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1. Introduction

• We discuss the stochastic PDE

∂th(t, x) = ∂2xh(t, x) + (∂xh(t, x))
2 + ∂

γ
xξ(t, x) (1.1)

for (t, x) ∈ [0,∞)× T with γ ≥ 0. ξ is a space-time white noise.

• ∂γx = −(−∂2x)
γ
2 is the fractional derivative.

• Since the solution of SPDE is very singular, we replace ξ by ξϵ = ξ ∗ ρϵ. Here ρ ∈ C∞
0 (R2)

and ρϵ(t, x) = ϵ−3ρ(ϵ−2t, ϵ−1x).

• When γ = 0, this equation is called KPZ equation. M. Hairer showed that the renormalized
equation

∂thϵ(t, x) = ∂2xhϵ(t, x) + (∂xhϵ(t, x))
2 − Cϵ + ξϵ(t, x),

for some constant Cϵ ∼ 1
ϵ, has a unique limit h. (2013)

• We can expect that the similar results hold if γ < 1
2 by “local subcriticality”.

• However, we can show the similar result only for 0 ≤ γ < 1
4 by this theory.

Theorem 1.1. Let ρ = ρ(t, x) be a function on R2 such that smooth, compactly supported,
symmetric in x, nonnegative, and

∫
R2 ρ(t, x)dtdx = 1. Let 0 ≤ γ < 1

4 and 0 < α < 1
2 − γ. Then

there exists a sequence of constants Cϵ such that

1. For some constant C (depending on γ and ρ), Cϵ ≤ Cϵ−1−2γ

2. For every initial condition h0 ∈ Cα(T), the sequence of solutions hϵ to the equation

∂thϵ(t, x) = ∂2xhϵ(t, x) + (∂xhϵ(t, x))
2 − Cϵ + ∂

γ
xξϵ(t, x)

on (t, x) ∈ [0, T )× T up to some random time T , converges to a unique stochastic process
h, which is independent of the choice of ρ.

2. Regularity structures

• We write (1.1) in the mild form:

hϵ = G ∗ {1t>0((∂xhϵ)
2 + ∂

γ
xξϵ)} +Gh0,

•G is the heat kernel on [0,∞)×R, and Gh0 is the smooth function solving the heat equation
with the initial condition h0 ∈ Cη(T).

• We reformulate (1.1) as the equation of a function H valued in the abstract liner space:

H = G1t>0((∂H)2 + Ξ) +Gh0. (2.1)

2.1 Regularity structure for (1.1)

• We prepare dummy variables Ξ (noise term), 1 (constant), X1 (time variable), X2 (spatial
variable), and operators I, I ′ (convolution with G or G′ := ∂xG), ∂ (spatial derivative).

• We denote by U and V the minimal set of variables such that

Ξ,1, X1, X2 ∈ V ,
I(Xk) = 0, ∂Iτ = I ′τ, ∂(Xk0

0 Xk1
1 ) = k1X

k0
0 Xk1−1

1 ,

τ ∈ V ⇒ Iτ ∈ U , τ1, τ2 ∈ U ⇒ ∂τ1∂τ2 ∈ V

• We define the homogeneity of each variable by:

|Ξ|s = α, |1|s = 0, |X1|s = 2, |X2|s = 1

|τ τ̄ |s = |τ |s + |τ̄ |s, |Iτ |s = |τ |s + 2, |I ′τ |s = |τ |s + 1.

• α is a fixed number smaller than and sufficiently close to −3/2− γ.

• We define a regularity structure (T,G) for (1.1) as the pair of a linear space T spanned by
U ∪ V and a group G of linear operators on T .

2.2 Solution map

• We say the pair of

Π : R2 × T ∋ (z, τ ) → Πzτ ∈ D′(R2), Γ : R2 × R2 × T ∋ (z, z̄, τ ) → Γz,z̄τ ∈ G

(with some properties) a model (Π,Γ) for the regularity structure (T,G).

• We say that a model (Π,Γ) is “admissible”, if and only if (ΠzX
k)(z̄) = 0 and

(ΠzIτ )(z̄) = G ∗ (Πzτ )(z̄)−
∑

|l|s<|τ |s+2

(z̄ − z)l

l!
∂lG ∗ (Πzτ )(z̄),

(ΠzI ′τ )(z̄) = G′ ∗ (Πzτ )(z̄)−
∑

|l|s<|τ |s+1

(z̄ − z)l

l!
∂lG′ ∗ (Πzτ )(z̄).

• We denote by Dθ,η
P (F) (F = U ,V) the space of all functions f : R2 → T of the form

f (t, x) =
⊕
τ∈F

fτ (t, x)τ (t ̸= 0),

where each fτ satisfies “θ−|τ |s-Hölder” property with the coefficient proportionally to |t|
η−θ
2 .

Theorem 2.1. If θ > 0, η ≤ θ, and α∧η > −2, then there exists a unique continuous linear map
R : Dθ,η

P (V) → Cα∧ηs such that Rf is “near” to Πzf (z) in Cα∧ηs , at each z ∈ R2. Furthermore,

the map MnDθ,η
P (V) ∋ (Z, f ) → RZf ∈ Cα∧ηs is locally uniformly continuous.

Theorem 2.2. Let 0 ≤ γ < 1
2, and choose α smaller than but sufficiently close to −3/2 − γ.

Let θ > −α, and 0 < η < α + 2. Then, for every periodic initial condition h0 ∈ Cη(R),
every admissible model Z, there exists a time T = T (h0, Z) > 0 and a unique solution
H = S(h0, Z) ∈ Dθ,η

P (U) to (2.1) on [0, T ]. Moreover, the solution map (h0, Z) 7→ H is jointly
uniformly continuous in a neighborhood around (h0, Z).

3. Renormalization

• We define the natural model Z(ϵ) = (Π(ϵ),Γ(ϵ)) by postulating admissibility and Π
(ϵ)
z Ξ(z̄) =

∂
γ
xξ(z̄).

3.1 Renormalization map

• We use the shorthand notations to write the elements of F = U ∪ V.

• Each circle represents Ξ.

• For any trees τ , we draw I ′(τ ) by adding a downward straight line starting at the root of τ .

• For any trees τ and τ̄ , we draw τ τ̄ by jointing the trees at their roots.

• In the following, the elements of negative homogeneities play important roles.

0 ≤ γ < 1/10 : Ξ, , , , , , , ,1

1/10 ≤ γ < 1/6 : Ξ, , , , , , , , , , ,1

1/6 ≤ γ < 3/14 : Ξ, , , , , , , , , , ,

, , , , , , , , , ,1

3/14 ≤ γ < 1/4 : Ξ, , , , , , , , , , , ,

, , , , , , , , , , ,

, , , , , , , , ,1

• For any given constants {C(ϵ)
τ }, we define the renormalized model Ẑ(ϵ) = (Π̂(ϵ), Γ̂(ϵ)) by

Π̂
(ϵ)
z τ = Π

(ϵ)
z τ − C

(ϵ)
τ (τ = , , ), Π̂

(ϵ)
z τ = Π

(ϵ)
z τ (otherwise)

when 0 ≤ γ < 1/6, or by

Π̂
(ϵ)
z τ = Π

(ϵ)
z τ − C

(ϵ)
τ (τ = , , , , , , , , ),

Π̂
(ϵ)
z τ = Π

(ϵ)
z τ (otherwise)

when 1/6 ≤ γ < 1/4.

Theorem 3.1. Let S : (h0, Z) 7→ H be a solution map defined in Theorem 2.2. Then
hMϵ = RS(h0, Z(ϵ),M ) solves the equation

∂th
M
ϵ = ∂2xh

M
ϵ + (∂xh

M
ϵ )2 − C(ϵ) + ∂

γ
xξϵ.

Here, C(ϵ) is a constant depending on {C(ϵ)
τ }.

Theorem 3.2. Let {C(ϵ)
τ } be sequences of constants defined later. Then, there exists an ad-

missible random model Ẑ independent of the choice of ρ, such that Ẑ(ϵ) converge to Ẑ in
probability, as ϵ → 0.

4. Proof of Theorem 3.2

• We denote by Ik : (L2(R× T))⊗k → L2(Ω,P) the multiple Wiener-Itô integral.

• For any τ , we have the expansion

(Π
(ϵ)
0 τ )(z) =

∑
k

Ik

(∑
l

mk,lW
(ϵ)
k,l(τ )(z)

)
.

for some integers mk,l and kernels W(ϵ)
k,l(τ )(z).

• We set the constant
C
(ϵ)
τ :=

∑
W (ϵ,0)

l,i (τ )(z)=const

W(ϵ,0)
l,i (τ )(z).

• The limit model Π(ϵ) has the form

(Π̂0τ )(z) =
∑
k

Ik

(∑
l

mk,lŴk,l(τ )(z)
)
.

Theorem 3.2 is a consequence of the following theorem.

Theorem 4.1. Let 0 ≤ γ < 1/4. Then there exist some κ, θ > 0 such that

E|(Π̂0τ )(ϕ
λ
0 )| . λ2|τ |s+κ, E|(Π̂0τ − Π̂

(ϵ)
0 τ )(ϕλ0 )| . ϵ2θλ2|τ |s+κ (4.1)

for any τ with negative homogeneities, and uniformly over 0 < λ, ϕ : ||ϕ||C2 ≤ 1. Here,
ϕλ0 (t, x) = λ−3ϕ(λ−2t, λ−1x).

proof. For any τ , we have the bounds

E|(Π̂0τ )(ϕ
λ
0 )|

2 .
∑
k,l

∫∫
ϕλ0 (z)ϕ

λ
0 (z̄)(Ŵk,l(τ )(z), Ŵk,l(τ )(z̄))(L2(R×T))⊗kdzdz̄,

E|(Π̂0τ − Π̂
(ϵ)
0 τ )(ϕλ0 )|

2

.
∑
k,l

∫∫
ϕλ0 (z)ϕ

λ
0 (z̄)(δŴ

(ϵ)
k,l(τ )(z), δŴ

(ϵ)
k,l(τ )(z̄))(L2(R×T))⊗kdzdz̄

Here, δŴ(ϵ,k)
l,i (τ ) = Ŵ(k)

l,i (τ )− Ŵ(ϵ,k)
l,i (τ ). We have only to bound the inner products of kernels

in the right hand side. In particular, we have

|(Ŵ2(τ )(z), Ŵ2(τ )(z̄))(L2(R×T))⊗k( )(z; z̄)| . ||z − z̄||−2−4γ
s .

uniformly over z, z̄. So γ must satisfy −2− 4γ > −3 ⇔ γ < 1/4.


