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Constrution of unlabeled in�nite partile systems with interation

Brownian motion : Osada(1996), Osada(2013), : : :

Jump type : Kondratiev-Lytvynov-Rökner(2007), E.Lytvynov and

N.Ohlerih(2008), : : :

Our problem

Construt unlabeled in�nite partile systems of Lévy proesses with a

"long range" interation.

Examples of a "long range" interation

Dyson interation

Ginibre interation

Airy interation

" For eah operator K, Spe(K) ontains 1.
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assumptions A
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assumptions B

(B.0) There exists a funtion p(r) on (0;1) suh that
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Remark 1
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! (B.4) holds if � is the Poisson random point �eld with respet to

Lebesgue measure or � is a determinantal point �eld.

(ii) Condition (B.1) and (B.2) imply that
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for all ompat subset A. The property (1) is neessary to onstrut

the in�nite partile systems of independent jump type proesses. Hene

Condition (B.1) and (B.2) are reasonable.

Theorem 1 (E.)

Assume (A.0)�(A.3) and (B.0)�(B.4). Let (E;D) be the losure of
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De�nition 1
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Remark 2

The above de�nition is a simpli�ed version.

Proposition 3

� : quasi-Gibbs meas. + additional assumption for 	) (A.1)

Example of our results

� : Sine random point �eld, Ginibre random point �eld

! quasi-Gibbs measures() (A.0)�(A.3) holds) and �

1

� onst:

Then the assumption (B.1) is satis�ed for � = 0. Hene we an take

0 < �;  < 2. Therefore we an onstrut interating symmetri
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� : Airy random point �eld
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symmetri �-stable proesses for any
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Future problems

labeled dynamis and SDE representations

saling limits

some relations to Determinantal proesses
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The SDE representations
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Ginibre interation
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