Infinite particle systems of long range jumps with long range interactions

Syota Esaki (Tokyo Institute of Technology, Japan) e-mail: esaki.s.ab@m.titech.ac.jp

Construction of unlabeled infinite particle systems with interaction

- Brownian motion : Osada(1996), Osada(2013), ...
- Jump type: Kondratiev-Lytvynov-Röckner (2007), E. Lytvynov and N. Ohlerich (2008), . . .

Our problem

Construct unlabeled infinite particle systems of Lévy processes with a "long range" interaction.

Examples of a "long range" interaction

- Dyson interaction
- Ginibre interaction
- Airy interaction

 \uparrow For each operator K, $\operatorname{Spec}(K)$ contains 1.

Notation

- ullet S : the state space (e.g. \mathbb{R}^d)
- $\mathfrak{M} = \{\xi; \; \xi \; \text{is a non negative integer valued Radon measure.} \}$: configuration space
- ullet $oldsymbol{\mathfrak{D}}_{\circ} = \{f: \mathfrak{M}
 ightarrow \mathbb{R}; f ext{ is local and smooth} \}$
- $ullet U_r=\{x\in S; |x|\leq r\}$, $\mathfrak{M}^i_r=\{\xi\in \mathfrak{M}; \xi(U_r)=i\}$,
- $ullet \pi_r(\xi) = \xi(\cdot \cap U_r)$, $\pi_r^c(\xi) = \xi(\cdot \cap U_r^c)$.
- ullet μ : a prob. meas. on ${\mathfrak M}$

Our bilinear form $(\mathfrak{E}, \mathfrak{D}_{\infty})$

For $f,g\in\mathfrak{D}_{\circ}$ we set $\mathbb{D}[f,g]:\mathfrak{M} o\mathbb{R}$ by the following.

$$\mathbb{D}[f,g](\xi) = rac{1}{2} \sum_i \int_S (f(\xi^{s_i,y_i}) - f(\xi)) (g(\xi^{s_i,y_i}) - g(\xi))
u(\xi,s_i;y_i) dy_i,$$

where $s_i\in S$, $\pmb{\xi}=\sum_i \delta_{s_i}$, $\pmb{\xi}^{s_i,y_i}=\pmb{\xi}+\delta_{y_i}-\delta_{s_i}$, $\pmb{\nu}(\pmb{\xi},s_j;\pmb{y})$ is a density of a (finite or infinite) measure s.t.

$$\int_S \left(1 \wedge |y-s_j|^2
ight)
u(\xi,s_j;y) dy < \infty, \quad ext{for all } oldsymbol{\xi}, j.$$
 $oldsymbol{\mathfrak{E}}(f,g) = \int_{\mathfrak{M}} \mathbb{D}[f,g](\xi) d\mu, \quad f,g \in \mathfrak{D}_{\infty},$ $oldsymbol{\mathfrak{D}}_{\infty} = \{f \in \mathfrak{D}_\circ \cap L^2(\mathfrak{M},\mu); \mathfrak{E}(f,f) < \infty\}.$

assumptions ${f A}$

- (A.0) There exist a k-density function σ_r^k of μ on U_r and a k-correlation function ρ^k for all $k\in\mathbb{N}$.
- (A.1) $(\mathfrak{E},\mathfrak{D}_{\infty})$ is closable on $L^2(\mathfrak{M},\mu)$.
- (A.2) $\sigma_r^k \in L^p(U_r^k, dx)$ for all $k, r \in \mathbb{N}$ with some
- 1
- (A.3) $\sum_{i=1}^{\infty} i\mu(\mathfrak{M}_r^i) < \infty$ for all $r \in \mathbb{N}$.

assumptions ${f B}$

- (B.0) There exists a function p(r) on $(0,\infty)$ such that $u(\xi,x;y)\leq C_1p(|x-y|)$ for μ -a.s. $\xi\in\mathfrak{M}$ and dx-a.e. $x,y\in S$.
- (B.1) $ho^1(x) = O\left(|x|^\kappa\right)$ as $|x| o \infty$ for some $\kappa \geq 0$.
- (B.2) $p(r) = O(r^{-(d+lpha)})$ as $r o \infty$ for some $lpha > \kappa$.
- (B.3) $p(r) = O(r^{-(d+\gamma)})$ as r o +0 for some $0 < \gamma < 2$.
- (B.4) $\frac{\operatorname{Var}[\xi(U_r)]}{\left(\mathbb{E}[\xi(U_r)]\right)^2} = O\left(r^{-\delta}\right)$ as $r \to \infty$ for some $\delta > 0$.

Remark

- (i) The LHS of (B.4) is equal to
 - $rac{\int_{U_r}
 ho^1(x) dx \int_{U_r^2} \left(
 ho^1(x_1)
 ho^1(x_2)
 ho^2(x_1, x_2)
 ight) dx_1 dx_2}{\left(\int_{U_r}
 ho^1(x) dx
 ight)^2}.$
- \rightarrow (B.4) holds if μ is the Poisson random point field with respect to Lebesgue measure or μ is a determinantal point field.
- (ii) Condition (B.1) and (B.2) imply that
- $\int_{S} \rho^{1}(x)p(x,A)dx < \infty,$

for all compact subset A. The property (1) is necessary to construct the infinite particle systems of independent jump type processes. Hence Condition (B.1) and (B.2) are reasonable.

Theorem 1 (E.)

Assume (A.0)–(A.3) and (B.0)–(B.4). Let $(\mathfrak{E},\mathfrak{D})$ be the closure of $((\mathfrak{E},\mathfrak{D}_{\infty}),L^2(\mathfrak{M},\mu))$. Then $(\mathfrak{E},\mathfrak{D})$ is a quasi-regular Dirichlet form on $L^2(\mathfrak{M},\mu)$. Hence there exists a special standard process $\{\mathbb{P}_{\xi}\}_{\xi\in\mathfrak{M}}$ generated by $((\mathfrak{E},\mathfrak{D}),L^2(\mathfrak{M},\mu))$.

For a random point field μ we set

$$\mu^m_{r,\xi}(\cdot) = \mu(\pi_r(\eta) \in \cdot | \eta(U_r) = m, \pi^c_r(\eta) = \pi^c_r(\xi))$$

Let $\Psi:S o\mathbb{R}\cup\{\infty\}$ (interaction)

$$\mathcal{H}_r = \sum_{s_i, s_j \in S_r, i < j} \Psi(s_i - s_j)$$

Definition

 μ is a Ψ -quasi-Gibbs measure if there exists $c^m_{r,\mathcal{E}}$ s.t.

$$c_{r,\xi}^{m-1}e^{-\mathcal{H}_r}d\Lambda_r^m \leq \mu_{r,\xi}^m \leq c_{r,\xi}^m e^{-\mathcal{H}_r}d\Lambda_r^m.$$

Here $\Lambda_r^m = \Lambda_r(\cdot|m{\xi}(U_r) = m)$ and Λ_r is the Poisson random point field with $1_{U_r}dx$.

Remark 2

The above definition is a simplified version.

Proposition 3

 μ : quasi-Gibbs meas. + additional assumption for $\Psi \Rightarrow (\mathsf{A}.1)$

Example of our results

 μ : Sine random point field, Ginibre random point field \to quasi-Gibbs measures(\Rightarrow (A.0)–(A.3) holds) and $ho^1\equiv {
m const.}$ Then the assumption (B.1) is satisfied for $\kappa=0$. Hence we can take

 $0<lpha,\gamma<2$. Therefore we can construct interacting symmetric lpha-stable processes for any 0<lpha<2 .

 $oldsymbol{\mu}$: Airy random point field

 \rightarrow quasi-Gibbs measures(\Rightarrow (A.0)–(A.3) holds) and

$$ho^1(x) = O(|x|^{1/2})$$
 as $x o -\infty$.

Then the assumption (B.1) is satisfied for $\kappa=\frac{1}{2}$. Hence we can take $\frac{1}{2}<\alpha<2$, $0<\gamma<2$. Therefore we can construct interacting symmetric α -stable processes for any $\frac{1}{2}<\alpha<2$.

Future problems

- labeled dynamics and SDE representations
- scaling limits
- some relations to Determinantal processes

The L^2 -generators Ω

Let

$$c(\xi,x;y)=
u(\xi,x;y)+
u(\xi^{xy},y;x)rac{d\mu^y}{d\mu^x}(\xi\setminus x)rac{
ho^1(y)}{
ho^1(x)}, \; ext{if } \xi(\{x\})\geq 1,$$

where μ_x is the reduced Palm measure. Then

$$\Omega f(\xi) = rac{1}{2} \sum_{i=1}^{\infty} \int_{S} (f(\xi^{s_i,y_i}) - f(\xi)) c(\xi,s_i,y_i) dy_i,$$

for $oldsymbol{\xi} = \sum_{i=1}^\infty \delta_{s_i}$.

The SDE representations

 $\{X_t^i\}_{i\in\mathbb{N}}$: the labeled dynamics. Then

$$egin{aligned} X_j(t) &= X_j(0) \ &+ \int_0^t \int_S^t \int_0^{rac{1}{2}c(\Xi(s-),X_j(s-),X_j(s-)+u)} u N(ds du dr), \end{aligned}$$

for all $j\in\mathbb{N}$, where $\Xi(t)=\sum_i\delta_{X_i(t)}$, N(dsdudr) is the Poisson point process on $[0,\infty) imes\mathbb{R}^d imes\mathbb{R}$ with intensity dsdudr.

Ginibre interaction

$$c(\xi, x; y) = 1 + \lim_{r o \infty} \prod_{|s_i| < r} rac{|y - s_i|^2}{|x - s_i|^2}.$$