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1 Main Results.
1.1 Stochastic Flow on [0,+∞) with an Absorbing Barrier.

Let σ, b : [0,+∞) → R be Borel-measurable functions such that

(i) σ(x) > 0 for x ∈ (0,+∞), (ii) σ|(0,+∞), b|(0,+∞) ∈ C2(0,+∞) and σ′, b′ are bounded on [1,+∞),

(iii) It holds that
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(iv) The condition (1) still holds if replacing b by b̂, where b̂(x) := σ(x)σ′(x)− b(x).

For each s ∈ R, we consider the following stochastic differential

equation {
dXt = σ(Xt)dw

(s)(t) + b(Xt)dt, t ≥ s,

Xs = x ∈ (0,+∞),
(1.1)

where w = (w(t))t∈R is a one-dimensional Wiener process and

w(s)(t) := w(t)− w(s).

Let x ∈ (0,+∞) and s ∈ R. Under the condition (i) and (ii),

the stochastic differential equation (1.1) with the driving process

w(s) admits a unique strong solution X = (Xt)t≥s with Xs = x,

as long as X moves in (0,+∞). Then by the condition (iii), the

boundary point 0 is a regular boundary for the corresponding

generator L = (σ2/2) d2

dx2 + b d
dx, so that there is a finite random

time τ s,x > s such that limt→τ s,x Xt = 0 a.s. Now we define

Xs,t(x) :=

{
Xt if t ∈ [s, τ s,x),

0 if t ≥ τ s,x.

Then we further set Xs,t(0) := Xs,t(0+).

So we obtain a stochastic flow {Xs,t}s≤t which we call the

(σ, b, w)-stochastic flow with the absorbing barrier

at zero. Then the stochastic flow {X∗
s,t}s≤t defined by

X∗
s,t := X−1

−t,−s (the right-continuous inverse) is called the dual

stochastic flow and it is known that each one-point motion of

{X∗
s,t}s≤t solves a corresponding stochastic differential equation

of Skorokhod-type (Akahori-Watanabe ’02).

1.2 Euler-Maruyama Approximation.

Fix T > 0, and let tk := kT/n for k ∈ Z. We write

∆tk := tk−tk−1 and ∆wk := w(tk)−w(tk−1). For integers k ≤ l,

we define Xk,l(x) for k ≤ l and x ∈ (0,+∞), by Xk,k(x) := x

and for k < l,

Xk,l(x) := 1{Xk,l−1(x)>0}
×max

{
0, Xk,l−1(x) + σ(Xk,l−1(x))∆wl + b(Xk,l−1(x))∆tl

}
.

For x = 0, we define Xk,l(0) := Xk,l(0+).

To assure that each Xk,l values in T , we need the following

property: for each k ≤ l,

Xk,l : [0,+∞) → [0,+∞) is nondecreasing a.s.. (1.2)

Definition 1.2.1.We call {Xk,l}k≤l the Euler-Maruyama

approximation of the (σ, b, w)-stochastic flow with the ab-

sorbing barrier at 0 if the condition (1.2) holds.

Let {Xs,t}s≤t be the (σ, b, w)-stochastic flow with the absorbing barrier at 0 and let {Xn
k,l}k≤l be the Euler-Maruyama approxi-

mation of {Xs,t}s≤t with time-step h = T/n.

1.3 Convergence Implications for Errors.

Theorem 1.3.1.Assume the conditions (i)–(iv) in the subsection 1.1. (1) Let f : [0,+∞) → R be a differentiable function

with f (0) = 0 and with compact support. For x > 0, we have

E[f (X∗
0,T (x))]− E[f (Xn∗

0,n(x))] =
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0

f ′(y){P(Xn
0,n(y) > x)−P(X0,T (y) > x)}dy.

(2) If σ and b are smooth, then X∗
0,T is absolutely continuous and we have for each K > 0,
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where m := min{X∗
−T,0(K), Xn∗

−n,0(K)}.
(3) If further σ is a constant and b has the bounded derivative, then for each K > 0, we have
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