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‘ 1. Introduction I

e \We discuss the stochastic PDE
O¢h(t, x) = Ozh(t, ) + (Och(t, x))” + OFE(t, ) (1.1)

for (t,x) € [0,00) x T with v > 0. £ is a space-time white noise.
00 = —(—8%)% IS the fractional derivative.

e Since the solution of SPDE is very singular, we replace ¢ by & = £ % pe. Here p € OSO(RQ)
and pe(t, z) = e Sple %t e ).

e When ~ = 0, this equation is called KPZ equation. M. Hairer showed that the renormalized
equation

Oyhe(t, ) = O2he(t, z) + (Ophe(t, 2))? — Ce + Ec(t, x),

1, has a unique limit h. (2013)
e \We can expect that the similar results hold if v < % by “local subcriticality”.

for some constant C; ~

e However, we can show the similar result only for 0 < v < % by this theory.

Theorem 1.1. Let p = p(t,z) be a function on R? such that smooth compactly supported,
symmetric in z, nonnegative, and [p. p(t, z)dtdr = 1. Let 0 < v < 3 Land 0 < a < — ~. Then
there exists a sequence of constants C¢ such that

1. For some constant C' (depending on ~ and p), C. < Ce= =27
2. For every initial condition hy € C%(T), the sequence of solutions h. to the equation

Arhe(t, z) = 2he(t, z) + (Ophe(t, 2))? — Ce + 0L, x)

n(t,x) €0,T) x T up to some random time 7', converges to a unique stochastic process
h, which is independent of the choice of p.

‘ 2. Regularity structures |

e \We write (1.1) in the mild form:
he = G * {1t>0((axh€)2 + a%fe)} + Ghy,

e (G is the heat kernel on [0, o) x R, and Ghy is the smooth function solving the heat equation
with the initial condition hg € C"(T).

e \We reformulate (1.1) as the equation of a function H valued in the abstract liner space:

H =G1l,-9((0H)? + =) + Ghy. (2.1)

2.1 Regularity structure for (1.1)

e \We prepare dummy variables = (noise term), 1 (constant), X; (time variable), X- (spatial
variable), and operators Z,Z’ (convolution with G or G’ := 0,.G), 9 (spatial derivative).

e \We denote by ¢/ and V the minimal set of variables such that

=1, X, X9 €V,
(X% =0, oTr =T'r, A(XFox) =k xFoxh1,
TreV=Ireld, ni,melU =0mr0n eV

¢ \We define the homogeneity of each variable by:

Els=a, 1|5 =0, |X1|s =2, |Xo|s =1
77|s = |T|s + |Tls, [Z7]s = |7|s + 2, |Z'7|s = |7]s + L.

e o is a fixed number smaller than and sufficiently close to —3/2 — v

e We define a regularity structure (7', G) for (1.1) as the pair of a linear space 7" spanned by
U UV and a group GG of linear operators on 7.

2.2 Solution map
e \We say the pair of

I R*x T3 (z,7) = ILreD(R?), I'R*XR*XT 3 (2,27) > T,:1€CG

(with some properties) a model (I1, I') for the regularity structure (T, G).
e We say that a model (11, I') is “admissible”, if and only if (IL.X*)(z) = 0 and

Z—zl
> ELoaw ),

|l|s<|T]s+2

zZ—Z l
(ILZ'7)(2) = G' x (I1,7)(2) — Z ( T ) 0'G’ % (IL.7)(2).

l|s<|7]s+1

(I, Z7)(2) = G * (Il,7)(Z) —

¢ \We denote by D?g”(]—") (F = U, V) the space of all functions f : R? — T of the form

— @ fr(t,z)T (t #0),

TeF

where each f; satisfies “0 — |r|s-HOlder” property with the coefficient proportionally to ]t]%

Theorem 2.1. If 6 > 0, n < 0, and aAn > —2, then there exists a unique continuous linear map
R D%"(V) — CY"M such that Rf is “near” to 11, f(z) in C&"", at each = € R2. Furthermore,

the map M x D%"(V) > (Z, f) = RZf e 8 is locally uniformly continuous.

Theorem 2.2. Let 0 < v < % and choose o smaller than but sufficiently close to —3/2 — ~
Let § > —a, and 0 < n < a + 2. Then, for every periodic initial condition hy € C"(R),
every admissible model Z, there exists a time T" = T'(hg, Z) > 0 and a unique solution
H = S(hy, 2) € D?D’”(Z/l) to (2.1) on [0, T]. Moreover, the solution map (hg, Z) — H is jointly
uniformly continuous in a neighborhood around (hg, 2).

‘ 3. Renormalization |

e We define the natural model Z(¢) =

0r€(%).
3.1 Renormalization map

(11(9), T(€)) by postulating admissibility and 117=(z) =

¢ \We use the shorthand notations to write the elements of F =/ U V.

e Each circle represents =.

e For any trees 7, we draw Z'(7) by adding a downward straight line starting at the root of 7.
e For any trees 7 and 7, we draw 77 by jointing the trees at their roots.

¢ In the following, the elements of negative homogeneities play important roles.

0<y<1/10: 2,82, %,7,¢Y, %, Y, &1
1/10 <5 < 1/6: 2,32, 5, 1,8, G, Y &0, Gy, G 1
1/6 <y <3/14: 2,32, %, XY, 0.0, WG VL o

(CASA TR AT AR AN

314 <y < 1/4: 2,82, 6,8, 7,0, LG YL .
RO AT A A SR AN
W, %, Yoy, W, Yy, %,

AN

e For any given constants {(J } we define the renormalized model Z(¢) = (I1(¢)

17 =17 — o) (r =32, ),
when 0 < v < 1/6, or by

, f@) by

— 11l (otherwise)

AN

i = 197 — 9 (r =32, % %, ¥, Yy 00, L )

AN

09 — 1'% (otherwise)

when 1/6 <~y < 1/4.
Theorem 3.1. Let S : (hg,Z) — H be a solution map defined in Theorem 2.2. Then
WM = RS(hy, Z'€)M) solves the equation

ohM = 2 + (9,hM)? — 19 4 B¢,

Here, cl¥)is a constant depending on {(1(6)}

Theorem 3.2. Let {C } be sequences of constants defined later. Then, there exists an ad-
missible random model Z iIndependent of the choice of p, such that Z< €) converge to Z in
probability, as ¢ — 0.

‘ 4. Proof of Theorem 3.2 |

e We denote by I : (L3R x T))®* — L2(Q, P) the multiple Wiener-Itd integral.
e For any 7, we have the expansion

=3 0 (> v ne),
k [

for some integers m;. ; and kernels W,geg(f)(z).
e \We set the constant

e The limit model I1(¢) has the form
(To7)(2 Z Iy (Z my sz (7 )

Theorem 3.2 is a consequence of the following theorem.
Theorem 4.1. Let 0 < v < 1/4. Then there exist some x, 6 > 0 such that

E|([yr)(g0)] < ATt E|([yr — T7)(0))] < eXa2imlets (4.1)

for any 7 with negative homogeneities, and uniformly over 0 < A, ¢ : ||¢||c2 < 1. Here,
& (t, z) = AN, A ).
proof. For any 7, we have the bounds

E|(Tor) (@)1 < Z [ [ AR D)) a2 2oy esdad

E| (g7 —II )!2
N Z// ¢0 ¢O 5W/§3( )(2 )>5W/§;( )(Z ))(L2<RXT>)®kd2’dZ

Here, 5W< )( ) = )//\7;?(7) — W}i k)( ). We have only to bound the inner products of kernels

In the nght hand side. In partlcular we have

[(Wa(r)(2), Wal7)(2)) sy RPNz 2 S 2 — 2152,

uniformly over z,z. So v must satisfy —2 — 4y > -3 < v < 1/4. ]



