Maximum and minimum of local times for two-dimensional random walk

Aim and Setting
In this poster, I will describe the leading order of max and min of local times for the simple random walk (SRW) on 2 D torus at time const \times (cover time).

- 2 D discrete torus: $\mathbb{Z}_{N}^{2}:=(\mathbb{Z} / N \mathbb{Z})^{2}$.
- $X=\left(X_{t}\right)_{t>0}$: continuous-time SRW on \mathbb{Z}_{N}^{2}
(with exponential holding times of parameter 1)
- Local time: $L_{t}^{N}(x):=\int_{0}^{t} 1_{\left\{X_{s}=x\right\}} d s, t \geq 0$.
- Inverse local time: $\tau(t):=\inf \left\{s \geq 0: L_{s}^{N}(o)>t\right\}, t \geq 0 \quad$ (o is the origin).
- Focus on time $\tau\left(t_{\theta}\right), t_{\theta}:=\theta \cdot \frac{4}{\pi}(\log N)^{2}$

Rem. Cover time estimate by Dembo-Peres-Rosen-Zeitouni(2004) implies $\tau\left(t_{\theta}\right) \approx \theta \cdot \inf \left\{t: \min _{x} L_{t}^{N}(x)>0\right\}$.

Local time and GFF
I want to compare max of local times with that of 2D Gaussian free field (GFF). $\left(h_{x}^{N}\right)_{x \in \mathbb{Z}_{N}^{2}}:$ GFF on \mathbb{Z}_{N}^{2}.
i.e. centered Gaussian process with $\mathbb{E}\left(\boldsymbol{h}_{\boldsymbol{x}}^{N} \boldsymbol{h}_{\boldsymbol{y}}^{N}\right)=\boldsymbol{E}_{x}\left[\boldsymbol{L}_{\boldsymbol{H}_{o}}^{N}(y)\right]$,
where H_{o} is the hitting time of the origin.
Isomorphism theorem by Eisenbaum-Kaspi-Marcus-Rosen-Shi (2000) For $\forall t \geq 0$,
$\left\{L_{\tau(t)}^{N}(x)+\frac{1}{2}\left(h_{x}^{N}\right)^{2}: x \in \mathbb{Z}_{N}^{2}\right\}$ under $P_{o} \times \mathbb{P} \stackrel{\text { law }}{=}\left\{\frac{1}{2}\left(h_{x}^{N}+\sqrt{2 t}\right)^{2}: x \in \mathbb{Z}_{N}^{2}\right\}$.

In particular, for fixed N, as $t \rightarrow \infty$,

$$
\left(\frac{L_{\tau(t)}^{N}(x)-t}{\sqrt{2 t}}\right)_{x \in \mathbb{Z}_{N}^{2}} \xrightarrow{\text { law }}\left(h_{x}^{N}\right)_{x \in \mathbb{Z}_{N}^{2}}
$$

Max of 2D GFF $\quad V_{N}:=[1, N]^{2} \cap \mathbb{Z}^{2}$.
$\tilde{h}^{N}:$ GFF on V_{N} with zero boundary conditions.
Leading order: Bolthausen-Deuschel-Giacomin (2001)
For $\forall \varepsilon>\mathbf{0}$,

$$
\max _{x \in V_{N}} \tilde{h}_{x}^{N}=(1 \pm \varepsilon) 2 \sqrt{\frac{2}{\pi}} \log N, \text { w.h.p. }
$$

(i.e. the probability $\rightarrow 1$ as $N \rightarrow \infty$.)

Main result (A. 2015)
(i) For $\forall \varepsilon>0$ and $\theta>0$, w.h.p.,

$$
\frac{\max _{x \in \mathbb{Z}_{N}^{2}} L_{\tau\left(t_{\theta}\right)}^{N}(x)-t_{\theta}}{\sqrt{2 t_{\theta}}}=\left(1+\frac{1}{2 \sqrt{\theta}} \pm \varepsilon\right) 2 \sqrt{\frac{2}{\pi}} \log N
$$

(ii) For all $\varepsilon>0$ and $\theta>1$, w.h.p.,

$$
\frac{\min _{x \in \mathbb{Z}_{N}^{2}} L_{\tau\left(t_{\theta}\right)}^{N}(x)-t_{\theta}}{\sqrt{2 t_{\theta}}}=-\left(1-\frac{1}{2 \sqrt{\theta}} \pm \varepsilon\right) 2 \sqrt{\frac{2}{\pi}} \log N
$$

Rem. Recall $\tau\left(t_{\theta}\right) \approx \theta \cdot($ cover time $)$. Thus, for $\forall \theta \in(0,1), \min _{x \in \mathbb{Z}_{N}^{2}} L_{\tau\left(t_{\theta}\right)}^{N}(x)=0$.

Comparison with 2D GFF
$\bullet \frac{\max _{x \in \mathbb{Z}_{N}^{2}} L_{\tau\left(t_{\theta}\right)}^{N}(x)-t_{\theta}}{\sqrt{2 t_{\theta}}}=\left(1+\frac{1}{2 \sqrt{\theta}} \pm \varepsilon\right) 2 \sqrt{\frac{2}{\pi}} \log N$, w.h.p.

- $\max _{x \in V_{N}} \tilde{h}_{x}^{N}=(1 \pm \varepsilon) 2 \sqrt{\frac{2}{\pi}} \log N$, w.h.p.

By (\star), one may expect that the maximum of local times is close to that of 2 D GFF, but there is a slight difference between the two maximum by the factor $\frac{1}{2 \sqrt{\theta}}$.

Outline of proof
Only look at proof of maximum of local times.
Upper bound follows from the Bolthausen-Deuschel-Giacomin result

Yoshihiro Abe
Kyoto University
and the isomorphism theorem.
Lower bound: Use method due to Dembo-Peres-Rosen-Zeitouni(2006):
Reducing the task to estimates of \# crossings of annuli as follows:
$r_{\ell}:=e^{L-\ell}$, where $e^{L} \approx \frac{N}{\log N}$
$\mathcal{N}_{\ell}^{x}:=\#$ crossings from $\partial B\left(x, r_{\ell+1}\right)$ to $\partial B\left(x, r_{\ell}\right)$ up to time $\tau\left(t_{\theta}\right)$
Observation 1: By the law of large numbers,

$$
L_{\tau\left(t_{\theta}\right)}^{N}(x) \approx \sum_{j=1}^{\mathcal{N}_{L-1}^{x}} L_{x}^{(j)} \approx \frac{2}{\pi} \mathcal{N}_{L-1}^{x}
$$

where $L_{x}^{(j)}$ is the local time at x of j th excursion from $\partial B\left(x, r_{L}\right)$ to $\partial B\left(x, r_{L-1}\right)$. Thus, $\frac{L_{\tau\left(t_{\theta}\right)}^{N}(x)-t_{\theta}}{\sqrt{2 t_{\theta}}} \approx\left(1+\frac{1}{2 \sqrt{\theta}}-\varepsilon\right) \cdot 2 \sqrt{\frac{2}{\pi}} \log N \Longleftrightarrow \mathcal{N}_{L-1}^{x} \approx 2(\sqrt{\theta}+1-c \varepsilon)^{2}(\log N)^{2}=: n_{L-1}$.

Observation 2: $\tau\left(t_{\theta}\right) \approx \frac{2}{\pi} N^{2} \mathcal{N}_{0}^{x}$ due to Dembo-Peres-Rosen-Zeitouni(2006).
Thus, $\mathcal{N}_{0}^{x} \approx 2 \theta(\log N)^{2}=: n_{0}$.
Observation 3: Conditioned on $\mathcal{N}_{L-1}^{x} \approx n_{L-1}$,
$\left(\sqrt{\mathcal{N}_{\ell}^{x}}\right)_{0 \leq \ell \leq L-1}$ behaves like a Brownian bridge from $\sqrt{n_{0}}$ to $\sqrt{n_{L-1}}$ by Belius-Kistler (2014+).
Thus, $\left(\sqrt{\mathcal{N}_{\ell}^{x}}\right)_{0 \leq \ell \leq L-1}$ will typically look like a linear function in ℓ.

By these observations, we reach the following definition of points with large value of local times:

Def. x is successful $\stackrel{\text { def }}{\Longleftrightarrow}$ For $1 \leq \forall \ell \leq L-1, \quad \sqrt{\mathcal{N}_{\ell}^{x}} \approx \sqrt{n_{0}}\left(1-\frac{\ell}{L-1}\right)+\sqrt{n_{L-1}} \frac{\ell}{L-1}$.
(Recall: $n_{0}=2 \theta(\log N)^{2}, n_{L-1}=2(\sqrt{\theta}+1-c \varepsilon)^{2}(\log N)^{2}$.)

Note that by the above observations, w.h.p.,

$$
\begin{equation*}
\{x: x \text { is successful }\} \subset\left\{x: \frac{L_{\tau\left(t_{\theta}\right)}^{N}(x)-t_{\theta}}{\sqrt{2 t_{\theta}}} \geq\left(1+\frac{1}{2 \sqrt{\theta}}-\varepsilon\right) \cdot 2 \sqrt{\frac{2}{\pi}} \log N\right\} \tag{*}
\end{equation*}
$$

Set $Z_{N}:=\#$ successful points. By $(*)$, we have

$$
P\left(\frac{\max _{x \in \mathbb{Z}_{N}^{2}} L_{\tau\left(t_{\theta}\right)}^{N}(x)-t_{\theta}}{\sqrt{2 t_{\theta}}} \geq\left(1+\frac{1}{2 \sqrt{\theta}}-\varepsilon\right) \cdot 2 \sqrt{\frac{2}{\pi}} \log N\right) \geq P\left(Z_{N} \geq 1\right) \geq \frac{\left\{E\left(Z_{N}\right)\right\}^{2}}{E\left(Z_{N}^{2}\right)}
$$

Want: $\liminf _{N \rightarrow \infty} \frac{\left\{E\left(Z_{N}\right)\right\}^{2}}{E\left(Z_{N}^{2}\right)}=1 . \quad(\#)$

Proof of (\#).

$$
\overbrace{\dot{x}}^{r_{\ell(x, y)-1}} \overbrace{x^{\bullet}}^{r_{\ell(x, y)-1}} r_{\ell(x, y)}^{r_{\ell(x, y)}}
$$

Fix $x, y \in \mathbb{Z}_{N}^{2}$. Let $\ell(x, y)$ be the minimum of ℓ such that $B\left(x, r_{\ell}\right)$ and $B\left(y, r_{\ell}\right)$ are disjoint. By the overlap structure of balls, we can regard that $\mathcal{N}_{i}^{x} \approx \mathcal{N}_{i}^{y}$ for $1 \leq \forall i \leq \ell(x, y)-1$, and that $\left\{\mathcal{N}_{i}^{x}: \ell(x, y) \leq i \leq L-1\right\}$ and $\left\{\mathcal{N}_{i}^{y}: \ell(x, y) \leq i \leq L-1\right\}$ are almost independent. Thus,
$P(x$ and y are successful $)$
$\leq P(x$ is successful $) \cdot P\left(\sqrt{\mathcal{N}_{i}^{y}} \approx \sqrt{n_{i}} \forall i>\ell(x, y) \mid \sqrt{\mathcal{N}_{\ell(x, y)}^{y}} \approx \sqrt{n_{\ell(x, y)}}\right)$
$\leq P(x \text { is successful })^{2} \cdot e^{2(1-c \varepsilon) \ell(x, y)}$,
where $\sqrt{n_{i}}:=\sqrt{n_{0}}\left(1-\frac{i}{L-1}\right)+\sqrt{n_{L-1}} \frac{i}{L-1}$.
Recall: $r_{\ell}=e^{L-\ell}, e^{L} \approx \frac{N}{\log N}$.
Note that for $x, y \in \mathbb{Z}_{N}^{2}$ with $|x-y| \geq 2 r_{0}$, we can regard that $\{x$ is successful $\}$ and $\left\{y\right.$ is successful\} are almost independent because $B\left(x, r_{0}\right)$ and $B\left(y, r_{0}\right)$ are disjoint. Thus,

$$
\begin{aligned}
E\left[Z_{N}^{2}\right] & \leq \sum_{|x-y| \geq 2 r_{0}} P(x \text { and } y \text { are successful })+\sum_{\ell=1}^{L} \sum_{\ell(x, y)=\ell} P(x \text { and } y \text { are successful }) \\
& \leq(1+o(1)) N^{4} P\left(x_{0} \text { is successful }\right)^{2}+\sum_{\ell=1}^{L} N^{2} e^{2 L-2 \ell} P\left(x_{0} \text { is successful }\right)^{2} \cdot e^{2(1-c \varepsilon) \ell} \\
& \leq(1+o(1))\left\{E\left(Z_{N}\right)\right\}^{2}+\frac{1}{(\log N)^{2}}\left\{E\left(Z_{N}\right)\right\}^{2}, \text { where } x_{0} \text { is a fixed point. }
\end{aligned}
$$

Thus, $\liminf _{N \rightarrow \infty} \frac{\left\{E\left(Z_{N}\right)\right\}^{2}}{E\left(Z_{N}^{2}\right)}=1$, and hence

$$
\lim _{N \rightarrow \infty} P\left(\frac{\max _{x \in \mathbb{Z}_{N}^{2}} L_{\tau\left(t_{\theta}\right)}^{N}(x)-t_{\theta}}{\sqrt{2 t_{\theta}}} \geq\left(1+\frac{1}{2 \sqrt{\theta}}-\varepsilon\right) \cdot 2 \sqrt{\frac{2}{\pi}} \log N\right)=1
$$

