minimizers
The minimizers μ_{n}^{h} satisfy the discrete gradient flow equation

$$
-\int_{M} \operatorname{div}_{n h} \xi d \mu_{n}^{h}=\int_{M}\left\langle\frac{1}{h} \Psi_{\mu_{n}^{h}}^{\mu_{(n-1)}^{h}}, \xi\right\rangle_{n h} d \mu_{n}^{h} \quad \xi \in \mathcal{C}_{c}^{\infty}(M, T M),
$$

i.e. for $\mu_{n}^{h}=\rho_{n}^{h} m_{n h}$ we have $\nabla_{n h} \rho_{n}^{h} / \rho_{n}^{h}=\frac{1}{h} \Psi_{\mu_{n}^{h}}^{\mu_{(n-1)}^{h}}$, where $\Psi_{\mu_{n}^{h} \mu_{(n-1)}^{h}}$ denotes the optimal transport vector field between μ_{n}^{h} and μ_{n-1}^{h}.

Limit trajectory

Define piecewise constant interpolations $\bar{\mu}_{t}^{h}$ backwards in time:

With the help of Arzela-Ascoli one obtains a limit curve $\left(\mu_{t}\right)$ such that up to a subsequence

$$
\bar{\mu}_{t}^{h_{n}} \rightarrow \mu_{t} \text { weakly for all } t \text { as } h_{n} \rightarrow 0 .
$$

Questions

- Is the limit curve $\left(\mu_{t}\right)$ the solution to the backward heat equation (1)?
- Does the limit curve $\left(\mu_{t}\right)$ satisfy the backward EVI for H with respect to W ?

Possible Generalizations

- $\left(M, g_{t}\right)$ is not compact but complete and evolves under a super-Ricci flow
$\partial_{t} g \geq-2 \operatorname{Ric}(g)$.
- Consider instead of a manifold a familiy of metric measure space $\left(X, d_{t}, m_{t}\right)_{t}$ evolving under a super Ricci-flow, which means that the relative entropy H is backward dynamically convex.

References

- L. Ambrosio, N.Gigli and G. Savaré. Gradient Flows in Metric Spaces and in the Space of Probability Measures. (2005)
- M. Erbar. The heat equation on manifolds as a gradient flow in the Wasserstein space. Annales de l'I. H. P. Probabilités et Statistiques. (2010)
- R. Jordan, D. Kinderlehrer and F. Otto. The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. (1998)
- K.-T. Sturm. Super-Ricci flow for metric measure spaces. (2015)

