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IntrodutionIntrodutionCharaterization of a symmetri Markov proess (fXtgt�0; fPxgx2Rd) on RdSelf-adjoint operator (Non-positive generator) LStrong ontinuous ontration semigroup fPtgt�0Dirihlet form (E ;D(E)) on L2(Rd )Relations among fXtg, L, fPtgt�0 and (E ;D(E))E(u; v) = (�Lu; v)Pt = exp(tL) (as an operator on L2(Rd ))Pt f (x) = E x [f (Xt)℄
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IntrodutionBeuling-Deny formulaE(u; v) = E (u; v) + ZRd�Rd(u(y) � u(x))(v(y) � v(x))J(x ; y)dxdy+ ZRd u(x)v(x)k(dx)There are three parts in Dirihlet form (E ;D(E))E : Strong loal part. Corresponding to di�usion (ontinuous) part of XtThe seond term: Jump part. Corresponding to disontinuous part of XtThe third term: Killing part. Corresponding to killing part of XtIn the sequel, we onsider the pure jump Markov proess.
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Setting of jump proessesSetting of jump proessesConsider the jump Dirihlet form on L2(Rd )E(u; v) = ZZRd�Rd(u(y) � u(x))(v(y) � v(x))J(x ; y)dxdy�1jx � y jd�(jx � y j) � J(x ; y) � �2jx � y jd�(jx � y j) ;where J(x ; y) is a symmetri funtion alled jump intensity measure.�1 and �2 are positive onstants.� is a positive inreasing funtion.Let fXtgt�0 be the orresponding Markov proess.(1) If �(r) = r� for some 0 < � < 2, fXtgt�0 is alled �-stable-like.(2) If �(r) = r�(1 _ exp(n(r � 1))) for some 0 < � < 2 and n > 0, fXtgt�0 isalled relativisti �-stable-likeIn this talk, we onsider these two ases.Masaki Wada (Tohoku University) Perturbation of Dirihlet forms and stability of fundamental solutions September 25th, 2012 4 / 28



Preeding resultsPreeding results -Conservativeness-Let � be the lifetime of Markov proess fXtgt�0.Note that J(x ; y) is a symmetri funtion satisfyingsupx2Rd Z (1 ^ jx � y j2)J(x ; y)dy <1exp(�ajx j) 2 L1(Rd ) (a > 0)It follows that fXtg is onservative by Masamune-Uemura 2011 and thus � =1.Masaki Wada (Tohoku University) Perturbation of Dirihlet forms and stability of fundamental solutions September 25th, 2012 5 / 28



Preeding resultsPreeding results -Heat kernel estimates-Let fPtg be the semigroup assoiated with the Markov proess fXtg.In both ases, Chen and Kumagai et al proved that the semigroup fPtgt>0 admitsthe jointly ontinuous transition density funtion p(t; x ; y) (or equivalently, thefundamental solution of �u�t = Lu) de�ned on (0;1)� Rd � Rd , and it has thetwo sided estimates.Theorem (Chen and Kumagai 2003)When fXtgt�0 is �-stable-like proess, p(t; x ; y) satis�esC1(t� d� ^ tjx � y jd+� ) � p(t; x ; y) � C2(t� d� ^ tjx � y jd+� );where C1 and C2 are positive onstants depending on �1; �2; d and �.Masaki Wada (Tohoku University) Perturbation of Dirihlet forms and stability of fundamental solutions September 25th, 2012 6 / 28



Preeding resultsTheorem (Chen, Kim and Kumagai 2011)When fXtgt�0 is relativisti �-stable-like proess, p(t; x ; y) satis�es two sidedestimates as follows;(1) 0 < t � 1 and 0 < jx � y j � 11(t� d� ^ tjx � y jd+� ) � p(t; x ; y) � 2(t� d� ^ tjx � y jd+� )(2) 1 _ jx � y j � t3t� d2 exp(�4jx � y j2t ) � p(t; x ; y) � 5t� d2 exp(�6jx � y j2t )(3) 1 � t � jx � y j7t� d2 exp(�8jx � y j) � p(t; x ; y) � 9t� d2 exp(�10jx � y j)(4) 0 < t � 1 and 1 � jx � y j11t exp(�12jx � y j) � p(t; x ; y) � 13t exp(�14jx � y j)where i 's are positive onstants depending on �1; �2; d ; � and n.Masaki Wada (Tohoku University) Perturbation of Dirihlet forms and stability of fundamental solutions September 25th, 2012 7 / 28



Centre of today's talkProblemSummary of preeding resultsBoth upper and lower bounds of the heat kernel are the same funtion up tohoie of positive onstants.ProblemLet � be a positive Radon smooth measure on Rd satisfying Green tightness(abbreviation by � 2 K1 : The preise de�nition will be stated later. ).Consider the Shr�odinger form (i.e. perturbation of Dirihlet form by �)E�(u; u) = E(u; u) � ZRd u2d�Denote the orresponding generator by L� and let p�(t; x ; y) be the fundamentalsolution of equation �u�t = L�uMasaki Wada (Tohoku University) Perturbation of Dirihlet forms and stability of fundamental solutions September 25th, 2012 8 / 28



Centre of today's talkProblemWhat onditions on � are neessary and suÆient for p�(t; x ; y) to have the sameestimates as p(t; x ; y) does?We all this phenomenon the stability of fundamental solution.RemarkWe onsider the stability for global time.If (E ;D(E)) is assoiated with the standard Brownian motion, there is a preedingresult as follows:Theorem (Takeda 2007)Assume that the Brownian motion is transient and � belongs to the lass S1(Apreise de�nition is given later). Then the stability of fundamental solution holdsif and only if � satis�esinffE(u; u) j u 2 D(E); ZRd u2d� = 1g > 1Masaki Wada (Tohoku University) Perturbation of Dirihlet forms and stability of fundamental solutions September 25th, 2012 9 / 28



Main resultMain resultAssumption 1The Dirihlet form (E ;D(E)) is transient and thus, we an de�ne the Green kernelG (x ; y) := Z 10 p(t; x ; y)dt <1 (x 6= y)Moreover, it follows thatZZRd�Rd G (x ; y)�(dx)�(dy) <1Theorem (W. 2012)Suppose � 2 K1 and Assumption 1 holds. Then, p�(t; x ; y) has the sametwo-sided estimates as p(t; x ; y) if and only if � satis�esinffE(u; u) j u 2 D(E) ZRd u2d� = 1g > 1Masaki Wada (Tohoku University) Perturbation of Dirihlet forms and stability of fundamental solutions September 25th, 2012 10 / 28



PreliminariesDe�nition of the Kato lass measureSine we assume that fXtg is transient, we an de�ne the Green kernel byG (x ; y) := Z 10 p(t; x ; y)dt <1:Using G (x ; y), we de�ne some lasses of positive Radon smooth measure.De�nitionLet � be a positive Radon smooth measure.� is in Kato lass (� 2 K), if it holds thatlim�!1 supx2Rd ZRd G�(x ; y)�(dy) = 0;where G�(x ; y) = R10 e��tp(t; x ; y)dt.Masaki Wada (Tohoku University) Perturbation of Dirihlet forms and stability of fundamental solutions September 25th, 2012 11 / 28



PreliminariesDe�nition of Green-tight measureDe�nition(1) � belongs to K1 if � 2 K and for arbitrary � > 0, there exist positiveonstant Æ > 0 and ompat set K suh thatsupx2Rd ZK [B G (x ; y)�(dy) < �where B is an arbitrary set that satis�es B � K and �(B) < Æ.(2) � belongs to S1 if � 2 K and for arbitrary � > 0, there exist positiveonstant Æ > 0 and ompat set K suh thatsupx;z2Rd ZK [B G (x ; y)G (y ; z)G (x ; z) �(dy) < �where B is an arbitrary set that satis�es B � K and �(B) < Æ.Masaki Wada (Tohoku University) Perturbation of Dirihlet forms and stability of fundamental solutions September 25th, 2012 12 / 28



Preliminariesequivalent de�nitions for KA�t : Positive ontinuous additive funtional in Revuz orrespondene with �.limt!0 1t Eg�m [Z t0 f (Xs)dA�s ℄ = ZRd g(x)f (x)�(dx);where m is the Lebesgue measure on Rd , g is a -exessive funtion ( � 0) andf is a bounded measurable funtion.PropositionThe following assertions are equivalent eah other.(1)� 2 K(2) limt!0 supx2Rd Ex [A�t ℄ = 0(3) lima!0 supx2Rd Zjx�y j�a G (x ; y)�(dy) = 0Masaki Wada (Tohoku University) Perturbation of Dirihlet forms and stability of fundamental solutions September 25th, 2012 13 / 28



PreliminariesOutline of the proof(1), (2): Note thatEx [A�t ℄ = Z t0 ZRd p(s; x ; y)�(dy)dsand apply the argument of Kuwae and Takahashi 2006.(2), (3): Based on the argument of Zhao 1991, we have only to prove�0 := supt�0 infr>0 supx2Rd Px(�B(x;r) > t) < 1�0 := supr>0 inft>0 supx2Rd Px(�B(x;r) < t) < 1�0 := supu>0 infr>0 supx;y2Rd Py (TB(x;r) <1) < 1;where �B(x;r) := infft > 0 j Xt =2 B(x ; r)gTB(x;r) := infft > 0 j Xt 2 B(x ; r)g:Masaki Wada (Tohoku University) Perturbation of Dirihlet forms and stability of fundamental solutions September 25th, 2012 14 / 28



Preliminariesequivalent de�nitions for K1PropositionFor � 2 K, the following assertions are equivalent eah other.(1) For arbitrary � > 0, there exist positive onstant Æ > 0 and ompat set Ksuh that supx2Rd ZK [B G (x ; y)�(dy) < �where B is an arbitrary set that satis�es B � K and �(B) < Æ.(2) For arbitrary � > 0, there exist a positive onstant ~Æ > 0 and a set F of�-�nite measure suh thatsupx2Rd ZF [B G (x ; y)�(dy) < �(3) It holds that limr!1 supx2Rd Zjy j�r G (x ; y)�(dy) = 0Masaki Wada (Tohoku University) Perturbation of Dirihlet forms and stability of fundamental solutions September 25th, 2012 15 / 28



PreliminariesThe relation between K1 and S1Proposition (W. 2012)It holds that K1 = S1.Outline of the proofIn general, it holds that S1 � K1 by Chen and Song 2002.Thus we have only to prove K1 � S1.By the argument of 3G -theorem, it is suÆient to prove thatG (x ; y)G (y ; z)G (x ; z) � C0(G (x ; y) + G (y ; z))for some positive onstant C0.Lemma(1) Let fXtgt�0 be �-stable-like proess. Then there exists a positive onstantsC1;C2 suh that C1jx � y jd�� � G (x ; y) � C2jx � y jd��Masaki Wada (Tohoku University) Perturbation of Dirihlet forms and stability of fundamental solutions September 25th, 2012 16 / 28



Preliminaries(2) Let fXtgt�0 be relativisti �-stable-like proess. Then there exists positiveonstants C1;C2 suh thatC1� 1jx � y jd�� _ 1jx � y jd�2 � � G (x ; y) � C2� 1jx � y jd�� _ 1jx � y jd�2 �In both ases, there exists a positive dereasing funtion g : R+ ! R+ satisfyingC3 � g(r)g(2r) � C4for some positive onstants C3;C4 andC1g(jx � y j) � G (x ; y) � C2g(jx � y j)Noting that at least either jx � y j � jx � z j=2 or jy � z j � jx � z j=2 holds, theabove formula is valid.Masaki Wada (Tohoku University) Perturbation of Dirihlet forms and stability of fundamental solutions September 25th, 2012 17 / 28



perturbation theoryPerturbation theoryIn the sequel we onsider the Shr�odinger form for � 2 K1:E�(u; u) = E(u; u) � ZRd u2d�Denote the orresponding semigroup by P�t . Then it follows thatP�t f (x) = E x [exp(A�t )f (Xt)℄Note that P�t is represented by Feynman-Ka formula with exponential growth.Proposition(Albeverio Blanhard Ma 1991)P�t admits jointly ontinuous integral kernel p�(t; x ; y) on (0;1)� Rd � Rd .Masaki Wada (Tohoku University) Perturbation of Dirihlet forms and stability of fundamental solutions September 25th, 2012 18 / 28



preise proofOutline of the proof for main theorem -only if part-Theorem (W. 2012)Suppose � 2 K1 and Assumption 1 holds. Then, p�(t; x ; y) has the sametwo-sided estimates as p(t; x ; y) if and only if � satis�esinffE(u; u) j u 2 D(E)and Z u2d� = 1g > 1(Outline of the proof)Sine the stability of fundamental solution holds, it follows thatG�(x ; y) := Z 10 p�(t; x ; y)dt <1from the Green kernel estimates.Masaki Wada (Tohoku University) Perturbation of Dirihlet forms and stability of fundamental solutions September 25th, 2012 19 / 28



preise proofProposition (Takeda 2002)For � 2 S1, the following assertions are equivalent.(1)G�(x ; y) <1 for x ; y 2 Rd with x 6= y(2) inffE(u; u) j u 2 D(E)and Z u2d� = 1g > 1(3) supx2Rd Ex [exp(A�1)℄ <1Noting that K1 = S1, we see that the only if part is valid.Remark� is said to satisfy the gaugeability if the third formula holds.
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preise proofOutline of the proof for main theorem -if part-Outline of the proofFollowing the arguments of Takeda 2006.Let h(x) = Ex [exp(A�1)℄.Then the gaugeability implies that 1 � h(x) � C0 for some positive onstant.Proposition (Chen-Zhang 2002)If h(x) = exp(u(x)) for some u 2 De(E), there exists an appropriate multipliativefuntional Lt suh that Qt f (x) := Ex [Lt f (Xt )℄is strong ontinuous semigroup on L2(h2m).Moreover, the assoiated Dirihlet form ( ~E ;D( ~E)) has a representation~E(v ; v) = ZZRd�Rd(v(y) � v(x))2J(x ; y)h(x)h(y)dxdyD( ~E) = D(E)Masaki Wada (Tohoku University) Perturbation of Dirihlet forms and stability of fundamental solutions September 25th, 2012 21 / 28



preise proofThe existene of u 2 De(E)De�ne G�(x) = ZRd G (x ; y)�(dy):By Stollmann-Voigt 1996, it is known thatZRd u2d� � kG�k1E(u; u) (u 2 De(E)):Applying this formula, we obtainZRd  d�F � (�(F ))1=2(ZRd  2d�F )1=2 � (�(F ))kG�F k1=21 E( ;  )1=2where �F (A) = �(F \ A) and F is of �nite �-measure.�F is of �nite energy integral.Masaki Wada (Tohoku University) Perturbation of Dirihlet forms and stability of fundamental solutions September 25th, 2012 22 / 28



preise proofZRd  d�F � E(G�F ;G�F )1=2E( ;  )1=2� �ZRd�Rd G (x ; y)d�F (x)d�F (y)�1=2E( ;  )1=2:Sine we assume RRRd�Rd G (x ; y)�(dx)�(dy) <1� is also of �nite energy integral and G� 2 De(E)Let Kt = Ex [exp(A�1)jMt ℄ (fMtg : �ltration). Noting thath(Xt ) = exp(�A�t )Kt E x [Z t0 h(Xs)dA�s ℄ = h(x)� E x [h(Xt )℄limt!1 h(Xt ) = 1It follows that h(x) = 1 + G (h�)(x)Noting that G (h�) 2 De(E), we an de�ne u := log(1 + G (h�)) 2 De(E)Masaki Wada (Tohoku University) Perturbation of Dirihlet forms and stability of fundamental solutions September 25th, 2012 23 / 28



preise proofCalulation of Lt based on Chen-Zhang 2002Sine G (h�) 2 De(E), we an onsider the Fukushima's deomposition as follows:G (h�)(Xt )� G (h�)(X0) = Mht + Nhtwhere Mht is a martingale additive funtional and Nht is a ontinuous additivefuntional of zero energy. Note thath(Xt )� h(X0) = Mht + NhtWe de�ne the martingale Mt = Z t0 1h(Xs�)dMhsand onsider the Dol�eans-Dade formulaZs = 1 + Z s0 Zt�dMtMasaki Wada (Tohoku University) Perturbation of Dirihlet forms and stability of fundamental solutions September 25th, 2012 24 / 28



preise proofLt : Unique solution for the previous formula.Lt = exp(Mt � 12 hMit) Y0<s�t(1 + �Ms) exp(��Ms))= exp(Mt � 12 hMit) Y0<s�t h(Xs)h(Xs�) exp�1� h(Xs)h(Xs�)�where �Ms = Ms �Ms�.hMi is the sharp braket for ontinuous part of Mt .Applying the Ito formula to the semimartingale h(Xt) and log x , we haveLt = h(Xt )h(X0) exp(A�t )Masaki Wada (Tohoku University) Perturbation of Dirihlet forms and stability of fundamental solutions September 25th, 2012 25 / 28



preise proofNow we see that Lt de�nes the Girsanov transformation in the sense ofChen-Zhang 2002 andQt f (x) = Ex [Lt f (Xt)℄ = Ex [h(Xt )h(X0) exp(A�t )f (Xt )℄~E(v ; v) = ZZRd�Rd(v(y) � v(x))2J(x ; y)h(x)h(y)dxdyD( ~E) = D(E)For appropriate �01 and �02,�01jx � y jd�(jx � y j) � J(x ; y)h(x)h(y) � �02jx � y jd�(jx � y j)Integral kernel for fQtg : h(x)p�(t; x ; y)h(y) with respet to Lebesgue measureBy Chen Kumagai 2003 and Chen, Kim and Kumagai 2011, p�(t; x ; y) has thesame two-sided estimates as p(t; x ; y).Masaki Wada (Tohoku University) Perturbation of Dirihlet forms and stability of fundamental solutions September 25th, 2012 26 / 28
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