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Abstract
Consider interacting Brownian motion as infinite particle system. This system is described by infinite-dimensional SDE (ISDE). We construct a general theory of finite particle 
approximation. This general theory can be applied to many examples, for instance, ISDE related to random matrices, ISDE interacted Ruelle class potential.

1.1 Random point field and logarithmic derivative
Let 𝑆(= 𝑅𝑑) be a state space and S be a configuration space defined by

S = s = ∑𝛿𝑠𝑖 ; 𝑠𝑖 ∈ 𝑆, s 𝐾 < ∞ for any compact set 𝐾 .

A probability measure 𝜇 on S is called random point field (RPF).

Let 𝜇 1 be 1-Campbell measure on S × S by

𝜇 1 A × 𝐵 =  
𝐴

𝜇𝑥 𝐵 𝜌
1 𝑥 𝑑𝑥,

where 𝜇𝑥 is (reduced) Palm measure conditioned at 𝑥 and 𝜌1 is 1-correlation function.

Definition (‘12 Osada)

𝑑𝜇 ∈ 𝐿𝑙𝑜𝑐
𝑝
(𝜇 1 ) is called logarithmic derivative of 𝜇 if for any 𝑓 ∈ 𝐶0

∞(𝑆) ⊗ 𝐷0, 

 
𝑆×S
𝛻𝑥𝑓 𝑑𝜇

1 = − 
𝑆×S
𝑑𝜇 𝑓 𝑑𝜇

1 .

Remark 
Logarithmic derivative is a key to connect RPF and SDE as we will show later. However, 
if 𝜇 has infinitely many particles, it is sometimes  difficult to calculate the logarithmic 
derivative 𝑑𝜇. In this case, we use finite particle approximation of logarithmic 

derivative as we will show next section.

1.2 Finite particle approximation of logarithmic derivative
Let 𝜇𝑁(𝑁 ∈ ℕ) be a sequence of RPF such that 𝜇𝑁 has exactly N particles and 𝜇𝑁 → 𝜇 as 
N goes to infinity.

Decompose the logarithmic derivative 𝑑
𝜇𝑁

as follows.

𝑑𝜇𝑁 𝑥, s = 𝑢
𝑁 𝑥 + g𝑟 𝑥, s +wr 𝑥, s ,

where 

𝑢𝑁 ∶ continuous,

g𝑟 𝑥, s =  

𝑥−𝑠𝑖 <𝑟

𝑔(𝑥, 𝑠𝑖) ,

w𝑟 𝑥, s =  

𝑥−𝑠𝑖 ≥𝑟

𝑔(𝑥, 𝑠𝑖) ,

for 𝑔: 𝑆2 → 𝑆 continuous except diagonal set and s = ∑𝑖 𝛿𝑠𝑖 .

We assume two conditions. 
(A1)  𝑢𝑁 → 𝑢 compact uniformly as N → ∞.

(A2) There exist 𝑝 > 1 and 𝑤 ∈ 𝐿loc
p
(S) such that 

lim
𝑟→∞
limsup
𝑁→∞
 
𝑆𝑅×S
|𝑤𝑟 𝑥, s −w 𝑥 |

p 𝑑𝜇𝑁, 1 = 0.

Lemma (‘12 Osada) 
Assume (A1)  and (A2), then 𝑑𝜇 exists and given by

𝑑𝜇 = u x + lim
𝑟→∞

g𝑟 𝑥, s +𝑤 𝑥 .

Example2  ISDE related to Airy RPF

Next, we take soft edge scaling in the semi-circle, i.e. take 𝑥𝑖 =
1

2
(2 𝑁 + 𝑁−

1

6𝑠𝑖) of 

𝑚𝑁 and denote 𝜇Airy
𝑁 as the density with regard to 𝐬𝑁. 

𝜇Airy
𝑁 𝑑𝐬𝑁 =

1

𝑍
 

𝑖≠𝑗

𝑠𝑖 − 𝑠𝑗
2
exp −

1

2
 

1≤𝑖≤𝑁

2 𝑁 + 𝑁−
1
6𝑠𝑖

2

𝑑𝐬𝑁.

𝜇Airy
𝑁 converges to Airy RPF 𝜇Airy as 𝑁 goes to infinity. N-dim SDE and ISDE 

corresponding above RPFs are given by following respectively.

𝑑𝑋𝑡
N,i = dBt

i +  

1≤𝑗≠𝑖≤𝑁

1

𝑋𝑡
𝑁,𝑖 − 𝑋𝑡

𝑁,𝑗
−𝑁
1
3 −
𝑋𝑡
𝑁,𝑖

2𝑁
1
3

𝑑𝑡 1 ≤ 𝑖 ≤ N ,

𝑑𝑋𝑡
i = dBt

i + lim
𝑟→∞

 

𝑋𝑡
𝑗
<𝑟

1

𝑋𝑡
𝑖 − 𝑋𝑡

𝑗
− 
𝑦 <𝑟

1

−𝑦

−𝑦

𝜋
1 −∞,0 (𝑦)𝑑𝑦 𝑑𝑡 𝑖 ∈ ℕ .

Thm (K. -Osada)
For these SDEs,  Theorem 1 holds.

Example1  ISDE related to sine RPF 
Consider Gaussian unitary ensemble (GUE), i.e. 𝑁 × 𝑁 Hermitian matrix whose 
entries are i.i.d Gaussian distribution.
Eigenvalues of GUE 𝐱𝑁 = 𝑥1, … , 𝑥𝑁 have the following probability density.

𝑚𝑁 𝑑𝐱𝑁 =
1

𝑍
 

𝑖≠𝑗

𝑥𝑖 − 𝑥𝑗
2
exp −  

1≤𝑖≤𝑁

𝑥𝑖
2 𝑑𝐱𝑁 .

Scaled empirical measure of GUE weakly converges to Wigner’s semi-circle law.

lim
𝑁→∞

1

𝑁
 

𝑖

𝛿 𝑥𝑖
𝑁

=
1

𝜋
2 − 𝑥2𝑑𝑥.

Next we take bulk scaling of the semi-circle law. Fix 𝜃 satisfying − 2 < 𝜃 < 2. Put 

𝑥𝑖 =
𝑠𝑖+𝑁𝜃

𝑁
of 𝑚𝑁 and denote 𝜇𝜃

𝑁 as the density with regard to 𝐬𝑁. 

𝜇𝜃
𝑁 𝑑𝐬𝑁 =

1

𝑍
 

𝑖≠𝑗

𝑠𝑖 − 𝑠𝑗
2
exp −  

1≤𝑖≤𝑁

𝑠𝑖 +𝑁𝜃
2

𝑁
𝑑𝐬𝑁.

𝜇𝜃
𝑁 converges to the sine RPF 𝜇𝜃 as 𝑁 goes to infinity.

Next, consider dynamics corresponding to this geometrical universality. 𝑁-dim SDE 

(ISDE) corresponding to 𝜇𝜃
𝑁 (𝜇𝜃) given by (3) ((4) respectively).

3 𝑑𝑋𝑡
N,i = dBt

i +  

1≤𝑗≠𝑖≤𝑁

1

𝑋𝑡
𝑁,𝑖 − 𝑋𝑡

𝑁,𝑗
𝑑𝑡 −
𝑋𝑡
𝑁,𝑖

𝑁
𝑑𝑡 − 𝜃𝑑𝑡 1 ≤ 𝑖 ≤ N ,

4 𝑑𝑋𝑡
𝑖 = 𝑑𝐵𝑡

𝑖 + lim
𝑟→∞
 

𝑋𝑡
𝑖−𝑋𝑡
𝑗
<𝑟

1

𝑋𝑡
𝑖 − 𝑋𝑡

𝑗
𝑑𝑡 (𝑖 ∈ ℕ).

Thm (K. -Osada)
For these SDEs,  Theorem 1 holds.

Remark 
In the limit 𝜇sin,𝜃, the particles density is depend on 𝜃, but particles interact sine 
kernel which is independent of 𝜃.  In this sense, we say that bulk scaling has 
geometrical universality.

1.3 Main Theorem
In previous section, we introduced finite approximation in logarithmic derivative 
sense. Our result is following. If finite approximation of logarithmic derivative is 
valid, then finite particle approximation of corresponding ISDE  is also valid.

We introduce 𝑁-dim SDE corresponding to 𝜇𝑁 and ISDE corresponding to 𝜇 by 
following. 

1 𝑑𝑋𝑡
N,i = dBt

i + 𝑑
𝜇𝑁
𝑋𝑡
𝑁,𝑖 , 𝑋𝑡
𝑁,𝑖∎ 𝑑𝑡 1 ≤ 𝑖 ≤ N ,

2 𝑑𝑋𝑡
i = dBt

i + 𝑑
𝜇
𝑋𝑡
𝑖 , 𝑋𝑡
𝑖∎ 𝑑𝑡 𝑖 ∈ ℕ ,

where 𝑋𝑡
𝑁,𝑖∎ = ∑𝑗≠𝑖 𝛿𝑋𝑡

𝑁,𝑗 and 𝑋𝑡
𝑖∎ = ∑𝑗≠𝑖 𝛿𝑋𝑡

𝑗 .

Define  𝑙:S → 𝑆∞ as labeled map and denote 𝑙𝑚 as the first 𝑚 particles of 𝑙.

Let (𝑋𝑁,1, … , 𝑋𝑁,𝑁) be a solution of (1) whose initial distribution is 𝜇𝑁 ∘ 𝑙−1.
Let (𝑋1, 𝑋2…) be a solution of (2) whose initial distribution is 𝜇 ∘ 𝑙−1.

Example3  Ruelle class potential
For 𝛽 > 0, letΨ be interaction potentials as follows.
・Lennard Jones potential :Ψ6−12 x = x

−12 − x −6 for 𝑑 = 3.

・Riesz potential ∶ Ψ𝑎 𝑥 =
𝛽

𝑎
𝑥 −𝑎 for 𝑑 < 𝑎 ∈ ℕ.

For these potentials, corresponding N-dim SDE and ISDE are given by following.

𝑑𝑋𝑡
N,i = dBt

i −
𝛽

2
 

𝑗≠𝑖

𝑁

𝛻𝑥Ψ 𝑋𝑡
𝑁,𝑖 − 𝑋𝑡

𝑁,𝑗
𝑑𝑡 1 ≤ 𝑖 ≤ N ,

𝑑𝑋𝑡
i = dBt

i −
𝛽

2
 

𝑗≠𝑖

∞

𝛻𝑥Ψ 𝑋𝑡
𝑁,𝑖 − 𝑋𝑡

𝑁,𝑗
𝑑𝑡 𝑖 ∈ ℕ .

Thm (K. -Osada)
For these SDEs,  Theorem 1 holds.

Remark 
Roughly speaking, the limit formula of  (3) is 

(5) 𝑑𝑋𝑡
i = dBt

i +  

1≤𝑗≠𝑖≤∞

1

𝑋𝑡
𝑖 − 𝑋𝑡

𝑗
𝑑𝑡 − 𝜃𝑑𝑡 𝑖 ∈ ℕ .

In other words, correct limit formula (4) and formal limit formula (5) are different. 
This phenomena is called SDE gap.

Thm 1 (K. -Osada)
Assume (A1) and (A2), (2) has the unique solution, and marginal assumptions. 
Furthermore , we assume that 

𝜇𝑁 ∘ (𝑙𝑚)−1 → 𝜇 ∘ (𝑙𝑚)−1 in distribution.
Then for any 𝑚 ∈ ℕ, we have

lim
𝑁→∞
𝑋𝑁,1, … , 𝑋𝑁,𝑚 = 𝑋1, … , 𝑋𝑚 weakly in 𝐶( 0,∞ ; 𝑆𝑚).


