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1 Disease spreading models

1.1 The SIS model (Susceptible-Infected-Susceptible
model)

• single species of N individuals, N ∈N
• entire population splits into two groups of individuals (susceptible (S)

and infected (I )) (compartmental model)

• groups indicate the total number of susceptible (S) and infected (I )
individuals

• individuals travel from one compartment to another

• individuals in S are able to get infected by contagious individuals

• r ∈N denotes number of contacts per unit time

• β ∈ [0,1] is the probability of disease transmission per contact

• α ∈ [0,1] is the recovery rate per capita
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Figure 1: N = 1000, S0 = 999, I0 = 1, r = 6, β= 0.03, α= 0.8

• no birth, no death, no migration of individuals

For an overview of compartmental models see e.g. [CH11].

1.2 Modeling via Interacting Particle Systems

• interacting particles of two types (susceptible (+) and infected (-)) in
R2-space

• particles can move in space (mobility)

• particles interact via an interaction potential

• particles can change their types according to certain rates

• new particles can appear (birth process)

• particles can disappear (death process)
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2 The mathematical background

The general mathematical background is provided in [FKO13].

2.1 The setting

• one-component configuration space Γ

Γ := ΓR2 := {
γ⊂R2

∣∣#(γ∩K ) <∞ for all K ⊂R2 compact
}
,

where #S denotes the cardinality of a set S

• one can identify each γ ∈ Γ with a positive, integer-valued Radon mea-
sure

• let B(Γ) denote the Borel-σ-algeba corresponding to the vague topol-
ogy on Γ

• we equip the measurable space
(
Γ,B(Γ)

)
with a probability measure

µ and obtain the probability space
(
Γ,B(Γ),µ

)
• one-component configuration space of finite configurations

Γ0 :=
∞⊔

n=0
Γ(n), where Γ(n) := {

γ ∈ Γ ∣∣#γ= n
}

for n ∈N and Γ(0) := {∅}

(
Γ0,B(Γ0),λ

)
denotes the Lebesgue–Poisson space

• two-component configuration space
Given two copies of the space Γ, denoted by Γ+ and Γ−, let

Γ2 := {
(γ+,γ−) ∈ Γ+×Γ− ∣∣γ+∩γ−=∅

}
.

Similarly, given two copies of the space Γ0, denoted by Γ+
0 and Γ−

0 , let

Γ2
0 := {

(η+,η−) ∈ Γ+
0 ×Γ−

0

∣∣η+∩η−=∅
}
.

Using the product structure we obtain(
Γ2,B(Γ2),µ2) and

(
Γ2

0,B(Γ2
0),λ⊗2)

as state spaces, where µ2 is a probability measure on
(
Γ2,B(Γ2)

)
.

2.2 The strategy

Evolution of observables
• heuristically, the stochastic evolution of an infinite two-component par-

ticle system is described by a Markov process on Γ2

• determined by its Markov generator L defined on a proper space of
functions on Γ2

• it provides a solution to the Kolmogorov backward equation

d

d t
Ft = LFt , Ft

∣∣
t=0 = F0. (EvO)

Evolution of states
• stochastic evolution in terms of mean values

• for functions F : Γ2 → R integrable with respect to a probability mea-
sure µ2 on B

(
Γ2

)
, i.e., a state of the system, the expected values are

given by

〈F,µ〉 :=
∫
Γ2

F (γ+,γ−)dµ2(γ+,γ−)

• time evolution problem on states

d

d t
〈F,µ2

t 〉 = 〈LF,µ2
t 〉, µ2

t

∣∣
t=0 =µ2

0 (EvS)

Evolution of correlation functionals
• for F being of type F = KG , where G : Γ2

0 →R is bounded, measurable
and of bounded support and K denotes the K-transform, (EvS) may be
rewritten in terms of correlation functionals kt := kµ2

t
corresponding to

the measures µ2
t provided, these functionals exist

• time evolution problem on correlation functionals
in weak formulation:

d

d t
〈〈G ,kt〉〉 = 〈〈L̂G ,kt〉〉, kt

∣∣
t=0 = k0, (wEvC)

where L̂ := K −1LK and 〈〈·, ·〉〉 is the usual pairing

〈〈G ,k〉〉 :=
∫
Γ2

0

G(η+,η−)k(η+,η−)dλ⊗2(η+,η−) (P)

in strong formulation:

d

d t
kt = L̂∗kt , kt

∣∣
t=0 = k0 (sEvC)

for L̂∗ being the dual operator of L̂ in the sense defined in (P)

3 Application

3.1 Modeling infection and recovery: the flip generator

Infection of particles
• Markov pre-generator

(L inf

flipF )(γ+,γ−) := ∑
x∈γ+

c+−(x,γ−)

×
[

F
(
γ+ \ {x},γ−∪ {x}

)−F
(
γ+,γ−)]

, F ∈D,

where c+−(x,γ−) ≥ 0 is the rate at which a +-particle at x ∈ γ+ flips to
a −-particle in dependence of the surrounding −-particles and D is a
suitable domain of functions F : Γ2 →R.

• specification of the flip rate for L inf
flip

c+−(x,γ−) := ∑
y∈γ−

φ
(|x − y |), x ∈R2, γ− ∈ Γ−

Figure 2: rate of infection φ for a single particle

• The corresponding operator L̂ inf∗
flip reads

(
L̂ inf∗

flip k
)
(η+,η−) = ∑

{x,y}⊂η−
φ

(|x − y |)k(η+∪ {x},η− \ {x})

− ∑
x∈η+

∑
y∈η−

φ
(|x − y |)k(η+,η−)

+ ∑
y∈η−

∫
R2
φ

(|x − y |)k
(
η+∪ {y},η− \ {y}∪ {x}

)
d x

− ∑
x∈η+

∫
R2
φ

(|x − y |)k
(
η+,η−∪ {y}

)
d y

acting on correlation functionals

• one-particle-correlation functionals

R2 3 x 7→ k+(x) := k (1,0)(x) = k
(
{x},∅

)
and R2 3 x 7→ k−(x) := k (0,1)(x) := k

(
∅, {x}

)
• time evolution on one-particle-correlation functionals, x ∈R2 and t ≥ 0,

conform to (sEvC),

d

d t
k+

t (x) =−
∫
R2
φ

(|x − y |)kt

(
{x}, {y}

)
d y

d

d t
k−

t (x) =
∫
R2
φ

(|x − y |)kt

(
{x}, {y}

)
d y (sEvC1)

• note that the two-particles-correlation functionals

k (1,1)
t (x, y) :=

{
kt (η) if η := (

{x}, {y}
) ∈ Γ2

0

0 else
, t ≥ 0,

are involved

Vlasov Scaling

• in order to tackle equations (sEvC1) we apply a mean field-type scal-
ing, the so called Vlasov scaling, to obtain

d

d t
k+

t (x) =−(
φ∗k−

t

)
(x)k+

t (x)

d

d t
k−

t (x) = (
φ∗k−

t

)
(x)k+

t (x), (ssEvC1)

a closed system of equations with x ∈R2

Recovery of particles

• Markov pre-generator

(L rec

flipF )(γ+,γ−) :=α
∑

y∈γ−

[
F

(
γ+∪ {y},γ− \ {y}

)−F
(
γ+,γ−)]

, F ∈D,

where α ∈ [0,1] is the constant rate at which a −-particle at x ∈ γ−

flips to a +-particle and D is a suitable domain of functions F : Γ2 →R

Resulting equations for infection and recovery of particles

• applying the above procedure yields

d

d t
k+

t (x) =−(
φ∗k−

t

)
(x)k+

t (x)+αk−
t (x)

d

d t
k−

t (x) = (
φ∗k−

t

)
(x)k+

t (x)−αk−
t (x), x ∈R2 (ssEvC2)

4 Outlook

Mobility of particles

• Markov pre-generator for hopping +-particles

(LmovF )(γ+,γ−) := ∑
x∈γ+

∫
R2

c+(
x, x ′,γ+ \ {x},γ−)

×
[

F
(
γ+ \ {x}∪ {x ′},γ−)−F

(
γ+,γ−)]

d x ′

+ ∑
y∈γ−

∫
R2

c−(
y, y ′,γ+,γ− \ {y}

)
×

[
F

(
γ+,γ− \ {y}∪ {y ′}

)−F
(
γ+,γ−)]

d y ′, F ∈D,

where c+(x, x ′,γ+ \ {x},γ−) ≥ 0 indicates the rate at which a +-particle
located at x ∈ γ+ hops to a free site x ′ ∈ R2. D is a suitable domain of
functions F : Γ2 →R, see [FKO13].
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