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Let M be a smooth closed manifold equipped with a smooth family of Riemannian metrics g;.

We suppose that g; evolves under the Ricci flow
0vg = —2Ric(g) t €10,7],

where Ric(g) denotes the Ricci tensor of g.

We consider the forward heat equation acting on functions
Oyu = Au,

where A = Ay denotes the Laplace-Beltrami operator.
By duality we obtain the backward heat equation on measures

O = —Av. (1)

Aim

We are interested in reinterpreting the diffusion equation (1) as a dynamic gradient flow for
the relative entropy with respect to the Kantorovich distance.

Method

At first we need to understand the meaning of gradient flows in a metric setting, where the metric is
changing.

To establish existence of the trajectory, we apply the time discrete approximation of the gradient
flow .

Let P(M) be the space of Borel probability measures on M. We consider the follwing two objects on
this space:

e the Kantorovich distance at time ¢ between two measures p, v € P(M) is defined by

Wilju,v) i in { I XMdf(ac,y)dw(x,w}l/z,

where the infimum is taken over all 7 € P(M x M) such that m(A x M) = u(A), 7(M x A) = v(A);

e the relative entropy H; with respect to the volume measure m;, which is defined by

Hi(p) = / plog pdmy,
M

provided that p € P(M) is absolutely continuous with density p. Otherwise Hy(u) = oc.

Motivation (dynamic gradient flow)
Let V: [0, 7] x M — R be a smooth function, x: [0,7] — M a smooth curve. G(a,b) denotes the Green
function on [0, 1].
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Then the following are equivalent
iy = —=ViVi(2)
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For each z there exists at most one dynamic gradient flow for V' sarting in x,.

Definition
A functional V' on P(M) is dynamically convex if for every W; geodesic (7,)
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where |4p|; := lim,_o ) is the metric speed with respect to W;.

A dynamic gradient flow for V' is a curve () in P(M) satisfying the dynamic Evolution Variation
Inequality (EVI), i.e.
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5‘55Wf(us,a)ls:t < Vi(o) = Vi) — 5/ (1= 0)0(|5]7)db Vo,
0

where () is a Wj-geodesic from p; to o.

Backward dynamic convexity and backward EVI

The Ricci flow ensures the backward dynamic convexity of the relative entropy H, i.e. H is dynami-
cally convex with respect to W, where f[t = Hp_,.

Since we are dealing with the backward heat equation, we have to deal with the EVI backwards in time, too,
i.e. (y) satisfies the backward EVI for H with respect to W if (ji,) satisfies the EVI for H with respect to
W, where iy = pr_y.

Motivation (time discrete approximation)
Let F': R? — R be a convex differentiable functional. Consider the gradient flow (z;) starting from 7 € R?

7

Fix a step size h > 0, set xo = T and recursively determine z,, that minimizes

{j:t = —VF(z,),

I‘():Zf.

|z — @0 |?

'_>
v 2h

F(z)+

The Euler-Lagrange equation of x,, is

% = —VF(z,),

which is a time discretization of &, = —VF(z;).
Define the interpolation
ol =gl if t € (n — 1)h,nh)].

Then as h — 0

:U? — x4 and x; is a gradient flow starting in 7.

Fix a time step A > 0 and an initial value .
Recursively define the sequence of minimizers (1), according to the following discrete scheme

i _ 1
po =R, py = arg min {th(V) + 57 Wan(tin-1, V)} :

Existence of minimizers is provided by compactness and lower semicontinuity.
Uniqueness follows by usual strict convexity.

Euler-Lagrange equation for the minimizers
The minimizers p! satisfy the discrete gradient flow equation

1 h
—/ divnhé“d/tiiz/ <—¢“;§"”,§> duy £ €CX(M,TM),
M M \h nh

: h _ h h/ h 1 M) M) . : .
i.e. for p = pltmy, we have Vot /pr = o where @ denotes the optimal transport vector field

between p and u" ;.

Limit trajectory
Define piecewise constant interpolations jif' backwards in time:

H2o—
e iy = [i
1L Lige =yl for t € [T —nh, T — (n — 1)h).
T—h T

With the help of Arzela-Ascoli one obtains a limit curve (y;) such that up to a subsequence

[ — iy weakly for all t as h, — 0.

Questions
e Is the limit curve (i) the solution to the backward heat equation (1)7

e Does the limit curve (i) satisfy the backward EVI for H with respect to W7

Possible Generalizations

e (M, g;) is not compact but complete and evolves under a super-Ricci flow

0rg > —2Ric(g).

e Consider instead of a manifold a familiy of metric measure space (X, d;, m;); evolving under a super
Ricci-flow, which means that the relative entropy H is backward dynamically convex.
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