

Bonn International Graduate School in Mathematics

Minimizing movement scheme for time dependent gradient flows in probability space

Advisor : Prof. Dr. Karl-Theodor Sturm

Let M be a smooth closed manifold equipped with a smooth family of Riemannian metrics g_t .

We suppose that g_t evolves under the **Ricci flow**

 $\partial_t g = -2Ric(g)$ $t \in [0,T],$

where Ric(g) denotes the Ricci tensor of g.

We consider the **forward heat equation** acting on functions

 $\partial_t u = \Delta u,$

where $\Delta = \Delta_{g(t)}$ denotes the Laplace-Beltrami operator. By duality we obtain the **backward heat equation** on measures

 $\partial_t \nu = -\Delta \nu. \tag{1}$

Aim

We are interested in **reinterpreting the diffusion equation** (1) **as a dynamic gradient flow** for the **relative entropy** with respect to the **Kantorovich distance**.

Method

At first we need to understand the meaning of gradient flows in a metric setting, where the metric is changing.

To establish existence of the trajectory, we apply the **time discrete approximation** of the gradient flow .

Let $\mathcal{P}(M)$ be the space of **Borel probability measures** on M. We consider the following two objects on this space:

• the **Kantorovich distance** at time t between two measures $\mu, \nu \in \mathcal{P}(M)$ is defined by

$$W_t(\mu,\nu) := \inf\left\{\int_{M \times M} d_t^2(x,y) d\pi(x,y)\right\}^{1/2},$$

where the infimum is taken over all $\pi \in \mathcal{P}(M \times M)$ such that $\pi(A \times M) = \mu(A), \pi(M \times A) = \nu(A)$;

• the relative entropy H_t with respect to the volume measure m_t , which is defined by

$$H_t(\mu) := \int_M \rho \log \rho dm_t,$$

provided that $\mu \in \mathcal{P}(M)$ is absolutely continuous with density ρ . Otherwise $H_t(\mu) = \infty$.

Motivation (dynamic gradient flow)

Let $V: [0,T] \times M \to \mathbb{R}$ be a smooth function, $x: [0,T] \to M$ a smooth curve. G(a,b) denotes the Green function on [0,1].

V is **dynamically convex** : \Leftrightarrow Hess_t $V_t \ge \frac{1}{2} \partial_t g_t$

$$\Leftrightarrow V_t(\gamma_a) \le (1-a)V_t(\gamma_0) + aV_t(\gamma_1) - \frac{1}{2}\int_0^1 G(a,b)\partial_t g_t(\dot{\gamma}_b,\dot{\gamma}_b)db$$

 $\forall d_t$ -geodesics (γ_a) .

Then the following are equivalent

$$\Rightarrow \quad \partial_s \frac{1}{2} d_t^2(x_s, z)|_{s=t} \le V_t(z) - V_t(x_t) - \frac{1}{2} \int_0^1 (1-b) \partial_t g_t(\dot{\gamma}_b, \dot{\gamma}_b) db \quad \forall d_t \text{-geodesics } \gamma \text{ from } x_t \text{ to } z.$$

 $\dot{x} = \nabla V(x)$

For each x_0 there exists **at most one** dynamic gradient flow for V sarting in x_0 .

Definition

A functional V on $\mathcal{P}(M)$ is **dynamically convex** if for every W_t geodesic (γ_a)

$$V_t(\gamma_a) \le (1-a)V_t(\gamma_0) + aV_t(\gamma_1) - \frac{1}{2}\int_0^1 G(a,b)\partial_t(|\dot{\gamma}_b|_t^2)db,$$

where $|\dot{\gamma}_b|_t := \lim_{\epsilon \to 0} \frac{W_t(\gamma_{b+\epsilon}, \gamma_b)}{\epsilon}$ is the metric speed with respect to W_t .

A dynamic gradient flow for V is a curve (μ_t) in $\mathcal{P}(M)$ satisfying the dynamic Evolution Variation Inequality (EVI), i.e.

$$\partial_s \frac{1}{2} W_t^2(\mu_s, \sigma)|_{s=t} \le V_t(\sigma) - V_t(\mu_t) - \frac{1}{2} \int_0^1 (1-b) \partial_t(|\dot{\gamma}_b|_t^2) db \quad \forall \sigma,$$

where (γ_b) is a W_t -geodesic from μ_t to σ .

Backward dynamic convexity and backward EVI

The Ricci flow ensures the **backward dynamic convexity of the relative entropy** H, i.e. \tilde{H} is dynamically convex with respect to \tilde{W} , where $\tilde{H}_t = H_{T-t}$.

Since we are dealing with the backward heat equation, we have to deal with the EVI backwards in time, too, i.e. (μ_t) satisfies the **backward EVI** for H with respect to W if $(\tilde{\mu}_t)$ satisfies the EVI for \tilde{H} with respect to \tilde{W} , where $\tilde{\mu}_t = \mu_{T-t}$.

Motivation (time discrete approximation) Let $F : \mathbb{R}^d \to \mathbb{R}$ be a convex differentiable functional. Consider the gradient flow (x_t) starting from $\bar{x} \in \mathbb{R}^d$

$$\begin{cases} \dot{x}_t = -\nabla F(x_t), \\ x_0 = \bar{x}. \end{cases}$$

Fix a step size h > 0, set $x_0 = \bar{x}$ and recursively determine x_n that minimizes

$$x \mapsto F(x) + \frac{|x - x_{n-1}|^2}{2h}.$$
 (2)

The Euler-Lagrange equation of x_n is

$$\frac{x_n - x_{n-1}}{h} = -\nabla F(x_n)$$

which is a time discretization of $\dot{x}_t = -\nabla F(x_t)$. Define the interpolation

$$x_t^h := x_n^h \text{ if } t \in ((n-1)h, nh].$$

Then as $h \to 0$

 $x_t^h \to x_t$ and x_t is a gradient flow starting in \bar{x} .

Fix a time step h > 0 and an initial value $\bar{\mu}$. Recursively define the **sequence of minimizers** $(\mu_n^h)_n$ according to the following discrete scheme

$$\mu_0^h := \bar{\mu}, \qquad \mu_n^h := \arg\min_{\nu \in \mathcal{P}(M)} \left\{ H_{nh}(\nu) + \frac{1}{2h} W_{nh}^2(\mu_{n-1}^h, \nu) \right\}$$

Existence of minimizers is provided by compactness and lower semicontinuity. **Uniqueness** follows by usual strict convexity.

Euler-Lagrange equation for the minimizers The minimizers μ_n^h satisfy the discrete gradient flow equation

$$-\int_{M} \operatorname{div}_{nh} \xi d\mu_{n}^{h} = \int_{M} \left\langle \frac{1}{h} \Psi_{\mu_{n}^{h}}^{\mu_{(n-1)}^{h}}, \xi \right\rangle_{nh} d\mu_{n}^{h} \qquad \xi \in \mathcal{C}_{c}^{\infty}(M, TM),$$

i.e. for $\mu_n^h = \rho_n^h m_{nh}$ we have $\nabla_{nh} \rho_n^h / \rho_n^h = \frac{1}{h} \Psi_{\mu_n^h}^{\mu_{(n-1)}^h}$, where $\Psi_{\mu_n^h}^{\mu_{(n-1)}^h}$ denotes the optimal transport vector field between μ_n^h and μ_{n-1}^h .

Limit trajectory

Define piecewise constant interpolations $\bar{\mu}_t^h$ backwards in time:

With the help of Arzela-Ascoli one obtains a **limit curve** (μ_t) such that up to a subsequence

$$\bar{\mu}_t^{h_n} \to \mu_t$$
 weakly for all t as $h_n \to 0$.

Questions

- Is the limit curve (μ_t) the solution to the backward heat equation (1)?
- Does the limit curve (μ_t) satisfy the **backward EVI** for *H* with respect to *W*?

Possible Generalizations

• (M, g_t) is not compact but complete and evolves under a super-Ricci flow

$\partial_t g \ge -2Ric(g).$

• Consider instead of a manifold a familiy of metric measure space $(X, d_t, m_t)_t$ evolving under a super Ricci-flow, which means that the relative entropy H is backward dynamically convex.

References

- L. Ambrosio, N.Gigli and G. Savaré. Gradient Flows in Metric Spaces and in the Space of Probability Measures. (2005)
- M. Erbar. The heat equation on manifolds as a gradient flow in the Wasserstein space. Annales de l'I. H. P. Probabilités et Statistiques. (2010)
- R. Jordan, D. Kinderlehrer and F. Otto. The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. (1998)
- K.-T. Sturm. Super-Ricci flow for metric measure spaces. (2015)

2015 Institute for Applied Mathematics eva.kopfer@iam.uni-bonn.de