Super-Brownian motion in random environment and heat equation with noise.

Makoto Nakashima

University of Tsukuba

September @SAA 2012 in Okayama

Makoto Nakashima SBMRE and heat eq. with noise

In this talk, we focus on the following type SPDE (heat equation with noise):

$$u_t = \frac{1}{2}u_{xx} + a(u)\dot{W}(t,x),$$

where $a(\cdot)$ is a real valued continuous function and W is time space white noise.

Introduction

Super-Brownian motion $\{X_t(\cdot) : t \ge 0\}$ is a measure valued process which is characterized by several ways. (PDE, martingale problem...)

In this talk, we will characterize it as the unique solution of some martingale problem.

super-Brownian motion (SBM)

Super-Brownian motion $\{X_t(\cdot) : t \ge 0\}$ is the unique solution of the following martingale problem:

$$\begin{cases} \text{For all } \phi \in C_b^2 \left(\mathbb{R}^d \right), \\ Z_t(\phi) = X_t(\phi) - X_0(\phi) - \int_0^t \frac{1}{2} X_s \left(\Delta \phi \right) ds \\ \text{is an } \mathcal{F}_t^X \text{-martingale such that} \\ \langle Z(\phi) \rangle_t = \int_0^t X_s \left(\phi^2 \right) ds. \end{cases}$$

Remark: $\{X_t(\cdot): t \ge 0\} \in C([0,\infty), \mathcal{M}_F(\mathbb{R}^d)).$

We have some remarkable properties on SBM as follows.

Properties

(d = 1, Konno-Shiga, Reimers) Xt(() is absolutely continuous w.r.t. Lebesgue measure for all t ∈ (0,∞) almost surely and its density u(t, x)
 (i.e. Xt(dx) = u(t, x)dx) satisfies the following SPDE:

$$u_t = \frac{1}{2}u_{xx} + \sqrt{u}\dot{W}(t,x), \quad \lim_{t \to 0+} u(t,x)dx = X_0(dx),$$

where W is space-time white noise.

② $(d \ge 2$, Perkins, Dawson-Perkins, et.al.) If $X_t(1) \ne 0$, then $X_t(\cdot)$ is singular w.r.t. Lebesgue measure. Also, the Hausdorff dimension of supp (X_t) is 2 a.s.

伺下 イラト イラ

By Konno-Shiga or Reimers, we find that a sol. of SPDE for $a(u) = \sqrt{u}$ corresponds with 1-dim. SBM.

・ 同 ト ・ ヨ ト ・ ヨ ト

By Konno-Shiga or Reimers, we find that a sol. of SPDE for $a(u) = \sqrt{u}$ corresponds with 1-dim. SBM. **Others:**

 $a(u) = \lambda u \text{ for } \lambda \in \mathbb{R} \Leftrightarrow \text{Cole-Hopf solution for KPZ}$ equation.

2
$$a(u) = \sqrt{u - u^2} \Leftrightarrow$$
 the density of stepping stone model.

▲ 同 ▶ → 目 ▶ → 目

By Konno-Shiga or Reimers, we find that a sol. of SPDE for $a(u) = \sqrt{u}$ corresponds with 1-dim. SBM. **Others:**

 $a(u) = \lambda u \text{ for } \lambda \in \mathbb{R} \Leftrightarrow \text{Cole-Hopf solution for KPZ}$ equation.

2 $a(u) = \sqrt{u - u^2} \Leftrightarrow$ the density of stepping stone model. Can we find any models associated to the sol. of SPDE for other $a(\cdot)$?

伺 ト イヨト イヨ

Suggestion by Mytnik

Mytnik constructed super-Brownian motion in random environment.

SBMRE(Mytnik)

For $d \ge 1$, we can construct SBMRE $\{X_t(\cdot) : t \ge 0\}$ as the limit of BBM in random environment which is the unique solution of the martingale problem:

$$\begin{cases} \text{For all } \phi \in C_b^2(\mathbb{R}^d), \\ Z_t(\phi) = X_t(\phi) - X_0(\phi) - \int_0^t X_s\left(\frac{1}{2}\Delta\phi\right) ds \\ \text{is an } \mathcal{F}_t^X \text{-martingale and} \\ \langle Z(\phi) \rangle_t = \int_0^t X_s\left(\phi^2\right) ds \\ &+ \int_0^t \int_{\mathbb{R}^d \times \mathbb{R}^d} g(x, y)\phi(x)\phi(y)X_s(dx)X_s(dy)ds, \end{cases}$$

where g(x, y) is bounded symmetric continuous function.

Mytnik gave a remark in the paper that if g is replaced by δ_{x-y} , then a solution of the above martingale problem must have density a.s. and its density u is a solution of SPDE

$$u_t = \frac{1}{2}u_{xx} + \sqrt{u + u^2}\dot{W}(t, x).$$
 (A)

4 3 6 4 3

Mytnik gave a remark in the paper that if g is replaced by δ_{x-y} , then a solution of the above martingale problem must have density a.s. and its density u is a solution of SPDE

$$u_t = \frac{1}{2}u_{xx} + \sqrt{u + u^2}\dot{W}(t, x).$$
 (A)

Thus, we have a question: can we construct SBMRE which is a solution of SPDE (A)?

.

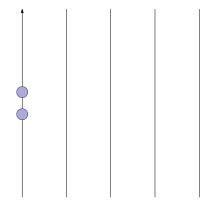
Also, SBM is obtained as the limit of the critical branching Brownian motions. Branching Brownian motions is defined as follows in this talk:

Branching Brownian motions (BBM)

① There exist N particles at the origin at time 0.

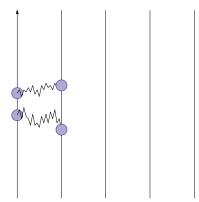
2 Each particle at time $\frac{k}{N}$ independently performs Brownian motion up to time $t = \frac{k+1}{N}$ and it splits into two particles with probability $\frac{1}{2}$ or dies with probability $\frac{1}{2}$ independently.

.



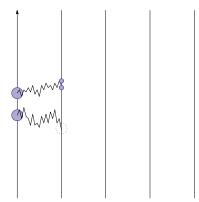
★御▶ ★理▶ ★理▶

æ



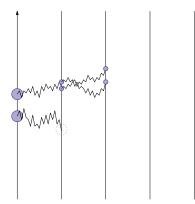
æ

・部・・モト・モト



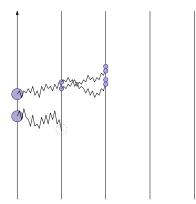
æ

・日・ ・ヨ・ ・ヨ・



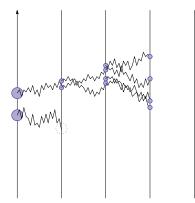
æ

-



æ

-



Super-Brownian motion

We identify each particle as a Dirac mass, i.e. if a particle locates at site x, then we regard it as δ_x . We denote the positions of particles at time t by $\{x_t^1, \dots, x_t^{B_t^{(N)}}\}$, where $B_t^{(N)}$ is the total number of particles at time t. Then we define the measure valued process $\{X_t^{(N)}(\cdot) : t \ge 0\}$ by

$$X_0^{(N)} = \delta_0, \ X_t^{(N)}(\cdot) = \frac{1}{N} \sum_{i=1}^{B_t^{(N)}} \delta_{x_t^i},$$

or for each $A \in \mathcal{B}(\mathbb{R}^d)$,

$$X_t^{(N)}(A) = \frac{\sharp \{ \text{particles locates in } A \}}{N}$$

Then, $\{X_t^{(N)}(\cdot): t \ge 0\} \in D([0,\infty), \mathcal{M}_F(\mathbb{R}^d)).$

Theorem A (Watanabe '68)

 $\left\{X_t^{(N)}(\cdot)\right\} \Rightarrow \{X_t(\cdot) : t \ge 0\}$, where X is the unique solution of the martingale problem:

$$\begin{cases} \text{For all } \phi \in C_b^2 \left(\mathbb{R}^d \right), \\ Z_t(\phi) = X_t(\phi) - \phi(0) - \int_0^t \frac{1}{2} X_s \left(\Delta \phi \right) ds \\ \text{is an } \mathcal{F}_t^X \text{-martingale such that} \\ \langle Z(\phi) \rangle_t = \int_0^t X_s \left(\phi^2 \right) ds. \end{cases}$$

→ ∃ → < ∃

Construction by Mytnik

Let $\xi = \{\xi(x) : x \in \mathbb{R}^d\}$ be a random field such that

•
$$P(\xi(x) > z) = P(\xi(x) < -z)$$
 for all $x \in \mathbb{R}^d$ and $z \in \mathbb{R}$.

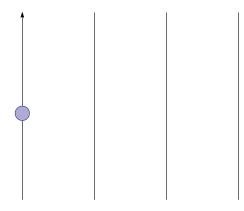
2
$$g(x,y) = E[\xi(x)\xi(y)].$$

Let $\{\xi_k : k \in \mathbb{N}\}$ be independent copies of ξ . Then, the limit of the following BBM in random environment is SBMRE(Mytnik).

BBMRE

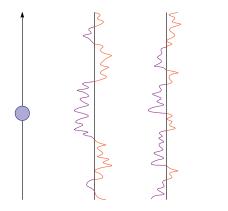
- **①** There exist N particles at time 0.
- ② Particles independently perform Brownian motion in t ∈ [^k/_N, ^{k+1}/_N). Then, at time t = ^{k+1}/_N, a particle independently splits into two particles with probability ¹/₂ + ^{ξ_{k+1}(x)}/_{2N^{1/2}} or dies out with probability ¹/₂ - ^{ξ_{k+1}(x)}/_{2N^{1/2}}, where x is the site it reached at time t = ^{k+1}/_N.

・ 同 ト ・ ヨ ト ・ ヨ ト



・ロト ・四ト ・ヨト ・ヨト

2

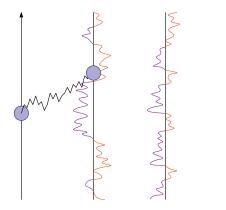


* 臣

- ∢ ≣ ▶

< 57 ▶

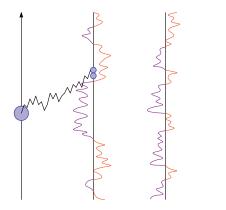
æ



< 同 ▶

문▶ ★ 문

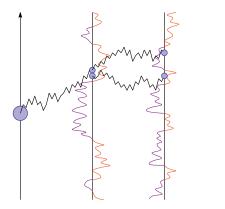
æ



< 同 ▶

æ

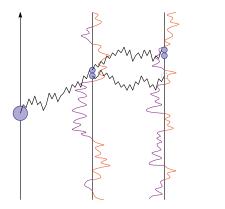
-



< 同 ▶

æ

< E



< 同 ▶

æ

< Ξ

When we define the measure valued processes $\{X_t^{(N)}(\cdot) : t \ge 0\}$ in the same way, it weakly converges to the SBMRE given as above.

Can we construct SBMRE which is a solution of SPDE

$$u_t = \frac{1}{2}u_{xx} + \sqrt{u + u^2}\dot{W}(t, x)?$$

伺下 イヨト イヨト

э

Idea 1

Replace g(x, y) by δ_{x-y} .

 \Rightarrow No. (Branchings have no interaction since particles cannot reach the same site at each branching time a.s.)

→ 3 → 4 3

Idea 1

Replace g(x, y) by δ_{x-y} .

 \Rightarrow No. (Branchings have no interaction since particles cannot reach the same site at each branching time a.s.)

Idea 2

Construct SBMRE as a limit of some branching processes in which particles can reach the same site with positive probability. \Rightarrow Branching random walks in random environment.

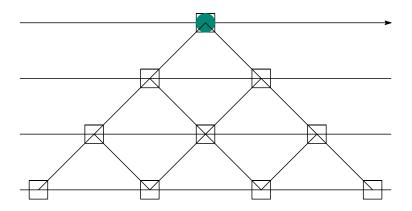
伺 ト イヨト イヨト

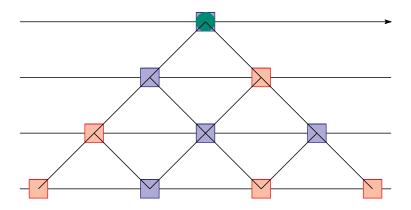
Let $\{\xi(n,x): (n,x) \in \mathbb{N} \times \mathbb{Z}\}$ be $\{-1,1\}$ -valued i.i.d. random variables with $P(\xi(n,x)=1) = \frac{1}{2}$. BRWRE is defined by the following way.

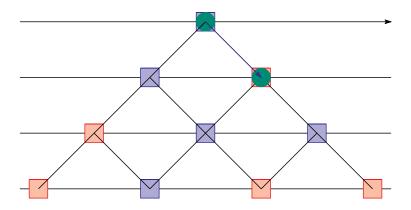
BRWRE

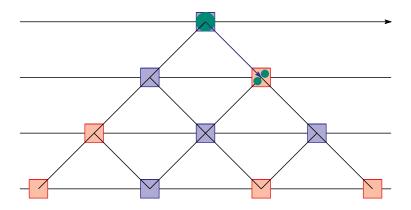
- **①** There are N particles at the origin at time 0.
- **2** Each particle at site x at time n moves to an independently and uniformly chosen nearest neighbor site and then it splits into two particles with probability $\frac{1}{2} + \frac{\beta\xi(n,x)}{2N^{1/4}}$ or dies out with probability $\frac{1}{2} \frac{\beta\xi(n,x)}{2N^{1/4}}$, where $\beta \in \mathbb{R}$ is a constant.

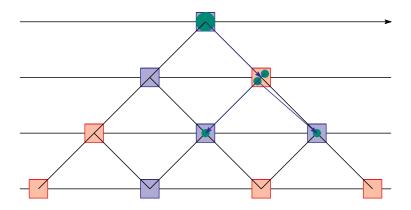
ヨト イヨト イヨト

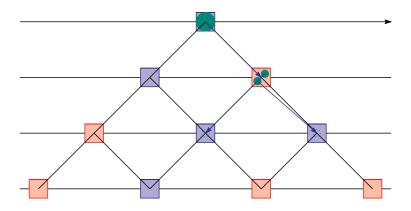












We define BRWRE as measure valued processes like BBM. For $A\in\mathcal{B}(\mathbb{R})$

$$X_t^{(N)}(A) = \sum_{x \in \sqrt{N}A} \frac{B_{\lfloor Nt \rfloor, x}^{(N)}}{N}$$
$$= \frac{\sharp \left\{ \text{ particles locates in } \sqrt{N}A \text{ at time } \lfloor Nt \rfloor \right\}}{N},$$

where

$$B_{n,x}^{(N)} =$$
 {particles at site x at time n.}

イロン イロン イヨン イヨン

э

Theorem [N'12]

 $(X_t^{(N)}(\cdot): t \ge 0)$ is tight and its limit point $(X_t(\cdot): t \ge 0)$ is a solution of the following martingale problem:

$$\begin{cases} \text{For all } \phi \in C_b^2(\mathbb{R}), \\ X_0(\phi) = \phi(0), \\ Z_t(\phi) = X_t(\phi) - X_0(\phi) - \int_0^t X_s\left(\frac{1}{2}\Delta\phi\right) ds \\ \text{is an } \mathcal{F}_t^X \text{-martingale and} \\ \langle Z(\phi) \rangle = \int_0^t X_s(\phi^2) ds \\ + \frac{\beta^2}{2} \int_0^t \int_{\mathbb{R} \times \mathbb{R}} \delta_{x-y} \phi(x) \phi(y) X_s(dx) X_s(dy) ds. \end{cases}$$

□ > < E > < E >

Thus, we can construct a SBMRE which is a solution of SPDE:

$$u_t = \frac{1}{2}u_{xx} + \sqrt{u + \frac{\beta^2}{2}u^2}\dot{W}(t, x), \quad \lim_{t \to 0+} u(t, x)dx = \delta_0.$$

Moreover, we can construct SBMRE by the same way which is a solution of SPDE:

$$u_t = \frac{1}{2}u_{xx} + \sqrt{\gamma u + \beta^2 u^2} \dot{W}(t, x), \ \lim_{t \to 0+} u(t, x) dx = m(dx)$$

for $\gamma > 0$, $\beta \in \mathbb{R}$, $m \in \mathcal{M}_F(\mathbb{R})$.

伺 ト イヨト イヨト

Thus, we can construct a SBMRE which is a solution of SPDE:

$$u_t = \frac{1}{2}u_{xx} + \sqrt{u + \frac{\beta^2}{2}u^2}\dot{W}(t, x), \quad \lim_{t \to 0+} u(t, x)dx = \delta_0.$$

Moreover, we can construct SBMRE by the same way which is a solution of SPDE:

$$u_t = \frac{1}{2}u_{xx} + \sqrt{\gamma u + \beta^2 u^2} \dot{W}(t, x), \ \lim_{t \to 0+} u(t, x) dx = m(dx)$$

for $\gamma > 0$, $\beta \in \mathbb{R}$, $m \in \mathcal{M}_F(\mathbb{R})$.

Uniqueness?

- < E > < E >

For $\phi \in C_b^2(\mathbb{R})$, the martingale part of $X_{\frac{k}{N}}^N(\phi)$ is divided into three parts:

 $M^{(b,N)}_{\cdot}(\phi)$: branching term $M^{(r,N)}_{\cdot}(\phi)$: random walk term $M^{(e,N)}_{\cdot}(\phi)$: environment term

伺 と くき と くき とう

For $\phi \in C_b^2(\mathbb{R})$, the martingale part of $X_{\frac{k}{N}}^N(\phi)$ is divided into three parts:

 $M^{(b,N)}_{\cdot}(\phi)$: branching term $M^{(r,N)}_{\cdot}(\phi)$: random walk term $M^{(e,N)}_{\cdot}(\phi)$: environment term

Then,
$$\left\langle M^{(b,N)}(\phi) \right\rangle_{\cdot} \Rightarrow \int_{0}^{\cdot} X_{t}(\phi) dt \text{ as } N \to \infty$$

and $\left\langle M^{(r,N)}(\phi) \right\rangle_{\cdot} \Rightarrow 0.$

伺 と くき と くき とう

The quadratic variation of the last one is written as

$$\left\langle M^{(e,N)}(\phi) \right\rangle_{n/N} = \frac{\beta^2}{N^2} \sum_{k=0}^{n-1} \sum_{x \in \mathbb{Z}} \phi\left(\frac{x}{N^{1/2}}\right)^2 \frac{\left(B_{k,x}^{(N)}\right)^2}{N^{1/2}}.$$

э

A 10

The quadratic variation of the last one is written as

$$\left\langle M^{(e,N)}(\phi) \right\rangle_{n/N} = \frac{\beta^2}{N^2} \sum_{k=0}^{n-1} \sum_{x \in \mathbb{Z}} \phi\left(\frac{x}{N^{1/2}}\right)^2 \frac{\left(B_{k,x}^{(N)}\right)^2}{N^{1/2}}.$$

We approximate $B_{k,x}^{(N)}$ as "density". We set

$$u^{(N)}(t,z) = \frac{B_{k,x}^{(N)}}{2N^{1/2}} \mathbf{1} \left\{ \left[\frac{k}{N}, \frac{k+1}{N} \right] \times \left[\frac{x-1}{N^{1/2}}, \frac{x+1}{N^{1/2}} \right] \ni (t,z) \right\}.$$
Remark: $\int_{z \in [\frac{x-1}{N^{1/2}}, \frac{x+1}{N^{1/2}}]} u^{(N)}(t,z) dz = \frac{1}{N} B_{k,x}^{(N)} \text{ for } t \in [\frac{k}{N}, \frac{k+1}{N}].$

Then, we have that

$$\left\langle M^{(e,N)}(\phi) \right\rangle_{n/N} \sim \frac{\beta^2}{2} \int_0^{n/N} \int_{\mathbb{R}} \phi(z)^2 \left(u^{(N)}(t,z) \right)^2 dz dt$$

If $u^{(N)}(\cdot, \cdot) \Rightarrow u(\cdot, \cdot)$, then this term converges to $\frac{\beta^2}{2} \int_0^{\cdot} \int_{\mathbb{R}} \phi(x)^2 u(t, x)^2 dx dt.$

→ 3 → 4 3

Thank you for your attention!

э