Lévy measure density corresponding to inverse local time

Tomoko Takemura and Matsuyo Tomisaki

2012. 9.27
We are concerned with Lévy measure density corresponding to the inverse local time at the regular end point for harmonic transform of a one dimensional diffusion process. We show that the Lévy measure density is represented as a Laplace transform of the spectral measure corresponding to an original diffusion process, where the absorbing boundary condition is posed at the end point if it is regular.

\[\mathbb{D}_{s,m,k} \leftrightarrow \mathbb{D}_{s,h,m_h,0} \leftrightarrow \mathbb{D}_{s,h,m_h,0} \]

absorbing \hspace{1cm} absorbing \hspace{1cm} reflecting

\[n^*(\xi) \]
Table contents

1. One dimensional diffusion process
2. Harmonic transform
3. Lévy measure density
4. Main theorem
5. Examples
One dimensional diffusion process

We set

$s : \text{continuous increasing fnc. on } I = (l_1, l_2), -\infty \leq l_1 < l_2 \leq \infty$

$m : \text{right continuous increasing fnc. on } I$

$k : \text{right continuous nondecreasing fnc. on } I$
One dimensional diffusion process

- We set

 $s: \text{continuous increasing fnc. on } I = (l_1, l_2), -\infty \leq l_1 < l_2 \leq \infty$

 $m: \text{right continuous increasing fnc. on } I$

 $k: \text{right continuous nondecreasing fnc. on } I$

- $G_{s,m,k}: 1\text{-dim diffusion operator with } s, m, \text{ and } k$

 \[G_{s,m,k} u = \frac{dD_s u - u dk}{dm} \]
One dimensional diffusion process

- We set

\(s : \) continuous increasing fnc. on \(I = (l_1, l_2), -\infty \leq l_1 < l_2 \leq \infty \)
\(m : \) right continuous increasing fnc. on \(I \)
\(k : \) right continuous nondecreasing fnc. on \(I \)

- \(\mathcal{G}_{s,m,k} : \) 1-dim diffusion operator with \(s, m, \) and \(k \)

\[
\mathcal{G}_{s,m,k} u = \frac{dD_s u - udk}{dm}
\]

- \(\mathcal{D}_{s,m,k} : \) 1-dim diffusion process with \(\mathcal{G}_{s,m,k} \)
 \([l_1 \) is absorbing if \(l_1 \) is regular \]
One dimensional diffusion process

- \(p(t, x, y) \): transition probability w.r.t. \(dm \) for \(D_{s,m,k} \)

If \(l_1 \) is \((s, m, k)\)-regular,

\[
p(t, x, y) = \int_{[0, \infty)} e^{-\lambda t} \psi_0(x, \lambda) \psi_0(y, \lambda) \, d\sigma(\lambda), \quad t > 0, \ x, y \in I,
\]

(1)

where \(d\sigma(\lambda) \) is a Borel measure on \([0, \infty)\) satisfying

\[
\int_{[0, \infty)} e^{-\lambda t} \, d\sigma(\lambda) < \infty, \quad t > 0,
\]

(2)

and \(\psi_0(x, \lambda), \ x \in I, \ \lambda \geq 0 \), is the solution of the following integral equation

\[
\psi_0(x, \lambda) = s(x) - s(l_1) + \int_{(l_1, x]} \{s(x) - s(y)\} \psi_0(y, \lambda) \{-\lambda \, dm(y) + dk(y)\}
\]
One dimensional diffusion process

Proposition 2.1

Assume that l_1 is (s, m, k)-entrance and

$$
\int_{(l_1, c_0]} \{s(c_0) - s(x)\}^2 \, dm(x) < \infty. \quad (3)
$$

Then $p(t, x, y)$ is represented as (1) with $d\sigma(\lambda)$ satisfying (2) and $
\psi_o(x, \lambda)$ is the solution of the integral equation

$$
\psi_o(x, \lambda) = 1 + \int_{(l_1, x]} \{s(x) - s(y)\} \psi_o(y, \lambda) \{-\lambda \, dm(y) + dk(y)\}.
$$
Harmonic transform

- We set

\[\mathcal{H}_{s,m,k,\beta} = \{ h > 0; \ G_{s,m,k} h = \beta h \}, \quad \text{for } \beta \geq 0 \]

For \(h \in \mathcal{H}_{s,m,k,\beta} \),

\[ds_h(x) = h(x)^{-2} ds(x), \quad dm_h(x) = h(x)^2 dm(x) \]
Harmonic transform

We set

$$\mathcal{H}_{s,m,k,\beta} = \{ h > 0; \mathcal{G}_{s,m,k} h = \beta h \}, \text{ for } \beta \geq 0$$

For $h \in \mathcal{H}_{s,m,k,\beta}$,

$$ds_h(x) = h(x)^{-2} ds(x), \quad dm_h(x) = h(x)^2 dm(x)$$

We obtain

$$\mathcal{G}_{s_h,m_h,0} : h \text{ transform of } \mathcal{G}_{s,m,k}$$

$$p_h(t,x,y) = e^{-\beta t} \frac{p(t,x,y)}{h(x) h(y)}$$
Harmonic transform

- We set

\[\mathcal{H}_{s,m,k,\beta} = \{ h > 0; \mathcal{G}_{s,m,k} h = \beta h \}, \quad \text{for } \beta \geq 0 \]

For \(h \in \mathcal{H}_{s,m,k,\beta} \),

\[ds_h(x) = h(x)^{-2} ds(x), \quad dm_h(x) = h(x)^2 dm(x) \]

- We obtain

\[\mathcal{G}_{s_h,m_h,0} : \text{h transform of } \mathcal{G}_{s,m,k} \]

\[p_h(t, x, y) = e^{-\beta t} \frac{p(t, x, y)}{h(x)h(y)} \]

- \(\mathbb{D}_{s_h,m_h,0} : 1\text{-dim diffusion process with } \mathcal{G}_{s_h,m_h,0} \)

\[[l_1 \text{ is absorbing if } l_1 \text{ is regular }] \]
Harmonic transform

- $\mathcal{D}^*_{s_h,m,h,0}$: 1-dim diffusion process with $\mathcal{G}_{s_h,m,h,0}$

 $[l_1$ is regular and reflecting boundary $]$
Harmonic transform

- $\mathbb{D}^*_{s_h,m_h,0}$: 1-dim diffusion process with $\mathcal{G}_{s_h,m_h,0}$

 $[l_1$ is regular and reflecting boundary $]$

- $l^{(h*)}(t, \xi)$: local time for $\mathbb{D}^*_{s_h,m_h,0}$, that is,

\[
\int_0^t f(X(u)) \, du = \int_{l_1} l^{(h*)}(t, \xi) \, dm_h(\xi), \quad t > 0,
\]

for bounded continuous functions f on l_1.

Harmonic transform

- $\mathbb{D}^*_{s_h, m_h, 0}$: 1-dim diffusion process with $\mathcal{G}_{s_h, m_h, 0}$

 [l_1 is regular and reflecting boundary]

- $l^{(h^*)}(t, \xi)$: local time for $\mathbb{D}^*_{s_h, m_h, 0}$, that is,

 $$\int_0^t f(X(u)) \, du = \int_{l_1} l^{(h^*)}(t, \xi) \, dm_h(\xi), \quad t > 0,$$

 for bounded continuous functions f on l.

- $\tau^{(h^*)}(t)$: inverse local time $l^{(h^*)^{-1}}(t, l_1)$ at the end point l_1.
Lévy measure density

Proposition 2.2 (Itô and McKean)

Assume the following conditions.

\[l_1 \text{ is } (s, m, 0)-\text{regular and reflecting}, \ s(l_2) = \infty. \]

Then \([\tau^*(t), \ t \geq 0] \text{ is a Lévy process and there is a Lévy measure density } n^*(\xi) \text{ such that}\]

\[
E_{l_1}^* \left[e^{-\lambda \tau^*(t)} \right] = \exp \left\{ -t \int_0^\infty (1 - e^{-\lambda \xi}) n^*(\xi) \, d\xi \right\}
\]

where \(E_{l_1}^* \) stands for the expectation with respect to \(P_{l_1}^* \),

\[
n^*(\xi) = \lim_{x, y \rightarrow l_1} D_s(x) D_s(y) p(\xi, x, y) = \int_{[0, \infty)} e^{-\lambda \xi} \, d\sigma(\lambda),
\]

where \(p(t, x, y) \) is the transition probability density for \(\mathbb{D}_{s, m, 0} \), and \(d\sigma(\lambda) \) is the Borel measure appeared in (1) satisfying (2).
Main theorem

Now we give a representation of $n^{(h^*)}(\xi)$ by means of items corresponding to the diffusion process $\mathcal{D}_{s,m,k}$. l_1 is $(s_h, m_h, 0)$-regular if and only if one of the following conditions is satisfied.

1. l_1 is (s, m, k)-regular and $h(l_1) \in (0, \infty)$. \hspace{1cm} (4)
2. l_1 is (s, m, k)-entrance, $h(l_1) = \infty$, and $|m_h(l_1)| < \infty$. \hspace{1cm} (5)
3. l_1 is (s, m, k)-natural, $h(l_1) = \infty$, and $|m_h(l_1)| < \infty$. \hspace{1cm} (6)
Main theorem

Theorem 2.3
Let $h \in \mathcal{H}_{s,m,k,\beta}$. Assume one of (4), (5), and (6). Further assume that l_1 is reflecting and $s_h(l_2) = \infty$. Then there exists Lévy measure density $n^{(h^*)}(\xi)$. In particular, if (4) is satisfied, then

$$
n^{(h^*)}(\xi) = h(l_1)^2 e^{-\beta \xi} \int_{[0,\infty)} e^{-\xi \lambda} d\sigma(\lambda)
$$

$$
= h(l_1)^2 e^{-\beta \xi} \lim_{x,y \to l_1} D_s(x) D_s(y) p(\xi, x, y).
$$

If (5) is satisfied, then

$$
n^{(h^*)}(\xi) = D_s h(l_1)^2 e^{-\beta \xi} \int_{[0,\infty)} e^{-\xi \lambda} d\sigma(\lambda)
$$

$$
= D_s h(l_1)^2 e^{-\beta \xi} \lim_{x,y \to l_1} p(\xi, x, y).
$$
Example 2.4 (Bessel process)

Let us consider the following diffusion operator \(G(\nu) \) on \(I = (0, \infty) \).

\[
G(\nu) = \frac{1}{2} \frac{d^2}{dx^2} + \frac{2\nu + 1}{2x} \frac{d}{dx},
\]

where \(-\infty < \nu < \infty\).

\[
ds^{(\nu)}(x) = x^{-2\nu-1} \, dx, \quad dm^{(\nu)}(x) = 2x^{2\nu+1} \, dx.
\]

The killing measure is null. The state of the end point 0 depends on \(\nu \), that is,

- it is \((s^{(\nu)}, m^{(\nu)}, 0)\)-entrance if \(\nu \geq 0 \),
- it is \((s^{(\nu)}, m^{(\nu)}, 0)\)-regular if \(-1 < \nu < 0\),
- it is \((s^{(\nu)}, m^{(\nu)}, 0)\)-exit if \(\nu \leq -1 \).
Examples

Further

\[\int_0^1 \left\{ s^{(\nu)}(1) - s^{(\nu)}(x) \right\}^2 \, dm^{(\nu)}(x) < \infty \iff |\nu| < 1. \]

The end point \(\infty \) is \((s^{(\nu)}, m^{(\nu)}, 0)\)-natural for all \(\nu \), and in particular,

\[s^{(\nu)}(\infty) = \infty \iff \nu \leq 0. \]

Let

\[\mathbb{D}^{(\nu)} : \text{the diffusion process on } I \text{ with } G^{(\nu)} \]

\((0 \text{ being absorbing if } -1 < \nu < 0)\)

\[p^{(\nu)}(t, x, y) : \text{the transition probability density w.r.t. } dm^{(\nu)}. \]
Examples

(1) $-1 < \nu < 0 \ [0 : (s^{(\nu)}, m^{(\nu)}, 0)$-regular]

$D^{(\nu,*)}$: the diffusion process on I with $G^{(\nu)}$

(0 being reflecting)

$n^{(\nu,*)}$: the Lévy measure density corresponding to the inverse local time at 0 for $D^{(\nu,*)}$

Since $s^{(\nu)}(\infty) = \infty$,

$$n^{(\nu,*)}(\xi) = \lim_{x,y \to 0} D_s^{(\nu)}(x) D_s^{(\nu)}(y) p^{(\nu)}(\xi, x, y)$$

$$= \int_0^{\infty} e^{-\xi \lambda} \sigma^{(\nu)}(\lambda) d\lambda = 2^{-|\nu|+1} \frac{|\nu|}{\Gamma(|\nu|)} \xi^{-(|\nu|+1)}.$$
Examples

(2) \(-1 < \nu < 1.\)
[0 : \((s^{(\nu)}, m^{(\nu)}, 0)\)-regular or -entrance, and (3) is satisfied]

For \(\beta > 0\), we put

\[
h(x) = \left(\frac{\beta}{2} \right)^{1/2} x^{-\nu} K_{|\nu|}(\sqrt{2\beta}x) \]

Then \(h(x) \in \mathcal{H}_{s^{(\nu)}, m^{(\nu)}, 0, \beta}\) and

\[
G^{(\nu)}_h = \frac{1}{2} \frac{d^2}{dx^2} + \left\{ \frac{1}{2x} + \sqrt{2\beta} \frac{K'_{\nu}(\sqrt{2\beta}x)}{K_{\nu}(\sqrt{2\beta}x)} \right\} \frac{d}{dx},
\]

\[
ds^{(\nu, \beta)}(x) = h(x)^{-2} ds^{(\nu)}(x), \quad dm^{(\nu, \beta)}(x) = h(x)^2 dm^{(\nu)}(x).
\]
Examples

The end point 0 is \((s^{(ν,β)}, m^{(ν,β)}, 0)\)-regular. We consider the diffusion process \(\mathbb{D}_{h}^{(ν,*)}\) with \(G_{h}^{(ν)}\) as the generator and with the end point 0 being reflecting. Let \(n_{h}^{(ν,*)}\) be the Lévy measure density corresponding to the inverse local time at 0 for \(\mathbb{D}_{h}^{(ν,*)}\).

\[
n_{h}^{(ν,*)} = 2^{-|ν|} Γ(|ν| + 1) ξ^{-(|ν|+1)} e^{-βξ}.
\]

(3) \(0 < ν < 1\)

We put

\[
h^{(0)}(x) = \{s^{(ν)}(∞) − s^{(ν)}(x)\}/\{s^{(ν)}(∞) − s^{(ν)}(1)\} = x^{-2ν}.
\]

Denote by \(G_{h}^{(ν,0)}\) the harmonic transform of \(G^{(ν)}\) based on \(h^{(0)} \in \mathcal{H}_{s^{(ν)}, m^{(ν)}, 0,0}\), that is,

\[
G_{h}^{(ν,0)} = \frac{1}{2} \frac{d^2}{dx^2} + \frac{-2ν + 1}{2x} \frac{d}{dx}.
\]
Examples

\[ds^{(\nu,0)}(x) = h^{(0)}(x)^{-2} \quad ds^{(\nu)}(x) = x^{2\nu-1} \, dx, \]
\[dm^{(\nu,0)}(x) = h^{(0)}(x)^2 \quad dm^{(\nu)}(x) = 2x^{-2\nu+1} \, dx. \]

The end point 0 is \((s^{(\nu,0)}, m^{(\nu,0)}, 0)\)-regular. We consider the diffusion process \(\mathbb{D}^{(\nu,0,*)}_h\) with \(G^{(\nu,0)}_h\) as the generator and with the end point 0 being reflecting. Let \(n^{(\nu,0,*)}_h\) be the Lévy measure density corresponding to the inverse local time at 0 for \(\mathbb{D}^{(\nu,0,*)}_h\).

\[n^{(\nu,0,*)}_h = 2^{-\nu+1} \frac{\nu}{\Gamma(\nu)} \xi^{-\nu-1}. \]
Example 2.5 (Radial Ornstein-Uhlenbeck process)

Let us consider the following diffusion operator \(G^{(\nu,\kappa)} \) on \(I = (0, \infty) \).

\[
G^{(\nu,\kappa)} = \frac{1}{2} \frac{d^2}{dx^2} + \left(\frac{2\nu + 1}{2x} - \kappa x \right) \frac{d}{dx},
\]

where \(-\infty < \nu < \infty\) and \(\kappa > 0\).

\[
ds^{(\nu,\kappa)}(x) = x^{-2\nu-1} e^{\kappa x^2} dx, \quad dm^{(\nu,\kappa)}(x) = 2x^{2\nu+1} e^{-\kappa x^2} dx.
\]

The killing measure is null. The state of the end point 0 depends on \(\nu\), that is,

- it is \((s^{(\nu,\kappa)}, m^{(\nu,\kappa)}, 0)\)-entrance if \(\nu \geq 0\),
- it is \((s^{(\nu,\kappa)}, m^{(\nu,\kappa)}, 0)\)-regular if \(-1 < \nu < 0\),
- it is \((s^{(\nu,\kappa)}, m^{(\nu,\kappa)}, 0)\)-exit if \(\nu \leq -1\).
Examples

Further

\[\int_0^1 \left\{ s^{(\nu,\kappa)}(1) - s^{(\nu,\kappa)}(x) \right\}^2 dm^{(\nu,\kappa)}(x) < \infty \iff |\nu| < 1. \]

The end point \(\infty \) is always \((s^{(\nu,\kappa)}, m^{(\nu,\kappa)}, 0)\)-natural for all \(\nu \), and

\[s^{(\nu,\kappa)}(\infty) = \infty. \]

Let

\[\mathbb{D}^{(\nu,\kappa)} : \text{the diffusion process on } I \text{ with } \mathcal{G}^{(\nu,\kappa)} \]

(0 being absorbing if \(-1 < \nu < 0\))

\[p^{(\nu,\kappa)}(t, x, y) : \text{the transition probability density w.r.t. } dm^{(\nu,\kappa)}. \]
Examples

(1) $-1 < \nu < 0$ \[0 : (s^{(\nu,\kappa)}, m^{(\nu,\kappa)}, 0)\text{-regular} \]

$\mathbb{D}^{(\nu,\kappa,\ast)}$: the diffusion process on I with $G^{(\nu,\kappa)}$

(0 being reflecting)

$n^{(\nu,\kappa,\ast)}$: the Lévy measure density corresponding to

the inverse local time at 0 for $\mathbb{D}^{(\nu,\kappa,\ast)}$

Since $s^{(\nu,\kappa)}(\infty) = \infty$

$$n^{(\nu,\kappa,\ast)}(\xi) = \lim_{x,y \rightarrow 0} D_s^{(\nu,\kappa)}(x) D_s^{(\nu,\kappa)}(y) p^{(\nu,\kappa)}(\xi, x, y)$$

$$= 2^{-|\nu|+1} \frac{|\nu|}{\Gamma(|\nu|)} \left(\frac{\kappa}{\sinh(\kappa \xi)} \right)^{|\nu|+1} e^{\kappa(\nu+1)\xi}. $$
Examples

(2) \(-1 < \nu < 1\)
\[0 : (s^{(\nu,\kappa)}, m^{(\nu,\kappa)}, 0)\text{-regular or -entrance, and (3) is satisfied} \]

For \(\beta > 0\), we put

\[h(x) = \kappa^{\frac{|\nu|}{2}} \frac{1}{2} x^{-\nu-1} e^{\frac{\kappa x^2}{2}} W^{\frac{\beta}{2\kappa} + \frac{\nu + 1}{2}, \frac{|\nu|}{2}}(\kappa x^2). \]

Then \(h(x) \in \mathcal{H}_{s^{(\nu,\kappa)}, m^{(\nu,\kappa)}, 0, \beta}\) and

\[G^{(\nu,\kappa)}_h = -\frac{1}{2} \frac{d^2}{dx^2} + \left\{ -\frac{1}{2} + 2\kappa x \frac{W^{\frac{\beta}{2\kappa} + \frac{\nu + 1}{2}, \frac{|\nu|}{2}}(\kappa x^2)}{W^{\frac{\beta}{2\kappa} + \frac{\nu + 1}{2}, \frac{|\nu|}{2}}(\kappa x^2)} \right\} \frac{d}{dx}, \]

\[ds^{(\nu,\kappa)}_h(x) = h(x)^{-2} ds^{(\nu,\kappa)}(x), \quad dm^{(\nu,\kappa)}_h(x) = h(x)^2 dm^{(\nu,\kappa)}(x). \]
Examples

The end point 0 is \((s_h^{(\nu,\kappa), m_h^{(\nu,\kappa)}, 0})\)-regular and \(s_h^{(\nu,\kappa)}(\infty) = \infty\).

We consider the diffusion process \(D_h^{(\nu,\kappa,*)}\) with \(G_h^{(\nu,\kappa)}\) as the generator and with the end point 0 being reflecting. Let \(n_h^{(\nu,\kappa,*)}\) be the Lévy measure density corresponding to the inverse local time at 0 for \(D_h^{(\nu,\kappa,*)}\).

\[
n_h^{(\nu,\kappa,*)}(\xi) = 2^{-|\nu|-1}\Gamma(|\nu| + 1) \left(\frac{\kappa}{\sinh(\kappa \xi)} \right)^{|\nu|+1} e^{\{\kappa(\nu+1)-\beta\} \xi}.
\]
Examples

We finally consider the special case $\beta = \kappa(\nu + 1) > 0$. Then $G_h^{(\nu,\kappa)}$ is reduced to

$$G_h^{(\nu,\kappa)} = \frac{1}{2} \frac{d^2}{dx^2} + \left\{ -\frac{1}{2x} + 2\kappa x \frac{W'_{0,|\nu|/2}(\kappa x^2)}{W_{0,|\nu|/2}(\kappa x^2)} \right\} \frac{d}{dx}$$

$$= \frac{1}{2} \frac{d^2}{dx^2} + \left\{ \frac{1}{2x} + \kappa x \frac{K'_{|\nu|/2}(\kappa x^2/2)}{K_{|\nu|/2}(\kappa x^2/2)} \right\} \frac{d}{dx},$$

Lévy measure density corresponding to the inverse local time at 0 for $D_h^{(\nu,\kappa,*)}$ is given by

$$n_h^{(\nu,\kappa,*)}(\xi) = 2^{-|\nu|-1} \Gamma(|\nu| + 1) \left(\frac{\kappa}{\sinh(\kappa \xi)} \right)^{|\nu|+1}.$$