KPZ equation with fractional derivatives of white noise

Masato Hoshino

The University of Tokyo

1. Introduction

- We discuss the stochastic PDE

$$
\begin{equation*}
\partial_{t} h(t, x)=\partial_{x}^{2} h(t, x)+\left(\partial_{x} h(t, x)\right)^{2}+\partial_{x}^{\gamma} \xi(t, x) \tag{1.1}
\end{equation*}
$$

for $(t, x) \in[0, \infty) \times \mathbb{T}$ with $\gamma \geq 0 . \xi$ is a space-time white noise

- $\partial_{x}^{\gamma}=-\left(-\partial_{x}^{2}\right)^{\frac{\gamma}{2}}$ is the fractional derivative.
- Since the solution of SPDE is very singular, we replace ξ by $\xi_{\epsilon}=\xi * \rho_{\epsilon}$. Here $\rho \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ and $\rho_{\epsilon}(t, x)=\epsilon^{-3} \rho\left(\epsilon^{-2} t, \epsilon^{-1} x\right)$.
- When $\gamma=0$, this equation is called KPZ equation. M. Hairer showed that the renormalized equation

$$
\partial_{t} h_{\epsilon}(t, x)=\partial_{x}^{2} h_{\epsilon}(t, x)+\left(\partial_{x} h_{\epsilon}(t, x)\right)^{2}-C_{\epsilon}+\xi_{\epsilon}(t, x)
$$

for some constant $C_{\epsilon} \sim \frac{1}{\epsilon}$, has a unique limit h. (2013)

- We can expect that the similar results hold if $\gamma<\frac{1}{2}$ by "local subcriticality".
- However, we can show the similar result only for $0 \leq \gamma<\frac{1}{4}$ by this theory.

Theorem 1.1. Let $\rho=\rho(t, x)$ be a function on \mathbb{R}^{2} such that smooth, compactly supported, symmetric in x, nonnegative, and $\int_{\mathbb{R}^{2}} \rho(t, x) d t d x=1$. Let $0 \leq \gamma<\frac{1}{4}$ and $0<\alpha<\frac{1}{2}-\gamma$. Then there exists a sequence of constants C_{ϵ} such that

1. For some constant C (depending on γ and ρ), $C_{\epsilon} \leq C \epsilon^{-1-2 \gamma}$
2. For every initial condition $h_{0} \in \mathcal{C}^{\alpha}(\mathbb{T})$, the sequence of solutions h_{ϵ} to the equation

$$
\partial_{t} h_{\epsilon}(t, x)=\partial_{x}^{2} h_{\epsilon}(t, x)+\left(\partial_{x} h_{\epsilon}(t, x)\right)^{2}-C_{\epsilon}+\partial_{x}^{\gamma} \xi_{\epsilon}(t, x)
$$

on $(t, x) \in[0, T) \times \mathbb{T}$ up to some random time T, converges to a unique stochastic process h, which is independent of the choice of ρ.

2. Regularity structures

- We write (1.1) in the mild form:

$$
h_{\epsilon}=G *\left\{\mathbf{1}_{t>0}\left(\left(\partial_{x} h_{\epsilon}\right)^{2}+\partial_{x}^{\gamma} \xi_{\epsilon}\right)\right\}+G h_{0}
$$

- G is the heat kernel on $[0, \infty) \times \mathbb{R}$, and $G h_{0}$ is the smooth function solving the heat equation with the initial condition $h_{0} \in \mathcal{C}^{\eta}(\mathbb{T})$.
- We reformulate (1.1) as the equation of a function H valued in the abstract liner space:

$$
\begin{equation*}
H=\mathcal{G} \mathbf{1}_{t>0}\left((\partial H)^{2}+\Xi\right)+G h_{0} \tag{2.1}
\end{equation*}
$$

2.1 Regularity structure for (1.1)

- We prepare dummy variables Ξ (noise term), 1 (constant), X_{1} (time variable), X_{2} (spatial variable), and operators $\mathcal{I}, \mathcal{I}^{\prime}$ (convolution with G or $G^{\prime}:=\partial_{x} G$), ∂ (spatial derivative).
- We denote by \mathcal{U} and \mathcal{V} the minimal set of variables such that

$$
\begin{aligned}
& \Xi, \mathbf{1}, X_{1}, X_{2} \in \mathcal{V}, \\
& \mathcal{I}\left(X^{k}\right)=0, \quad \partial \mathcal{I} \tau=\mathcal{I}^{\prime} \tau, \quad \partial\left(X_{0}^{k_{0}} X_{1}^{k_{1}}\right)=k_{1} X_{0}^{k_{0}} X_{1}^{k_{1}-1} \\
& \tau \in \mathcal{V} \Rightarrow \mathcal{I} \tau \in \mathcal{U}, \quad \tau_{1}, \tau_{2} \in \mathcal{U} \Rightarrow \partial \tau_{1} \partial \tau_{2} \in \mathcal{V}
\end{aligned}
$$

- We define the homogeneity of each variable by:

$$
\begin{aligned}
& |\Xi|_{\mathfrak{s}}=\alpha,|\mathbf{1}|_{\mathfrak{s}}=0,\left|X_{1}\right|_{\mathfrak{s}}=2,\left|X_{2}\right|_{\mathfrak{s}}=1 \\
& |\tau \bar{\tau}|_{\mathfrak{s}}=|\tau|_{\mathfrak{s}}+|\bar{\tau}|_{\mathfrak{s}},|\mathcal{I} \tau|_{\mathfrak{s}}=|\tau|_{\mathfrak{s}}+2,\left|\mathcal{I}^{\prime} \tau\right|_{\mathfrak{s}}=|\tau|_{\mathfrak{s}}+1
\end{aligned}
$$

- α is a fixed number smaller than and sufficiently close to $-3 / 2-\gamma$.
- We define a regularity structure (T, G) for (1.1) as the pair of a linear space T spanned by $\mathcal{U} \cup \mathcal{V}$ and a group G of linear operators on T.

2.2 Solution map

- We say the pair of

$$
\Pi: \mathbb{R}^{2} \times T \ni(z, \tau) \rightarrow \Pi_{z} \tau \in \mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right), \quad \Gamma: \mathbb{R}^{2} \times \mathbb{R}^{2} \times T \ni(z, \bar{z}, \tau) \rightarrow \Gamma_{z, \bar{z}} \tau \in G
$$

(with some properties) a model (Π, Γ) for the regularity structure (T, G).

- We say that a model (Π, Γ) is "admissible", if and only if $\left(\Pi_{z} X^{k}\right)(\bar{z})=0$ and

$$
\begin{aligned}
& \left(\Pi_{z} \mathcal{I} \tau\right)(\bar{z})=G *\left(\Pi_{z} \tau\right)(\bar{z})-\sum_{|l|_{s}<|\tau|_{s}+2} \frac{(\bar{z}-z)^{l}}{l!} \partial^{l} G *\left(\Pi_{z} \tau\right)(\bar{z}) \\
& \left(\Pi_{z} \mathcal{I}^{\prime} \tau\right)(\bar{z})=G^{\prime} *\left(\Pi_{z} \tau\right)(\bar{z})-\sum_{\left|\left|\left.\right|_{\mathfrak{s}}<|\tau|_{\mathfrak{s}}+1\right.\right.} \frac{(\bar{z}-z)^{l}}{l!} \partial^{l} G^{\prime} *\left(\Pi_{z} \tau\right)(\bar{z})
\end{aligned}
$$

- We denote by $\mathcal{D}_{P}^{\theta, \eta}(\mathcal{F})(\mathcal{F}=\mathcal{U}, \mathcal{V})$ the space of all functions $f: \mathbb{R}^{2} \rightarrow T$ of the form

$$
f(t, x)=\bigoplus_{\tau \in \mathcal{F}} f_{\tau}(t, x) \tau \quad(t \neq 0)
$$

where each f_{τ} satisfies " $\theta-|\tau|_{\mathfrak{s}}$-Hölder" property with the coefficient proportionally to $|t|^{\frac{\eta-\theta}{2}}$. Theorem 2.1. If $\theta>0, \eta \leq \theta$, and $\alpha \wedge \eta>-2$, then there exists a unique continuous linear map $\mathcal{R}: \mathcal{D}_{P}^{\theta, \eta}(\mathcal{V}) \rightarrow \mathcal{C}_{\mathfrak{s}}^{\alpha \wedge \eta}$ such that $\mathcal{R} f$ is "near" to $\Pi_{z} f(z)$ in $\mathcal{C}_{\mathfrak{s}}^{\alpha \wedge \eta}$, at each $z \in \mathbb{R}^{2}$. Furthermore, the map $\mathcal{M} \ltimes \mathcal{D}_{P}^{\theta, \eta}(\mathcal{V}) \ni(Z, f) \rightarrow \mathcal{R}^{Z} f \in \mathcal{C}_{\mathfrak{s}}^{\alpha \wedge \eta}$ is locally uniformly continuous.
Theorem 2.2. Let $0 \leq \gamma<\frac{1}{2}$, and choose α smaller than but sufficiently close to $-3 / 2-\gamma$. Let $\theta>-\alpha$, and $0<\eta<\alpha+2$. Then, for every periodic initial condition $h_{0} \in \mathcal{C}^{\eta}(\mathbb{R})$, every admissible model Z, there exists a time $T=T\left(h_{0}, Z\right)>0$ and a unique solution $H=\mathcal{S}\left(h_{0}, Z\right) \in \mathcal{D}_{P}^{\theta, \eta}(\mathcal{U})$ to (2.1) on $[0, T]$. Moreover, the solution map $\left(h_{0}, Z\right) \mapsto H$ is jointly uniformly continuous in a neighborhood around $\left(h_{0}, Z\right)$.

3. Renormalization

- We define the natural model $Z^{(\epsilon)}=\left(\Pi^{(\epsilon)}, \Gamma^{(\epsilon)}\right)$ by postulating admissibility and $\Pi_{z}^{(\epsilon)} \Xi(\bar{z})=$ $\partial_{x}^{\gamma} \xi(\bar{z})$.

3.1 Renormalization map

- We use the shorthand notations to write the elements of $\mathcal{F}=\mathcal{U} \cup \mathcal{V}$.
- Each circle represents Ξ.
- For any trees τ, we draw $\mathcal{I}^{\prime}(\tau)$ by adding a downward straight line starting at the root of τ. - For any trees τ and $\bar{\tau}$, we draw $\tau \bar{\tau}$ by jointing the trees at their roots. - In the following, the elements of negative homogeneities play important roles.
- For any given constants $\left\{C_{\tau}^{(\epsilon)}\right\}$, we define the renormalized model $\widehat{Z}^{(\epsilon)}=\left(\widehat{\Pi}^{(\epsilon)}, \widehat{\Gamma}^{(\epsilon)}\right)$ by

$$
\widehat{\Pi}_{z}^{(\epsilon)} \tau=\Pi_{z}^{(\epsilon)} \tau-C_{\tau}^{(\epsilon)}\left(\tau=\vartheta \rho, \vartheta \vartheta \rho, \wp_{\rho}\right), \quad \widehat{\Pi}_{z}^{(\epsilon)} \tau=\Pi_{z}^{(\epsilon)} \tau \quad \text { (otherwise) }
$$

when $0 \leq \gamma<1 / 6$, or by

$$
\begin{aligned}
& \widehat{\Pi}_{z}^{(\epsilon)} \tau=\Pi_{z}^{(\epsilon)} \tau \quad \text { (otherwise) }
\end{aligned}
$$

when $1 / 6 \leq \gamma<1 / 4$.
Theorem 3.1. Let $\mathcal{S}:\left(h_{0}, Z\right) \mapsto H$ be a solution map defined in Theorem 2.2. Then $h_{\epsilon}^{M}=\mathcal{R S}\left(h_{0}, Z^{(\epsilon), M}\right)$ solves the equation

$$
\partial_{t} h_{\epsilon}^{M}=\partial_{x}^{2} h_{\epsilon}^{M}+\left(\partial_{x} h_{\epsilon}^{M}\right)^{2}-C^{(\epsilon)}+\partial_{x}^{\gamma} \xi_{\epsilon} .
$$

Here, $C^{(\epsilon)}$ is a constant depending on $\left\{C_{\tau}^{(\epsilon)}\right\}$.
Theorem 3.2. Let $\left\{C_{\tau}^{(\epsilon)}\right\}$ be sequences of constants defined later. Then, there exists an admissible random model \widehat{Z} independent of the choice of ρ, such that $\widehat{Z}^{(\epsilon)}$ converge to \widehat{Z} in probability, as $\epsilon \rightarrow 0$.

4. Proof of Theorem 3.2

- We denote by $I_{k}:\left(L^{2}(\mathbb{R} \times \mathbb{T})\right)^{\otimes k} \rightarrow L^{2}(\Omega, \mathbb{P})$ the multiple Wiener-Itô integral.
- For any τ, we have the expansion

$$
\left(\Pi_{0}^{(\epsilon)} \tau\right)(z)=\sum_{k} I_{k}\left(\sum_{l} m_{k, l} \mathcal{W}_{k, l}^{(\epsilon)}(\tau)(z)\right) .
$$

for some integers $m_{k, l}$ and kernels $\mathcal{W}_{k, l}^{(\epsilon)}(\tau)(z)$.

- We set the constant

$$
C_{\tau}^{(\epsilon)}:=\sum_{\mathcal{W}_{l, i}^{(\epsilon, 0)}(\tau)(z)=\mathrm{const}} \mathcal{W}_{l, i}^{(\epsilon, 0)}(\tau)(z)
$$

- The limit model $\Pi^{(\epsilon)}$ has the form

$$
\left(\widehat{\Pi}_{0} \tau\right)(z)=\sum_{k} I_{k}\left(\sum_{l} m_{k, l} \widehat{\mathcal{W}}_{k, l}(\tau)(z)\right) .
$$

Theorem 3.2 is a consequence of the following theorem.
Theorem 4.1. Let $0 \leq \gamma<1 / 4$. Then there exist some $\kappa, \theta>0$ such that

$$
\begin{equation*}
\mathbb{E}\left|\left(\widehat{\Pi}_{0} \tau\right)\left(\phi_{0}^{\lambda}\right)\right| \lesssim \lambda^{2|\tau|_{\mathfrak{s}}+\kappa}, \quad \mathbb{E}\left|\left(\widehat{\Pi}_{0} \tau-\widehat{\Pi}_{0}^{(\epsilon)} \tau\right)\left(\phi_{0}^{\lambda}\right)\right| \lesssim \epsilon^{2 \theta} \lambda^{2|\tau|_{\mathfrak{s}}+\kappa} \tag{4.1}
\end{equation*}
$$

for any τ with negative homogeneities, and uniformly over $0<\lambda, \phi:\|\phi\|_{C^{2}} \leq 1$. Here, $\phi_{0}^{\lambda}(t, x)=\lambda^{-3} \phi\left(\lambda^{-2} t, \lambda^{-1} x\right)$.
proof. For any τ, we have the bounds

$$
\begin{aligned}
& \mathbb{E}\left|\left(\widehat{\Pi}_{0} \tau\right)\left(\phi_{0}^{\lambda}\right)\right|^{2} \lesssim \sum_{k, l} \iint \phi_{0}^{\lambda}(z) \phi_{0}^{\lambda}(\bar{z})\left(\widehat{\mathcal{W}}_{k, l}(\tau)(z), \widehat{\mathcal{W}}_{k, l}(\tau)(\bar{z})\right)_{\left(L^{2}(\mathbb{R} \times \mathbb{T})\right)^{\otimes k}} d z d \bar{z} \\
& \mathbb{E}\left|\left(\widehat{\Pi}_{0} \tau-\widehat{\Pi}_{0}^{(\epsilon)} \tau\right)\left(\phi_{0}^{\lambda}\right)\right|^{2} \\
& \lesssim \sum_{k, l} \iint \phi_{0}^{\lambda}(z) \phi_{0}^{\lambda}(\bar{z})\left(\delta \widehat{\mathcal{W}}_{k, l}^{(\epsilon)}(\tau)(z), \delta \widehat{\mathcal{W}}_{k, l}^{(\epsilon)}(\tau)(\bar{z})\right)_{\left(L^{2}(\mathbb{R} \times \mathbb{T})\right)^{\otimes k}} d z d \bar{z}
\end{aligned}
$$

Here, $\delta \widehat{\mathcal{W}}_{l, i}^{(\epsilon, k)}(\tau)=\widehat{\mathcal{W}}_{l, i}^{(k)}(\tau)-\widehat{\mathcal{W}}_{l, i}^{(\epsilon, k)}(\tau)$. We have only to bound the inner products of kernels in the right hand side. In particular, we have

$$
\left|\left(\widehat{\mathcal{W}}_{2}(\tau)(z), \widehat{\mathcal{W}}_{2}(\tau)(\bar{z})\right)_{\left(L^{2}(\mathbb{R} \times \mathbb{T})\right)^{\otimes k}}(\mathcal{Y})(z ; \bar{z})\right| \lesssim\|z-\bar{z}\|_{\mathfrak{s}}^{-2-4 \gamma} .
$$

