Convergence Implications via Dual Flow MethodTakafumi Amaba^{b1}, Dai Taguchi² and Gô Yûki³ ^{1,2,3}Ritsumeikan University

Main Results.

Stochastic Flow on $[0, +\infty)$ with an Absorbing Barrier. 1.1Let $\sigma, b: [0, +\infty) \to \mathbb{R}$ be Borel-measurable functions such that (i) $\sigma(x) > 0$ for $x \in (0, +\infty)$, (ii) $\sigma|_{(0, +\infty)}$, $b|_{(0, +\infty)} \in C^2(0, +\infty)$ and σ' , b' are bounded on $[1, +\infty)$, (iii) It holds that $\int_{0+}^1 \frac{1}{\sigma(x)^2} \exp\left\{-\int_x^1 \frac{2b(y)}{\sigma(y)^2} dy\right\} dx + \int_{0+}^1 \exp\left\{\int_x^1 \frac{2b(y)}{\sigma(y)^2} dy\right\} dx < +\infty$,

(iv) The condition (1) still holds if replacing b by \hat{b} , where $\hat{b}(x) := \sigma(x)\sigma'(x) - b(x)$.

For each $s \in \mathbb{R}$, we consider the following stochastic differential time $\tau^{s,x} > s$ such that $\lim_{t \to \tau^{s,x}} X_t = 0$ a.s. Now we define equation $\int X_t$ if $t \in [s, \tau^{s,x})$,

$$dX_t = \sigma(X_t) dw^{(s)}(t) + b(X_t) dt, \quad t \ge s,$$

$$X_s = x \in (0, +\infty),$$
(1.1)

where $w = (w(t))_{t \in \mathbb{R}}$ is a one-dimensional Wiener process and $w^{(s)}(t) := w(t) - w(s).$

Let $x \in (0, +\infty)$ and $s \in \mathbb{R}$. Under the condition (i) and (ii), the stochastic differential equation (1.1) with the driving process $w^{(s)}$ admits a unique strong solution $X = (X_t)_{t>s}$ with $X_s = x$, as long as X moves in $(0, +\infty)$. Then by the condition (iii), the boundary point 0 is a regular boundary for the corresponding generator $L = (\sigma^2/2) \frac{d^2}{dr^2} + b \frac{d}{dr}$, so that there is a finite random

$$X_{s,t}(x) := \begin{cases} \Pi_t & \Pi & 0 \in [0, T] \\ 0 & \text{if } t \ge \tau^{s, x}. \end{cases}$$

Then we further set $X_{s,t}(0) := X_{s,t}(0+)$.

So we obtain a stochastic flow $\{X_{s,t}\}_{s\leq t}$ which we call the (σ, b, w) -stochastic flow with the absorbing barrier at zero. Then the stochastic flow $\{X_{s,t}^*\}_{s\leq t}$ defined by $X_{s,t}^* := X_{-t,-s}^{-1}$ (the right-continuous inverse) is called the **dual stochastic flow** and it is known that each one-point motion of $\{X_{s,t}^*\}_{s\leq t}$ solves a corresponding stochastic differential equation of Skorokhod-type (Akahori-Watanabe '02).

Euler-Maruyama Approximation. 1.2

Fix T > 0, and let $t_k := kT/n$ for $k \in \mathbb{Z}$. We write $\Delta t_k := t_k - t_{k-1}$ and $\Delta w_k := w(t_k) - w(t_{k-1})$. For integers $k \leq l$, we define $X_{k,l}(x)$ for $k \leq l$ and $x \in (0, +\infty)$, by $X_{k,k}(x) := x$ and for k < l,

To assure that each $X_{k,l}$ values in \mathcal{T} , we need the following property: for each $k \leq l$,

 $X_{k,l}: [0, +\infty) \to [0, +\infty)$ is nondecreasing a.s. (1.2)**Definition 1.2.1.** We call $\{X_{k,l}\}_{k < l}$ the **Euler-Maruyama approximation** of the (σ, b, w) -stochastic flow with the absorbing barrier at 0 if the condition (1.2) holds.

 $X_{k,l}(x) := 1_{\{X_{k,l-1}(x)>0\}}$ × max {0, $X_{k,l-1}(x) + \sigma(X_{k,l-1}(x))\Delta w_l + b(X_{k,l-1}(x))\Delta t_l$ }. For x = 0, we define $X_{k,l}(0) := X_{k,l}(0+)$.

Let $\{X_{s,t}\}_{s\leq t}$ be the (σ, b, w) -stochastic flow with the absorbing barrier at 0 and let $\{X_{k,l}^n\}_{k\leq l}$ be the Euler-Maruyama approximation of $\{X_{s,t}\}_{s < t}$ with time-step h = T/n.

Convergence Implications for Errors. 1.3

Theorem 1.3.1. Assume the conditions (i)–(iv) in the subsection 1.1. (1) Let $f: [0, +\infty) \to \mathbb{R}$ be a differentiable function with f(0) = 0 and with compact support. For x > 0, we have

$$\mathbf{E}[f(X_{0,T}^*(x))] - \mathbf{E}[f(X_{0,n}^{n*}(x))] = \int_0^{+\infty} f'(y) \{\mathbf{P}(X_{0,n}^n(y) > x) - \mathbf{P}(X_{0,T}(y) > x)\} \mathrm{d}y.$$

(2) If σ and b are smooth, then $X_{0,T}^*$ is absolutely continuous and we have for each K > 0,

$$\mathbf{E}\Big[\sup_{0\leq x\leq K} |X_{0,T}^*(x) - X_{0,n}^{n*}(x)|\Big] \leq \mathbf{E}\Big[\Big\{1 + \sup_{0\leq x\leq K} |(X_{-T,0}^*)'(x)|\Big\} \sup_{0\leq x\leq m} |X_{0,T}(x) - X_{0,n}^n(x)|\Big],$$

where $m := \min\{X^*_{-T,0}(K), X^{n*}_{-n,0}(K)\}.$

(3) If further σ is a constant and b has the bounded derivative, then for each K > 0, we have

 $\mathbf{E}\Big[\sup_{0 \le x \le K} |X_{0,T}^*(x) - X_{0,n}^{n*}(x)|\Big] \le \text{const.}\mathbf{E}\Big[\sup_{0 \le x \le m} |X_{0,T}(x) - X_{0,n}^n(x)|\Big].$

^bThe first author was supported by JSPS KAKENHI Grant Number 15K17562.