KPZ equation with fractional derivatives of white noise

Masato Hoshino

The University of Tokyo

1. Introduction	3. Renormalization
• We discuss the stochastic PDE $\partial_t h(t,x) = \partial_x^2 h(t,x) + (\partial_x h(t,x))^2 + \partial_x^\gamma \xi(t,x)$ (1.1)	• We define the natural model $Z^{(\epsilon)} = (\Pi^{(\epsilon)}, \Gamma^{(\epsilon)})$ by postulating admissibility and $\Pi_z^{(\epsilon)} \Xi(\bar{z}) = \partial_x^{\gamma} \xi(\bar{z})$.
 for (t, x) ∈ [0, ∞) × T with γ ≥ 0. ξ is a space-time white noise. ∂^γ_x = -(-∂²_x)^{γ/2} is the fractional derivative. Since the solution of SPDE is very singular, we replace ξ by ξ_ε = ξ * ρ_ε. Here ρ ∈ C[∞]₀(ℝ²) and ρ_ε(t, x) = ε⁻³ρ(ε⁻²t, ε⁻¹x). When γ = 0, this equation is called KPZ equation. M. Hairer showed that the renormalized 	 3.1 Renormalization map We use the shorthand notations to write the elements of <i>F</i> = <i>U</i> ∪ <i>V</i>. Each circle represents Ξ. For any trees <i>τ</i>, we draw <i>I'</i>(<i>τ</i>) by adding a downward straight line starting at the root of <i>τ</i>. For any trees <i>τ</i> and <i>τ</i>, we draw <i>ττ</i> by jointing the trees at their roots.

equation

$\partial_t h_{\epsilon}(t,x) = \partial_x^2 h_{\epsilon}(t,x) + (\partial_x h_{\epsilon}(t,x))^2 - C_{\epsilon} + \xi_{\epsilon}(t,x),$

for some constant $C_{\epsilon} \sim \frac{1}{\epsilon}$, has a unique limit h. (2013)

• We can expect that the similar results hold if $\gamma < \frac{1}{2}$ by "local subcriticality".

• However, we can show the similar result only for $0 \le \gamma < \frac{1}{4}$ by this theory.

Theorem 1.1. Let $\rho = \rho(t, x)$ be a function on \mathbb{R}^2 such that smooth, compactly supported, symmetric in x, nonnegative, and $\int_{\mathbb{R}^2} \rho(t, x) dt dx = 1$. Let $0 \le \gamma < \frac{1}{4}$ and $0 < \alpha < \frac{1}{2} - \gamma$. Then there exists a sequence of constants C_{ϵ} such that

1. For some constant C (depending on γ and ρ), $C_{\epsilon} \leq C \epsilon^{-1-2\gamma}$

2. For every initial condition $h_0 \in C^{\alpha}(\mathbb{T})$, the sequence of solutions h_{ϵ} to the equation

 $\partial_t h_{\epsilon}(t,x) = \partial_x^2 h_{\epsilon}(t,x) + (\partial_x h_{\epsilon}(t,x))^2 - C_{\epsilon} + \partial_x^{\gamma} \xi_{\epsilon}(t,x)$

on $(t, x) \in [0, T) \times \mathbb{T}$ up to some random time T, converges to a unique stochastic process h, which is independent of the choice of ρ .

2. Regularity structures

• We write (1.1) in the mild form:

 $h_{\epsilon} = G * \{\mathbf{1}_{t>0}((\partial_x h_{\epsilon})^2 + \partial_x^{\gamma} \xi_{\epsilon})\} + Gh_0,$

- G is the heat kernel on $[0,\infty) \times \mathbb{R}$, and Gh_0 is the smooth function solving the heat equation with the initial condition $h_0 \in \mathcal{C}^{\eta}(\mathbb{T})$.
- We reformulate (1.1) as the equation of a function H valued in the abstract liner space:

$$H = \mathcal{G}\mathbf{1}_{t>0}((\partial H)^2 + \Xi) + Gh_0.$$
 (2.1)

• In the following, the elements of negative homogeneities play important roles.

 $0 \leq \gamma < 1/10 : \Xi, \mathcal{V}, \mathcal{V}, \mathcal{V}, \mathcal{V}, \mathcal{V}, \mathcal{V}, \mathcal{V}, \mathcal{O}, \mathbf{1}$ $1/10 \leq \gamma < 1/6 : \Xi, \mathcal{V}, \mathcal{$ $1/6 \le \gamma < 3/14 : \Xi, \mathcal{V}, \mathcal{$

 $3/14 \leq \gamma < 1/4 : \Xi, \mathcal{V}, \mathcal{$ $\langle \langle \gamma \rangle, \langle \langle \rangle \rangle, \langle$

• For any given constants $\{C_{\tau}^{(\epsilon)}\}$, we define the renormalized model $\widehat{Z}^{(\epsilon)} = (\widehat{\Pi}^{(\epsilon)}, \widehat{\Gamma}^{(\epsilon)})$ by $\widehat{\Pi}_{z}^{(\epsilon)}\tau = \Pi_{z}^{(\epsilon)}\tau - C_{\tau}^{(\epsilon)} \quad (\tau = \mathcal{N}, \mathcal{N}, \mathcal{N}, \mathcal{N}), \quad \widehat{\Pi}_{z}^{(\epsilon)}\tau = \Pi_{z}^{(\epsilon)}\tau \quad (\text{otherwise})$ when $0 \le \gamma < 1/6$, or by

> $\widehat{\Pi}_{z}^{(\epsilon)}\tau = \Pi_{z}^{(\epsilon)}\tau \quad \text{(otherwise)}$

when $1/6 \le \gamma < 1/4$.

Theorem 3.1. Let $S : (h_0, Z) \mapsto H$ be a solution map defined in Theorem 2.2. Then $h_{\epsilon}^{M} = \mathcal{RS}(h_{0}, Z^{(\epsilon), M})$ solves the equation

 $\partial_t h^M_{\epsilon} = \partial_x^2 h^M_{\epsilon} + (\partial_x h^M_{\epsilon})^2 - C^{(\epsilon)} + \partial_x^{\gamma} \xi_{\epsilon}.$

2.1 Regularity structure for (1.1)

- We prepare dummy variables Ξ (noise term), 1 (constant), X_1 (time variable), X_2 (spatial variable), and operators $\mathcal{I}, \mathcal{I}'$ (convolution with G or $G' := \partial_x G$), ∂ (spatial derivative).
- We denote by \mathcal{U} and \mathcal{V} the minimal set of variables such that

 $\Xi, \mathbf{1}, X_1, X_2 \in \mathcal{V},$ $\mathcal{I}(X^k) = 0, \quad \partial \mathcal{I}\tau = \mathcal{I}'\tau, \quad \partial (X_0^{k_0} X_1^{k_1}) = k_1 X_0^{k_0} X_1^{k_1 - 1},$ $\tau \in \mathcal{V} \Rightarrow \mathcal{I}\tau \in \mathcal{U}, \ \tau_1, \tau_2 \in \mathcal{U} \Rightarrow \partial \tau_1 \partial \tau_2 \in \mathcal{V}$

• We define the homogeneity of each variable by:

 $|\Xi|_{\mathfrak{s}} = \alpha, \ |\mathbf{1}|_{\mathfrak{s}} = 0, \ |X_1|_{\mathfrak{s}} = 2, \ |X_2|_{\mathfrak{s}} = 1$ $|\tau \overline{\tau}|_{\mathfrak{s}} = |\tau|_{\mathfrak{s}} + |\overline{\tau}|_{\mathfrak{s}}, \ |\mathcal{I}\tau|_{\mathfrak{s}} = |\tau|_{\mathfrak{s}} + 2, \ |\mathcal{I}'\tau|_{\mathfrak{s}} = |\tau|_{\mathfrak{s}} + 1.$

• α is a fixed number smaller than and sufficiently close to $-3/2 - \gamma$.

• We define a regularity structure (T, G) for (1.1) as the pair of a linear space T spanned by $\mathcal{U} \cup \mathcal{V}$ and a group G of linear operators on T.

2.2 Solution map

• We say the pair of

 $\Pi: \mathbb{R}^2 \times T \ni (z,\tau) \to \Pi_z \tau \in \mathcal{D}'(\mathbb{R}^2), \quad \Gamma: \mathbb{R}^2 \times \mathbb{R}^2 \times T \ni (z,\bar{z},\tau) \to \Gamma_{z,\bar{z}}\tau \in G$

(with some properties) a model (Π, Γ) for the regularity structure (T, G). • We say that a model (Π, Γ) is "admissible", if and only if $(\Pi_z X^k)(\overline{z}) = 0$ and

$$(\Pi_z \mathcal{I}\tau)(\bar{z}) = G * (\Pi_z \tau)(\bar{z}) - \sum_{|l|_{\mathfrak{s}} < |\tau|_{\mathfrak{s}} + 2} \frac{(\bar{z}-z)^l}{l!} \partial^l G * (\Pi_z \tau)(\bar{z}),$$

$$(\Pi_z \mathcal{I}'\tau)(\bar{z}) = G' * (\Pi_z \tau)(\bar{z}) - \sum_{|l| = 2} \frac{(\bar{z}-z)^l}{l!} \partial^l G' * (\Pi_z \tau)(\bar{z}).$$

Here, $C^{(\epsilon)}$ is a constant depending on $\{C_{\tau}^{(\epsilon)}\}$.

Theorem 3.2. Let $\{C_{\tau}^{(\epsilon)}\}$ be sequences of constants defined later. Then, there exists an admissible random model \widehat{Z} independent of the choice of ρ , such that $\widehat{Z}^{(\epsilon)}$ converge to \widehat{Z} in probability, as $\epsilon \to 0$.

4. Proof of Theorem 3.2

• We denote by $I_k : (L^2(\mathbb{R} \times \mathbb{T}))^{\otimes k} \to L^2(\Omega, \mathbb{P})$ the multiple Wiener-Itô integral. • For any τ , we have the expansion

 $(\Pi_0^{(\epsilon)}\tau)(z) = \sum_k I_k \left(\sum_l m_{k,l} \mathcal{W}_{k,l}^{(\epsilon)}(\tau)(z)\right).$

for some integers $m_{k,l}$ and kernels $\mathcal{W}_{k,l}^{(\epsilon)}(\tau)(z)$.

• We set the constant

$$C_{\tau}^{(\epsilon)} := \sum_{\substack{\mathcal{W}_{l,i}^{(\epsilon,0)}(\tau)(z) = \text{const}}} \mathcal{W}_{l,i}^{(\epsilon,0)}(\tau)(z)$$

• The limit model $\Pi^{(\epsilon)}$ has the form

$$(\widehat{\Pi}_0 \tau)(z) = \sum_k I_k \Big(\sum_l m_{k,l} \widehat{\mathcal{W}}_{k,l}(\tau)(z) \Big).$$

Theorem 3.2 is a consequence of the following theorem. **Theorem 4.1.** Let $0 \le \gamma < 1/4$. Then there exist some $\kappa, \theta > 0$ such that

 $\mathbb{E}|(\widehat{\Pi}_{0}\tau)(\phi_{0}^{\lambda})| \lesssim \lambda^{2|\tau|_{\mathfrak{s}}+\kappa}, \quad \mathbb{E}|(\widehat{\Pi}_{0}\tau - \widehat{\Pi}_{0}^{(\epsilon)}\tau)(\phi_{0}^{\lambda})| \lesssim \epsilon^{2\theta}\lambda^{2|\tau|_{\mathfrak{s}}+\kappa}.$

(4.1)

 $|l|_{\mathfrak{s}} < |\tau|_{\mathfrak{s}} + 1$

• We denote by $\mathcal{D}_{P}^{\theta,\eta}(\mathcal{F})$ ($\mathcal{F} = \mathcal{U}, \mathcal{V}$) the space of all functions $f : \mathbb{R}^{2} \to T$ of the form

 $f(t,x) = \bigoplus_{\tau \in \mathcal{F}} f_{\tau}(t,x)\tau \quad (t \neq 0),$

where each f_{τ} satisfies " $\theta - |\tau|_{\mathfrak{s}}$ -Hölder" property with the coefficient proportionally to $|t|^{\frac{\eta-\theta}{2}}$. **Theorem 2.1.** If $\theta > 0$, $\eta \le \theta$, and $\alpha \land \eta > -2$, then there exists a unique continuous linear map $\mathcal{R}: \mathcal{D}_{P}^{\theta,\eta}(\mathcal{V}) \to \mathcal{C}_{\mathfrak{s}}^{\alpha \wedge \eta}$ such that $\mathcal{R}f$ is "near" to $\prod_{z} f(z)$ in $\mathcal{C}_{\mathfrak{s}}^{\alpha \wedge \eta}$, at each $z \in \mathbb{R}^{2}$. Furthermore, the map $\mathcal{M} \ltimes \mathcal{D}_{P}^{\theta,\eta}(\mathcal{V}) \ni (Z,f) \to \mathcal{R}^{Z}f \in \mathcal{C}_{\mathfrak{s}}^{\alpha \wedge \eta}$ is locally uniformly continuous.

Theorem 2.2. Let $0 \le \gamma < \frac{1}{2}$, and choose α smaller than but sufficiently close to $-3/2 - \gamma$. Let $\theta > -\alpha$, and $0 < \eta < \alpha + 2$. Then, for every periodic initial condition $h_0 \in \mathcal{C}^{\eta}(\mathbb{R})$, every admissible model Z, there exists a time $T = T(h_0, Z) > 0$ and a unique solution $H = \mathcal{S}(h_0, Z) \in \mathcal{D}_P^{\theta, \eta}(\mathcal{U})$ to (2.1) on [0, T]. Moreover, the solution map $(h_0, Z) \mapsto H$ is jointly uniformly continuous in a neighborhood around (h_0, Z) .

for any τ with negative homogeneities, and uniformly over $0 < \lambda$, $\phi : ||\phi||_{C^2} \le 1$. Here, $\phi_0^{\lambda}(t,x) = \lambda^{-3}\phi(\lambda^{-2}t,\lambda^{-1}x).$

proof. For any τ , we have the bounds

$$\begin{split} \mathbb{E} |(\widehat{\Pi}_{0}\tau)(\phi_{0}^{\lambda})|^{2} &\lesssim \sum_{k,l} \iint \phi_{0}^{\lambda}(z)\phi_{0}^{\lambda}(\bar{z})(\widehat{\mathcal{W}}_{k,l}(\tau)(z),\widehat{\mathcal{W}}_{k,l}(\tau)(\bar{z}))_{(L^{2}(\mathbb{R}\times\mathbb{T}))^{\otimes k}}dzd\bar{z} \\ \mathbb{E} |(\widehat{\Pi}_{0}\tau - \widehat{\Pi}_{0}^{(\epsilon)}\tau)(\phi_{0}^{\lambda})|^{2} \\ &\lesssim \sum_{k,l} \iint \phi_{0}^{\lambda}(z)\phi_{0}^{\lambda}(\bar{z})(\delta\widehat{\mathcal{W}}_{k,l}^{(\epsilon)}(\tau)(z),\delta\widehat{\mathcal{W}}_{k,l}^{(\epsilon)}(\tau)(\bar{z}))_{(L^{2}(\mathbb{R}\times\mathbb{T}))^{\otimes k}}dzd\bar{z} \end{split}$$

Here, $\delta \widehat{\mathcal{W}}_{l\,i}^{(\epsilon,k)}(\tau) = \widehat{\mathcal{W}}_{l\,i}^{(k)}(\tau) - \widehat{\mathcal{W}}_{l\,i}^{(\epsilon,k)}(\tau)$. We have only to bound the inner products of kernels in the right hand side. In particular, we have

 $|(\widehat{\mathcal{W}}_2(\tau)(z),\widehat{\mathcal{W}}_2(\tau)(\bar{z}))|_{(L^2(\mathbb{R}\times\mathbb{T}))^{\otimes k}}(\mathcal{O}(z;\bar{z})| \lesssim ||z-\bar{z}||_{\mathfrak{s}}^{-2-4\gamma}.$ uniformly over z, \bar{z} . So γ must satisfy $-2 - 4\gamma > -3 \Leftrightarrow \gamma < 1/4$.